author Richard Kreckel Sat, 9 Mar 2019 17:40:32 +0000 (18:40 +0100) committer Richard Kreckel Sat, 9 Mar 2019 18:52:08 +0000 (19:52 +0100)
Remove special cases for small matrices and for for last column
minor computation. Add early return for the case that all minors
relevant for one column turn out to be zero. Improve some comments.

 ginac/matrix.cpp patch | blob | history

index 299cacf..fb67506 100644 (file)
@@ -1097,17 +1097,8 @@ unsigned matrix::rank(unsigned solve_algo) const
*  @see matrix::determinant() */
ex matrix::determinant_minor() const
{
-       // for small matrices the algorithm does not make any sense:
const unsigned n = this->cols();
-       if (n==1)
-               return m.expand();
-       if (n==2)
-               return (m*m-m*m).expand();
-       if (n==3)
-               return (m*m*m-m*m*m-
-                       m*m*m+m*m*m+
-                       m*m*m-m*m*m).expand();
-
+
// This algorithm can best be understood by looking at a naive
// implementation of Laplace-expansion, like this one:
// ex det;
@@ -1140,65 +1131,65 @@ ex matrix::determinant_minor() const
// calculated in step c-1.  We therefore only have to store at most
// 2*binomial(n,n/2) minors.

-       // Unique flipper counter for partitioning into minors
-       std::vector<unsigned> Pkey;
-       Pkey.reserve(n);
-       // key for minor determinant (a subpartition of Pkey)
-       std::vector<unsigned> Mkey;
+       // we store the minors in maps, keyed by the rows they arise from
+       typedef std::vector<unsigned> keyseq;
+       typedef std::map<keyseq, ex> Rmap;
+
+       Rmap M, N;  // minors used in current and next column, respectively
+       // populate M with dummy unit, to be used as factor in rightmost column
+       M[keyseq{}] = _ex1;
+
+       // keys to identify minor of M and N (Mkey is a subsequence of Nkey)
+       keyseq Mkey, Nkey;
Mkey.reserve(n-1);
-       // we store our subminors in maps, keys being the rows they arise from
-       typedef std::map<std::vector<unsigned>,class ex> Rmap;
-       typedef std::map<std::vector<unsigned>,class ex>::value_type Rmap_value;
-       Rmap A;
-       Rmap B;
+       Nkey.reserve(n);
+
ex det;
-       // initialize A with last column:
-       for (unsigned r=0; r<n; ++r) {
-               Pkey.erase(Pkey.begin(),Pkey.end());
-               Pkey.push_back(r);
-               A.insert(Rmap_value(Pkey,m[n*(r+1)-1]));
-       }
// proceed from right to left through matrix
-       for (int c=n-2; c>=0; --c) {
-               Pkey.erase(Pkey.begin(),Pkey.end());  // don't change capacity
-               Mkey.erase(Mkey.begin(),Mkey.end());
+       for (int c=n-1; c>=0; --c) {
+               Nkey.clear();
+               Mkey.clear();
for (unsigned i=0; i<n-c; ++i)
-                       Pkey.push_back(i);
-               unsigned fc = 0;  // controls logic for our strange flipper counter
+                       Nkey.push_back(i);
+               unsigned fc = 0;  // controls logic for minor key generator
do {
det = _ex0;
for (unsigned r=0; r<n-c; ++r) {
// maybe there is nothing to do?
-                               if (m[Pkey[r]*n+c].is_zero())
+                               if (m[Nkey[r]*n+c].is_zero())
continue;
-                               // create the sorted key for all possible minors
-                               Mkey.erase(Mkey.begin(),Mkey.end());
-                               for (unsigned i=0; i<n-c; ++i)
-                                       if (i!=r)
-                                               Mkey.push_back(Pkey[i]);
-                               // Fetch the minors and compute the new determinant
+                               // Mkey is same as Nkey, but with element r removed
+                               Mkey.clear();
+                               Mkey.insert(Mkey.begin(), Nkey.begin(), Nkey.begin() + r);
+                               Mkey.insert(Mkey.end(), Nkey.begin() + r + 1, Nkey.end());
+                               // add product of matrix element and minor M to determinant
if (r%2)
-                                       det -= m[Pkey[r]*n+c]*A[Mkey];
+                                       det -= m[Nkey[r]*n+c]*M[Mkey];
else
-                                       det += m[Pkey[r]*n+c]*A[Mkey];
+                                       det += m[Nkey[r]*n+c]*M[Mkey];
}
-                       // prevent build-up of deep nesting of expressions saves time:
+                       // prevent nested expressions to save time
det = det.expand();
-                       // store the new determinant at its place in B:
+                       // if the next computed minor is zero, don't store it in N:
+                       // (if key is not found, operator[] will just return a zero ex)
if (!det.is_zero())
-                               B.insert(Rmap_value(Pkey,det));
-                       // increment our strange flipper counter
+                               N[Nkey] = det;
+                       // compute next minor key
for (fc=n-c; fc>0; --fc) {
-                               ++Pkey[fc-1];
-                               if (Pkey[fc-1]<fc+c)
+                               ++Nkey[fc-1];
+                               if (Nkey[fc-1]<fc+c)
break;
}
if (fc<n-c && fc>0)
for (unsigned j=fc; j<n-c; ++j)
-                                       Pkey[j] = Pkey[j-1]+1;
+                                       Nkey[j] = Nkey[j-1]+1;
} while(fc);
-               // next column, clear B and change the role of A and B:
-               A = std::move(B);
+               // if N contains no minors, then they all vanished
+               if (N.empty())
+                       return _ex0;
+
+               // proceed to next column: switch roles of M and N, clear N
+               M = std::move(N);
}

return det;