]> www.ginac.de Git - ginac.git/blob - ginac/pseries.cpp
return type and parameter type of nops() and op()/let_op() (respectively) is
[ginac.git] / ginac / pseries.cpp
1 /** @file pseries.cpp
2  *
3  *  Implementation of class for extended truncated power series and
4  *  methods for series expansion. */
5
6 /*
7  *  GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; either version 2 of the License, or
12  *  (at your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  */
23
24 #include <iostream>
25 #include <stdexcept>
26
27 #include "pseries.h"
28 #include "add.h"
29 #include "inifcns.h" // for Order function
30 #include "lst.h"
31 #include "mul.h"
32 #include "power.h"
33 #include "relational.h"
34 #include "operators.h"
35 #include "symbol.h"
36 #include "print.h"
37 #include "archive.h"
38 #include "utils.h"
39
40 namespace GiNaC {
41
42 GINAC_IMPLEMENT_REGISTERED_CLASS(pseries, basic)
43
44
45 /*
46  *  Default ctor, dtor, copy ctor, assignment operator and helpers
47  */
48
49 pseries::pseries() : inherited(TINFO_pseries) { }
50
51 void pseries::copy(const pseries &other)
52 {
53         inherited::copy(other);
54         seq = other.seq;
55         var = other.var;
56         point = other.point;
57 }
58
59 DEFAULT_DESTROY(pseries)
60
61
62 /*
63  *  Other ctors
64  */
65
66 /** Construct pseries from a vector of coefficients and powers.
67  *  expair.rest holds the coefficient, expair.coeff holds the power.
68  *  The powers must be integers (positive or negative) and in ascending order;
69  *  the last coefficient can be Order(_ex1) to represent a truncated,
70  *  non-terminating series.
71  *
72  *  @param rel_  expansion variable and point (must hold a relational)
73  *  @param ops_  vector of {coefficient, power} pairs (coefficient must not be zero)
74  *  @return newly constructed pseries */
75 pseries::pseries(const ex &rel_, const epvector &ops_) : basic(TINFO_pseries), seq(ops_)
76 {
77         GINAC_ASSERT(is_a<relational>(rel_));
78         GINAC_ASSERT(is_a<symbol>(rel_.lhs()));
79         point = rel_.rhs();
80         var = rel_.lhs();
81 }
82
83
84 /*
85  *  Archiving
86  */
87
88 pseries::pseries(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
89 {
90         for (unsigned int i=0; true; ++i) {
91                 ex rest;
92                 ex coeff;
93                 if (n.find_ex("coeff", rest, sym_lst, i) && n.find_ex("power", coeff, sym_lst, i))
94                         seq.push_back(expair(rest, coeff));
95                 else
96                         break;
97         }
98         n.find_ex("var", var, sym_lst);
99         n.find_ex("point", point, sym_lst);
100 }
101
102 void pseries::archive(archive_node &n) const
103 {
104         inherited::archive(n);
105         epvector::const_iterator i = seq.begin(), iend = seq.end();
106         while (i != iend) {
107                 n.add_ex("coeff", i->rest);
108                 n.add_ex("power", i->coeff);
109                 ++i;
110         }
111         n.add_ex("var", var);
112         n.add_ex("point", point);
113 }
114
115 DEFAULT_UNARCHIVE(pseries)
116
117 //////////
118 // functions overriding virtual functions from base classes
119 //////////
120
121 void pseries::print(const print_context & c, unsigned level) const
122 {
123         if (is_a<print_tree>(c)) {
124
125                 c.s << std::string(level, ' ') << class_name()
126                     << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec
127                     << std::endl;
128                 unsigned delta_indent = static_cast<const print_tree &>(c).delta_indent;
129                 size_t num = seq.size();
130                 for (size_t i=0; i<num; ++i) {
131                         seq[i].rest.print(c, level + delta_indent);
132                         seq[i].coeff.print(c, level + delta_indent);
133                         c.s << std::string(level + delta_indent, ' ') << "-----" << std::endl;
134                 }
135                 var.print(c, level + delta_indent);
136                 point.print(c, level + delta_indent);
137
138         } else if (is_a<print_python_repr>(c)) {
139                 c.s << class_name() << "(relational(";
140                 var.print(c);
141                 c.s << ',';
142                 point.print(c);
143                 c.s << "),[";
144                 size_t num = seq.size();
145                 for (size_t i=0; i<num; ++i) {
146                         if (i)
147                                 c.s << ',';
148                         c.s << '(';
149                         seq[i].rest.print(c);
150                         c.s << ',';
151                         seq[i].coeff.print(c);
152                         c.s << ')';
153                 }
154                 c.s << "])";
155         } else {
156
157                 if (precedence() <= level)
158                         c.s << "(";
159                 
160                 std::string par_open = is_a<print_latex>(c) ? "{(" : "(";
161                 std::string par_close = is_a<print_latex>(c) ? ")}" : ")";
162                 
163                 // objects of type pseries must not have any zero entries, so the
164                 // trivial (zero) pseries needs a special treatment here:
165                 if (seq.empty())
166                         c.s << '0';
167                 epvector::const_iterator i = seq.begin(), end = seq.end();
168                 while (i != end) {
169                         // print a sign, if needed
170                         if (i != seq.begin())
171                                 c.s << '+';
172                         if (!is_order_function(i->rest)) {
173                                 // print 'rest', i.e. the expansion coefficient
174                                 if (i->rest.info(info_flags::numeric) &&
175                                         i->rest.info(info_flags::positive)) {
176                                         i->rest.print(c);
177                                 } else {
178                                         c.s << par_open;
179                                         i->rest.print(c);
180                                         c.s << par_close;
181                                 }
182                                 // print 'coeff', something like (x-1)^42
183                                 if (!i->coeff.is_zero()) {
184                                         if (is_a<print_latex>(c))
185                                                 c.s << ' ';
186                                         else
187                                                 c.s << '*';
188                                         if (!point.is_zero()) {
189                                                 c.s << par_open;
190                                                 (var-point).print(c);
191                                                 c.s << par_close;
192                                         } else
193                                                 var.print(c);
194                                         if (i->coeff.compare(_ex1)) {
195                                                 if (is_a<print_python>(c))
196                                                         c.s << "**";
197                                                 else
198                                                         c.s << '^';
199                                                 if (i->coeff.info(info_flags::negative)) {
200                                                         c.s << par_open;
201                                                         i->coeff.print(c);
202                                                         c.s << par_close;
203                                                 } else {
204                                                         if (is_a<print_latex>(c)) {
205                                                                 c.s << '{';
206                                                                 i->coeff.print(c);
207                                                                 c.s << '}';
208                                                         } else
209                                                                 i->coeff.print(c);
210                                                 }
211                                         }
212                                 }
213                         } else
214                                 Order(power(var-point,i->coeff)).print(c);
215                         ++i;
216                 }
217
218                 if (precedence() <= level)
219                         c.s << ")";
220         }
221 }
222
223 int pseries::compare_same_type(const basic & other) const
224 {
225         GINAC_ASSERT(is_a<pseries>(other));
226         const pseries &o = static_cast<const pseries &>(other);
227         
228         // first compare the lengths of the series...
229         if (seq.size()>o.seq.size())
230                 return 1;
231         if (seq.size()<o.seq.size())
232                 return -1;
233         
234         // ...then the expansion point...
235         int cmpval = var.compare(o.var);
236         if (cmpval)
237                 return cmpval;
238         cmpval = point.compare(o.point);
239         if (cmpval)
240                 return cmpval;
241         
242         // ...and if that failed the individual elements
243         epvector::const_iterator it = seq.begin(), o_it = o.seq.begin();
244         while (it!=seq.end() && o_it!=o.seq.end()) {
245                 cmpval = it->compare(*o_it);
246                 if (cmpval)
247                         return cmpval;
248                 ++it;
249                 ++o_it;
250         }
251
252         // so they are equal.
253         return 0;
254 }
255
256 /** Return the number of operands including a possible order term. */
257 size_t pseries::nops(void) const
258 {
259         return seq.size();
260 }
261
262 /** Return the ith term in the series when represented as a sum. */
263 ex pseries::op(size_t i) const
264 {
265         if (i >= seq.size())
266                 throw (std::out_of_range("op() out of range"));
267
268         return seq[i].rest * power(var - point, seq[i].coeff);
269 }
270
271 /** Return degree of highest power of the series.  This is usually the exponent
272  *  of the Order term.  If s is not the expansion variable of the series, the
273  *  series is examined termwise. */
274 int pseries::degree(const ex &s) const
275 {
276         if (var.is_equal(s)) {
277                 // Return last exponent
278                 if (seq.size())
279                         return ex_to<numeric>((seq.end()-1)->coeff).to_int();
280                 else
281                         return 0;
282         } else {
283                 epvector::const_iterator it = seq.begin(), itend = seq.end();
284                 if (it == itend)
285                         return 0;
286                 int max_pow = INT_MIN;
287                 while (it != itend) {
288                         int pow = it->rest.degree(s);
289                         if (pow > max_pow)
290                                 max_pow = pow;
291                         ++it;
292                 }
293                 return max_pow;
294         }
295 }
296
297 /** Return degree of lowest power of the series.  This is usually the exponent
298  *  of the leading term.  If s is not the expansion variable of the series, the
299  *  series is examined termwise.  If s is the expansion variable but the
300  *  expansion point is not zero the series is not expanded to find the degree.
301  *  I.e.: (1-x) + (1-x)^2 + Order((1-x)^3) has ldegree(x) 1, not 0. */
302 int pseries::ldegree(const ex &s) const
303 {
304         if (var.is_equal(s)) {
305                 // Return first exponent
306                 if (seq.size())
307                         return ex_to<numeric>((seq.begin())->coeff).to_int();
308                 else
309                         return 0;
310         } else {
311                 epvector::const_iterator it = seq.begin(), itend = seq.end();
312                 if (it == itend)
313                         return 0;
314                 int min_pow = INT_MAX;
315                 while (it != itend) {
316                         int pow = it->rest.ldegree(s);
317                         if (pow < min_pow)
318                                 min_pow = pow;
319                         ++it;
320                 }
321                 return min_pow;
322         }
323 }
324
325 /** Return coefficient of degree n in power series if s is the expansion
326  *  variable.  If the expansion point is nonzero, by definition the n=1
327  *  coefficient in s of a+b*(s-z)+c*(s-z)^2+Order((s-z)^3) is b (assuming
328  *  the expansion took place in the s in the first place).
329  *  If s is not the expansion variable, an attempt is made to convert the
330  *  series to a polynomial and return the corresponding coefficient from
331  *  there. */
332 ex pseries::coeff(const ex &s, int n) const
333 {
334         if (var.is_equal(s)) {
335                 if (seq.empty())
336                         return _ex0;
337                 
338                 // Binary search in sequence for given power
339                 numeric looking_for = numeric(n);
340                 int lo = 0, hi = seq.size() - 1;
341                 while (lo <= hi) {
342                         int mid = (lo + hi) / 2;
343                         GINAC_ASSERT(is_exactly_a<numeric>(seq[mid].coeff));
344                         int cmp = ex_to<numeric>(seq[mid].coeff).compare(looking_for);
345                         switch (cmp) {
346                                 case -1:
347                                         lo = mid + 1;
348                                         break;
349                                 case 0:
350                                         return seq[mid].rest;
351                                 case 1:
352                                         hi = mid - 1;
353                                         break;
354                                 default:
355                                         throw(std::logic_error("pseries::coeff: compare() didn't return -1, 0 or 1"));
356                         }
357                 }
358                 return _ex0;
359         } else
360                 return convert_to_poly().coeff(s, n);
361 }
362
363 /** Does nothing. */
364 ex pseries::collect(const ex &s, bool distributed) const
365 {
366         return *this;
367 }
368
369 /** Perform coefficient-wise automatic term rewriting rules in this class. */
370 ex pseries::eval(int level) const
371 {
372         if (level == 1)
373                 return this->hold();
374         
375         if (level == -max_recursion_level)
376                 throw (std::runtime_error("pseries::eval(): recursion limit exceeded"));
377         
378         // Construct a new series with evaluated coefficients
379         epvector new_seq;
380         new_seq.reserve(seq.size());
381         epvector::const_iterator it = seq.begin(), itend = seq.end();
382         while (it != itend) {
383                 new_seq.push_back(expair(it->rest.eval(level-1), it->coeff));
384                 ++it;
385         }
386         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
387 }
388
389 /** Evaluate coefficients numerically. */
390 ex pseries::evalf(int level) const
391 {
392         if (level == 1)
393                 return *this;
394         
395         if (level == -max_recursion_level)
396                 throw (std::runtime_error("pseries::evalf(): recursion limit exceeded"));
397         
398         // Construct a new series with evaluated coefficients
399         epvector new_seq;
400         new_seq.reserve(seq.size());
401         epvector::const_iterator it = seq.begin(), itend = seq.end();
402         while (it != itend) {
403                 new_seq.push_back(expair(it->rest.evalf(level-1), it->coeff));
404                 ++it;
405         }
406         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
407 }
408
409 ex pseries::subs(const lst & ls, const lst & lr, unsigned options) const
410 {
411         // If expansion variable is being substituted, convert the series to a
412         // polynomial and do the substitution there because the result might
413         // no longer be a power series
414         if (ls.has(var))
415                 return convert_to_poly(true).subs(ls, lr, options);
416         
417         // Otherwise construct a new series with substituted coefficients and
418         // expansion point
419         epvector newseq;
420         newseq.reserve(seq.size());
421         epvector::const_iterator it = seq.begin(), itend = seq.end();
422         while (it != itend) {
423                 newseq.push_back(expair(it->rest.subs(ls, lr, options), it->coeff));
424                 ++it;
425         }
426         return (new pseries(relational(var,point.subs(ls, lr, options)), newseq))->setflag(status_flags::dynallocated);
427 }
428
429 /** Implementation of ex::expand() for a power series.  It expands all the
430  *  terms individually and returns the resulting series as a new pseries. */
431 ex pseries::expand(unsigned options) const
432 {
433         epvector newseq;
434         epvector::const_iterator i = seq.begin(), end = seq.end();
435         while (i != end) {
436                 ex restexp = i->rest.expand();
437                 if (!restexp.is_zero())
438                         newseq.push_back(expair(restexp, i->coeff));
439                 ++i;
440         }
441         return (new pseries(relational(var,point), newseq))
442                 ->setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0));
443 }
444
445 /** Implementation of ex::diff() for a power series.
446  *  @see ex::diff */
447 ex pseries::derivative(const symbol & s) const
448 {
449         epvector new_seq;
450         epvector::const_iterator it = seq.begin(), itend = seq.end();
451
452         if (s == var) {
453                 
454                 // FIXME: coeff might depend on var
455                 while (it != itend) {
456                         if (is_order_function(it->rest)) {
457                                 new_seq.push_back(expair(it->rest, it->coeff - 1));
458                         } else {
459                                 ex c = it->rest * it->coeff;
460                                 if (!c.is_zero())
461                                         new_seq.push_back(expair(c, it->coeff - 1));
462                         }
463                         ++it;
464                 }
465
466         } else {
467
468                 while (it != itend) {
469                         if (is_order_function(it->rest)) {
470                                 new_seq.push_back(*it);
471                         } else {
472                                 ex c = it->rest.diff(s);
473                                 if (!c.is_zero())
474                                         new_seq.push_back(expair(c, it->coeff));
475                         }
476                         ++it;
477                 }
478         }
479
480         return pseries(relational(var,point), new_seq);
481 }
482
483 ex pseries::convert_to_poly(bool no_order) const
484 {
485         ex e;
486         epvector::const_iterator it = seq.begin(), itend = seq.end();
487         
488         while (it != itend) {
489                 if (is_order_function(it->rest)) {
490                         if (!no_order)
491                                 e += Order(power(var - point, it->coeff));
492                 } else
493                         e += it->rest * power(var - point, it->coeff);
494                 ++it;
495         }
496         return e;
497 }
498
499 bool pseries::is_terminating(void) const
500 {
501         return seq.empty() || !is_order_function((seq.end()-1)->rest);
502 }
503
504
505 /*
506  *  Implementations of series expansion
507  */
508
509 /** Default implementation of ex::series(). This performs Taylor expansion.
510  *  @see ex::series */
511 ex basic::series(const relational & r, int order, unsigned options) const
512 {
513         epvector seq;
514         numeric fac = 1;
515         ex deriv = *this;
516         ex coeff = deriv.subs(r);
517         const symbol &s = ex_to<symbol>(r.lhs());
518         
519         if (!coeff.is_zero())
520                 seq.push_back(expair(coeff, _ex0));
521         
522         int n;
523         for (n=1; n<order; ++n) {
524                 fac = fac.mul(n);
525                 // We need to test for zero in order to see if the series terminates.
526                 // The problem is that there is no such thing as a perfect test for
527                 // zero.  Expanding the term occasionally helps a little...
528                 deriv = deriv.diff(s).expand();
529                 if (deriv.is_zero())  // Series terminates
530                         return pseries(r, seq);
531
532                 coeff = deriv.subs(r);
533                 if (!coeff.is_zero())
534                         seq.push_back(expair(fac.inverse() * coeff, n));
535         }
536         
537         // Higher-order terms, if present
538         deriv = deriv.diff(s);
539         if (!deriv.expand().is_zero())
540                 seq.push_back(expair(Order(_ex1), n));
541         return pseries(r, seq);
542 }
543
544
545 /** Implementation of ex::series() for symbols.
546  *  @see ex::series */
547 ex symbol::series(const relational & r, int order, unsigned options) const
548 {
549         epvector seq;
550         const ex point = r.rhs();
551         GINAC_ASSERT(is_a<symbol>(r.lhs()));
552
553         if (this->is_equal_same_type(ex_to<symbol>(r.lhs()))) {
554                 if (order > 0 && !point.is_zero())
555                         seq.push_back(expair(point, _ex0));
556                 if (order > 1)
557                         seq.push_back(expair(_ex1, _ex1));
558                 else
559                         seq.push_back(expair(Order(_ex1), numeric(order)));
560         } else
561                 seq.push_back(expair(*this, _ex0));
562         return pseries(r, seq);
563 }
564
565
566 /** Add one series object to another, producing a pseries object that
567  *  represents the sum.
568  *
569  *  @param other  pseries object to add with
570  *  @return the sum as a pseries */
571 ex pseries::add_series(const pseries &other) const
572 {
573         // Adding two series with different variables or expansion points
574         // results in an empty (constant) series 
575         if (!is_compatible_to(other)) {
576                 epvector nul;
577                 nul.push_back(expair(Order(_ex1), _ex0));
578                 return pseries(relational(var,point), nul);
579         }
580         
581         // Series addition
582         epvector new_seq;
583         epvector::const_iterator a = seq.begin();
584         epvector::const_iterator b = other.seq.begin();
585         epvector::const_iterator a_end = seq.end();
586         epvector::const_iterator b_end = other.seq.end();
587         int pow_a = INT_MAX, pow_b = INT_MAX;
588         for (;;) {
589                 // If a is empty, fill up with elements from b and stop
590                 if (a == a_end) {
591                         while (b != b_end) {
592                                 new_seq.push_back(*b);
593                                 ++b;
594                         }
595                         break;
596                 } else
597                         pow_a = ex_to<numeric>((*a).coeff).to_int();
598                 
599                 // If b is empty, fill up with elements from a and stop
600                 if (b == b_end) {
601                         while (a != a_end) {
602                                 new_seq.push_back(*a);
603                                 ++a;
604                         }
605                         break;
606                 } else
607                         pow_b = ex_to<numeric>((*b).coeff).to_int();
608                 
609                 // a and b are non-empty, compare powers
610                 if (pow_a < pow_b) {
611                         // a has lesser power, get coefficient from a
612                         new_seq.push_back(*a);
613                         if (is_order_function((*a).rest))
614                                 break;
615                         ++a;
616                 } else if (pow_b < pow_a) {
617                         // b has lesser power, get coefficient from b
618                         new_seq.push_back(*b);
619                         if (is_order_function((*b).rest))
620                                 break;
621                         ++b;
622                 } else {
623                         // Add coefficient of a and b
624                         if (is_order_function((*a).rest) || is_order_function((*b).rest)) {
625                                 new_seq.push_back(expair(Order(_ex1), (*a).coeff));
626                                 break;  // Order term ends the sequence
627                         } else {
628                                 ex sum = (*a).rest + (*b).rest;
629                                 if (!(sum.is_zero()))
630                                         new_seq.push_back(expair(sum, numeric(pow_a)));
631                                 ++a;
632                                 ++b;
633                         }
634                 }
635         }
636         return pseries(relational(var,point), new_seq);
637 }
638
639
640 /** Implementation of ex::series() for sums. This performs series addition when
641  *  adding pseries objects.
642  *  @see ex::series */
643 ex add::series(const relational & r, int order, unsigned options) const
644 {
645         ex acc; // Series accumulator
646         
647         // Get first term from overall_coeff
648         acc = overall_coeff.series(r, order, options);
649         
650         // Add remaining terms
651         epvector::const_iterator it = seq.begin();
652         epvector::const_iterator itend = seq.end();
653         for (; it!=itend; ++it) {
654                 ex op;
655                 if (is_exactly_a<pseries>(it->rest))
656                         op = it->rest;
657                 else
658                         op = it->rest.series(r, order, options);
659                 if (!it->coeff.is_equal(_ex1))
660                         op = ex_to<pseries>(op).mul_const(ex_to<numeric>(it->coeff));
661                 
662                 // Series addition
663                 acc = ex_to<pseries>(acc).add_series(ex_to<pseries>(op));
664         }
665         return acc;
666 }
667
668
669 /** Multiply a pseries object with a numeric constant, producing a pseries
670  *  object that represents the product.
671  *
672  *  @param other  constant to multiply with
673  *  @return the product as a pseries */
674 ex pseries::mul_const(const numeric &other) const
675 {
676         epvector new_seq;
677         new_seq.reserve(seq.size());
678         
679         epvector::const_iterator it = seq.begin(), itend = seq.end();
680         while (it != itend) {
681                 if (!is_order_function(it->rest))
682                         new_seq.push_back(expair(it->rest * other, it->coeff));
683                 else
684                         new_seq.push_back(*it);
685                 ++it;
686         }
687         return pseries(relational(var,point), new_seq);
688 }
689
690
691 /** Multiply one pseries object to another, producing a pseries object that
692  *  represents the product.
693  *
694  *  @param other  pseries object to multiply with
695  *  @return the product as a pseries */
696 ex pseries::mul_series(const pseries &other) const
697 {
698         // Multiplying two series with different variables or expansion points
699         // results in an empty (constant) series 
700         if (!is_compatible_to(other)) {
701                 epvector nul;
702                 nul.push_back(expair(Order(_ex1), _ex0));
703                 return pseries(relational(var,point), nul);
704         }
705         
706         // Series multiplication
707         epvector new_seq;
708         int a_max = degree(var);
709         int b_max = other.degree(var);
710         int a_min = ldegree(var);
711         int b_min = other.ldegree(var);
712         int cdeg_min = a_min + b_min;
713         int cdeg_max = a_max + b_max;
714         
715         int higher_order_a = INT_MAX;
716         int higher_order_b = INT_MAX;
717         if (is_order_function(coeff(var, a_max)))
718                 higher_order_a = a_max + b_min;
719         if (is_order_function(other.coeff(var, b_max)))
720                 higher_order_b = b_max + a_min;
721         int higher_order_c = std::min(higher_order_a, higher_order_b);
722         if (cdeg_max >= higher_order_c)
723                 cdeg_max = higher_order_c - 1;
724         
725         for (int cdeg=cdeg_min; cdeg<=cdeg_max; ++cdeg) {
726                 ex co = _ex0;
727                 // c(i)=a(0)b(i)+...+a(i)b(0)
728                 for (int i=a_min; cdeg-i>=b_min; ++i) {
729                         ex a_coeff = coeff(var, i);
730                         ex b_coeff = other.coeff(var, cdeg-i);
731                         if (!is_order_function(a_coeff) && !is_order_function(b_coeff))
732                                 co += a_coeff * b_coeff;
733                 }
734                 if (!co.is_zero())
735                         new_seq.push_back(expair(co, numeric(cdeg)));
736         }
737         if (higher_order_c < INT_MAX)
738                 new_seq.push_back(expair(Order(_ex1), numeric(higher_order_c)));
739         return pseries(relational(var, point), new_seq);
740 }
741
742
743 /** Implementation of ex::series() for product. This performs series
744  *  multiplication when multiplying series.
745  *  @see ex::series */
746 ex mul::series(const relational & r, int order, unsigned options) const
747 {
748         pseries acc; // Series accumulator
749
750         // Multiply with remaining terms
751         const epvector::const_iterator itbeg = seq.begin();
752         const epvector::const_iterator itend = seq.end();
753         for (epvector::const_iterator it=itbeg; it!=itend; ++it) {
754                 ex op = recombine_pair_to_ex(*it).series(r, order, options);
755
756                 // Series multiplication
757                 if (it==itbeg)
758                         acc = ex_to<pseries>(op);
759                 else
760                         acc = ex_to<pseries>(acc.mul_series(ex_to<pseries>(op)));
761         }
762         return acc.mul_const(ex_to<numeric>(overall_coeff));
763 }
764
765
766 /** Compute the p-th power of a series.
767  *
768  *  @param p  power to compute
769  *  @param deg  truncation order of series calculation */
770 ex pseries::power_const(const numeric &p, int deg) const
771 {
772         // method:
773         // (due to Leonhard Euler)
774         // let A(x) be this series and for the time being let it start with a
775         // constant (later we'll generalize):
776         //     A(x) = a_0 + a_1*x + a_2*x^2 + ...
777         // We want to compute
778         //     C(x) = A(x)^p
779         //     C(x) = c_0 + c_1*x + c_2*x^2 + ...
780         // Taking the derivative on both sides and multiplying with A(x) one
781         // immediately arrives at
782         //     C'(x)*A(x) = p*C(x)*A'(x)
783         // Multiplying this out and comparing coefficients we get the recurrence
784         // formula
785         //     c_i = (i*p*a_i*c_0 + ((i-1)*p-1)*a_{i-1}*c_1 + ...
786         //                    ... + (p-(i-1))*a_1*c_{i-1})/(a_0*i)
787         // which can easily be solved given the starting value c_0 = (a_0)^p.
788         // For the more general case where the leading coefficient of A(x) is not
789         // a constant, just consider A2(x) = A(x)*x^m, with some integer m and
790         // repeat the above derivation.  The leading power of C2(x) = A2(x)^2 is
791         // then of course x^(p*m) but the recurrence formula still holds.
792         
793         if (seq.empty()) {
794                 // as a special case, handle the empty (zero) series honoring the
795                 // usual power laws such as implemented in power::eval()
796                 if (p.real().is_zero())
797                         throw std::domain_error("pseries::power_const(): pow(0,I) is undefined");
798                 else if (p.real().is_negative())
799                         throw pole_error("pseries::power_const(): division by zero",1);
800                 else
801                         return *this;
802         }
803         
804         const int ldeg = ldegree(var);
805         if (!(p*ldeg).is_integer())
806                 throw std::runtime_error("pseries::power_const(): trying to assemble a Puiseux series");
807
808         // O(x^n)^(-m) is undefined
809         if (seq.size() == 1 && is_order_function(seq[0].rest) && p.real().is_negative())
810                 throw pole_error("pseries::power_const(): division by zero",1);
811         
812         // Compute coefficients of the powered series
813         exvector co;
814         co.reserve(deg);
815         co.push_back(power(coeff(var, ldeg), p));
816         bool all_sums_zero = true;
817         for (int i=1; i<deg; ++i) {
818                 ex sum = _ex0;
819                 for (int j=1; j<=i; ++j) {
820                         ex c = coeff(var, j + ldeg);
821                         if (is_order_function(c)) {
822                                 co.push_back(Order(_ex1));
823                                 break;
824                         } else
825                                 sum += (p * j - (i - j)) * co[i - j] * c;
826                 }
827                 if (!sum.is_zero())
828                         all_sums_zero = false;
829                 co.push_back(sum / coeff(var, ldeg) / i);
830         }
831         
832         // Construct new series (of non-zero coefficients)
833         epvector new_seq;
834         bool higher_order = false;
835         for (int i=0; i<deg; ++i) {
836                 if (!co[i].is_zero())
837                         new_seq.push_back(expair(co[i], p * ldeg + i));
838                 if (is_order_function(co[i])) {
839                         higher_order = true;
840                         break;
841                 }
842         }
843         if (!higher_order && !all_sums_zero)
844                 new_seq.push_back(expair(Order(_ex1), p * ldeg + deg));
845         return pseries(relational(var,point), new_seq);
846 }
847
848
849 /** Return a new pseries object with the powers shifted by deg. */
850 pseries pseries::shift_exponents(int deg) const
851 {
852         epvector newseq = seq;
853         epvector::iterator i = newseq.begin(), end  = newseq.end();
854         while (i != end) {
855                 i->coeff += deg;
856                 ++i;
857         }
858         return pseries(relational(var, point), newseq);
859 }
860
861
862 /** Implementation of ex::series() for powers. This performs Laurent expansion
863  *  of reciprocals of series at singularities.
864  *  @see ex::series */
865 ex power::series(const relational & r, int order, unsigned options) const
866 {
867         // If basis is already a series, just power it
868         if (is_exactly_a<pseries>(basis))
869                 return ex_to<pseries>(basis).power_const(ex_to<numeric>(exponent), order);
870
871         // Basis is not a series, may there be a singularity?
872         bool must_expand_basis = false;
873         try {
874                 basis.subs(r);
875         } catch (pole_error) {
876                 must_expand_basis = true;
877         }
878                 
879         // Is the expression of type something^(-int)?
880         if (!must_expand_basis && !exponent.info(info_flags::negint))
881                 return basic::series(r, order, options);
882                 
883         // Is the expression of type 0^something?
884         if (!must_expand_basis && !basis.subs(r).is_zero())
885                 return basic::series(r, order, options);
886
887         // Singularity encountered, is the basis equal to (var - point)?
888         if (basis.is_equal(r.lhs() - r.rhs())) {
889                 epvector new_seq;
890                 if (ex_to<numeric>(exponent).to_int() < order)
891                         new_seq.push_back(expair(_ex1, exponent));
892                 else
893                         new_seq.push_back(expair(Order(_ex1), exponent));
894                 return pseries(r, new_seq);
895         }
896
897         // No, expand basis into series
898         ex e = basis.series(r, order, options);
899         return ex_to<pseries>(e).power_const(ex_to<numeric>(exponent), order);
900 }
901
902
903 /** Re-expansion of a pseries object. */
904 ex pseries::series(const relational & r, int order, unsigned options) const
905 {
906         const ex p = r.rhs();
907         GINAC_ASSERT(is_a<symbol>(r.lhs()));
908         const symbol &s = ex_to<symbol>(r.lhs());
909         
910         if (var.is_equal(s) && point.is_equal(p)) {
911                 if (order > degree(s))
912                         return *this;
913                 else {
914                         epvector new_seq;
915                         epvector::const_iterator it = seq.begin(), itend = seq.end();
916                         while (it != itend) {
917                                 int o = ex_to<numeric>(it->coeff).to_int();
918                                 if (o >= order) {
919                                         new_seq.push_back(expair(Order(_ex1), o));
920                                         break;
921                                 }
922                                 new_seq.push_back(*it);
923                                 ++it;
924                         }
925                         return pseries(r, new_seq);
926                 }
927         } else
928                 return convert_to_poly().series(r, order, options);
929 }
930
931
932 /** Compute the truncated series expansion of an expression.
933  *  This function returns an expression containing an object of class pseries 
934  *  to represent the series. If the series does not terminate within the given
935  *  truncation order, the last term of the series will be an order term.
936  *
937  *  @param r  expansion relation, lhs holds variable and rhs holds point
938  *  @param order  truncation order of series calculations
939  *  @param options  of class series_options
940  *  @return an expression holding a pseries object */
941 ex ex::series(const ex & r, int order, unsigned options) const
942 {
943         GINAC_ASSERT(bp!=0);
944         ex e;
945         relational rel_;
946         
947         if (is_a<relational>(r))
948                 rel_ = ex_to<relational>(r);
949         else if (is_a<symbol>(r))
950                 rel_ = relational(r,_ex0);
951         else
952                 throw (std::logic_error("ex::series(): expansion point has unknown type"));
953         
954         try {
955                 e = bp->series(rel_, order, options);
956         } catch (std::exception &x) {
957                 throw (std::logic_error(std::string("unable to compute series (") + x.what() + ")"));
958         }
959         return e;
960 }
961
962 } // namespace GiNaC