]> www.ginac.de Git - ginac.git/blob - ginac/pseries.cpp
[BUGFIX] Fix crash in parser.
[ginac.git] / ginac / pseries.cpp
1 /** @file pseries.cpp
2  *
3  *  Implementation of class for extended truncated power series and
4  *  methods for series expansion. */
5
6 /*
7  *  GiNaC Copyright (C) 1999-2024 Johannes Gutenberg University Mainz, Germany
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; either version 2 of the License, or
12  *  (at your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
22  */
23
24 #include "pseries.h"
25 #include "add.h"
26 #include "inifcns.h" // for Order function
27 #include "lst.h"
28 #include "mul.h"
29 #include "power.h"
30 #include "relational.h"
31 #include "operators.h"
32 #include "symbol.h"
33 #include "integral.h"
34 #include "archive.h"
35 #include "utils.h"
36
37 #include <limits>
38 #include <numeric>
39 #include <stdexcept>
40
41 namespace GiNaC {
42
43 GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(pseries, basic,
44   print_func<print_context>(&pseries::do_print).
45   print_func<print_latex>(&pseries::do_print_latex).
46   print_func<print_tree>(&pseries::do_print_tree).
47   print_func<print_python>(&pseries::do_print_python).
48   print_func<print_python_repr>(&pseries::do_print_python_repr))
49
50
51 /*
52  *  Default constructor
53  */
54
55 pseries::pseries() { }
56
57
58 /*
59  *  Other ctors
60  */
61
62 /** Construct pseries from a vector of coefficients and powers.
63  *  expair.rest holds the coefficient, expair.coeff holds the power.
64  *  The powers must be integers (positive or negative) and in ascending order;
65  *  the last coefficient can be Order(_ex1) to represent a truncated,
66  *  non-terminating series.
67  *
68  *  @param rel_  expansion variable and point (must hold a relational)
69  *  @param ops_  vector of {coefficient, power} pairs (coefficient must not be zero) */
70 pseries::pseries(const ex &rel_, const epvector &ops_)
71   : seq(ops_)
72 {
73 #ifdef DO_GINAC_ASSERT
74         auto i = seq.begin();
75         while (i != seq.end()) {
76                 auto ip1 = i+1;
77                 if (ip1 != seq.end())
78                         GINAC_ASSERT(!is_order_function(i->rest));
79                 else
80                         break;
81                 GINAC_ASSERT(is_a<numeric>(i->coeff));
82                 GINAC_ASSERT(ex_to<numeric>(i->coeff) < ex_to<numeric>(ip1->coeff));
83                 ++i;
84         }
85 #endif // def DO_GINAC_ASSERT
86         GINAC_ASSERT(is_a<relational>(rel_));
87         GINAC_ASSERT(is_a<symbol>(rel_.lhs()));
88         point = rel_.rhs();
89         var = rel_.lhs();
90 }
91 pseries::pseries(const ex &rel_, epvector &&ops_)
92   : seq(std::move(ops_))
93 {
94 #ifdef DO_GINAC_ASSERT
95         auto i = seq.begin();
96         while (i != seq.end()) {
97                 auto ip1 = i+1;
98                 if (ip1 != seq.end())
99                         GINAC_ASSERT(!is_order_function(i->rest));
100                 else
101                         break;
102                 GINAC_ASSERT(is_a<numeric>(i->coeff));
103                 GINAC_ASSERT(ex_to<numeric>(i->coeff) < ex_to<numeric>(ip1->coeff));
104                 ++i;
105         }
106 #endif // def DO_GINAC_ASSERT
107         GINAC_ASSERT(is_a<relational>(rel_));
108         GINAC_ASSERT(is_a<symbol>(rel_.lhs()));
109         point = rel_.rhs();
110         var = rel_.lhs();
111 }
112
113
114 /*
115  *  Archiving
116  */
117
118 void pseries::read_archive(const archive_node &n, lst &sym_lst) 
119 {
120         inherited::read_archive(n, sym_lst);
121         auto range = n.find_property_range("coeff", "power");
122         seq.reserve((range.end-range.begin)/2);
123
124         for (auto loc = range.begin; loc < range.end;) {
125                 ex rest;
126                 ex coeff;
127                 n.find_ex_by_loc(loc++, rest, sym_lst);
128                 n.find_ex_by_loc(loc++, coeff, sym_lst);
129                 seq.emplace_back(expair(rest, coeff));
130         }
131
132         n.find_ex("var", var, sym_lst);
133         n.find_ex("point", point, sym_lst);
134 }
135
136 void pseries::archive(archive_node &n) const
137 {
138         inherited::archive(n);
139         for (auto & it : seq) {
140                 n.add_ex("coeff", it.rest);
141                 n.add_ex("power", it.coeff);
142         }
143         n.add_ex("var", var);
144         n.add_ex("point", point);
145 }
146
147
148 //////////
149 // functions overriding virtual functions from base classes
150 //////////
151
152 void pseries::print_series(const print_context & c, const char *openbrace, const char *closebrace, const char *mul_sym, const char *pow_sym, unsigned level) const
153 {
154         if (precedence() <= level)
155                 c.s << '(';
156                 
157         // objects of type pseries must not have any zero entries, so the
158         // trivial (zero) pseries needs a special treatment here:
159         if (seq.empty())
160                 c.s << '0';
161
162         auto i = seq.begin(), end = seq.end();
163         while (i != end) {
164
165                 // print a sign, if needed
166                 if (i != seq.begin())
167                         c.s << '+';
168
169                 if (!is_order_function(i->rest)) {
170
171                         // print 'rest', i.e. the expansion coefficient
172                         if (i->rest.info(info_flags::numeric) &&
173                                 i->rest.info(info_flags::positive)) {
174                                 i->rest.print(c);
175                         } else {
176                                 c.s << openbrace << '(';
177                                 i->rest.print(c);
178                                 c.s << ')' << closebrace;
179                         }
180
181                         // print 'coeff', something like (x-1)^42
182                         if (!i->coeff.is_zero()) {
183                                 c.s << mul_sym;
184                                 if (!point.is_zero()) {
185                                         c.s << openbrace << '(';
186                                         (var-point).print(c);
187                                         c.s << ')' << closebrace;
188                                 } else
189                                         var.print(c);
190                                 if (i->coeff.compare(_ex1)) {
191                                         c.s << pow_sym;
192                                         c.s << openbrace;
193                                         if (i->coeff.info(info_flags::negative)) {
194                                                 c.s << '(';
195                                                 i->coeff.print(c);
196                                                 c.s << ')';
197                                         } else
198                                                 i->coeff.print(c);
199                                         c.s << closebrace;
200                                 }
201                         }
202                 } else
203                         Order(pow(var - point, i->coeff)).print(c);
204                 ++i;
205         }
206
207         if (precedence() <= level)
208                 c.s << ')';
209 }
210
211 void pseries::do_print(const print_context & c, unsigned level) const
212 {
213         print_series(c, "", "", "*", "^", level);
214 }
215
216 void pseries::do_print_latex(const print_latex & c, unsigned level) const
217 {
218         print_series(c, "{", "}", " ", "^", level);
219 }
220
221 void pseries::do_print_python(const print_python & c, unsigned level) const
222 {
223         print_series(c, "", "", "*", "**", level);
224 }
225
226 void pseries::do_print_tree(const print_tree & c, unsigned level) const
227 {
228         c.s << std::string(level, ' ') << class_name() << " @" << this
229             << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec
230             << std::endl;
231         size_t num = seq.size();
232         for (size_t i=0; i<num; ++i) {
233                 seq[i].rest.print(c, level + c.delta_indent);
234                 seq[i].coeff.print(c, level + c.delta_indent);
235                 c.s << std::string(level + c.delta_indent, ' ') << "-----" << std::endl;
236         }
237         var.print(c, level + c.delta_indent);
238         point.print(c, level + c.delta_indent);
239 }
240
241 void pseries::do_print_python_repr(const print_python_repr & c, unsigned level) const
242 {
243         c.s << class_name() << "(relational(";
244         var.print(c);
245         c.s << ',';
246         point.print(c);
247         c.s << "),[";
248         size_t num = seq.size();
249         for (size_t i=0; i<num; ++i) {
250                 if (i)
251                         c.s << ',';
252                 c.s << '(';
253                 seq[i].rest.print(c);
254                 c.s << ',';
255                 seq[i].coeff.print(c);
256                 c.s << ')';
257         }
258         c.s << "])";
259 }
260
261 int pseries::compare_same_type(const basic & other) const
262 {
263         GINAC_ASSERT(is_a<pseries>(other));
264         const pseries &o = static_cast<const pseries &>(other);
265         
266         // first compare the lengths of the series...
267         if (seq.size()>o.seq.size())
268                 return 1;
269         if (seq.size()<o.seq.size())
270                 return -1;
271         
272         // ...then the expansion point...
273         int cmpval = var.compare(o.var);
274         if (cmpval)
275                 return cmpval;
276         cmpval = point.compare(o.point);
277         if (cmpval)
278                 return cmpval;
279         
280         // ...and if that failed the individual elements
281         auto it = seq.begin(), o_it = o.seq.begin();
282         while (it!=seq.end() && o_it!=o.seq.end()) {
283                 cmpval = it->compare(*o_it);
284                 if (cmpval)
285                         return cmpval;
286                 ++it;
287                 ++o_it;
288         }
289
290         // so they are equal.
291         return 0;
292 }
293
294 /** Return the number of operands including a possible order term. */
295 size_t pseries::nops() const
296 {
297         return seq.size();
298 }
299
300 /** Return the ith term in the series when represented as a sum. */
301 ex pseries::op(size_t i) const
302 {
303         if (i >= seq.size())
304                 throw (std::out_of_range("op() out of range"));
305
306         if (is_order_function(seq[i].rest))
307                 return Order(pow(var-point, seq[i].coeff));
308         return seq[i].rest * pow(var - point, seq[i].coeff);
309 }
310
311 /** Return degree of highest power of the series.  This is usually the exponent
312  *  of the Order term.  If s is not the expansion variable of the series, the
313  *  series is examined termwise. */
314 int pseries::degree(const ex &s) const
315 {
316         if (seq.empty())
317                 return 0;
318
319         if (var.is_equal(s))
320                 // Return last/greatest exponent
321                 return ex_to<numeric>((seq.end()-1)->coeff).to_int();
322
323         int max_pow = std::numeric_limits<int>::min();
324         for (auto & it : seq)
325                 max_pow = std::max(max_pow, it.rest.degree(s));
326         return max_pow;
327 }
328
329 /** Return degree of lowest power of the series.  This is usually the exponent
330  *  of the leading term.  If s is not the expansion variable of the series, the
331  *  series is examined termwise.  If s is the expansion variable but the
332  *  expansion point is not zero the series is not expanded to find the degree.
333  *  I.e.: (1-x) + (1-x)^2 + Order((1-x)^3) has ldegree(x) 1, not 0. */
334 int pseries::ldegree(const ex &s) const
335 {
336         if (seq.empty())
337                 return 0;
338
339         if (var.is_equal(s))
340                 // Return first/smallest exponent
341                 return ex_to<numeric>((seq.begin())->coeff).to_int();
342
343         int min_pow = std::numeric_limits<int>::max();
344         for (auto & it : seq)
345                 min_pow = std::min(min_pow, it.rest.degree(s));
346         return min_pow;
347 }
348
349 /** Return coefficient of degree n in power series if s is the expansion
350  *  variable.  If the expansion point is nonzero, by definition the n=1
351  *  coefficient in s of a+b*(s-z)+c*(s-z)^2+Order((s-z)^3) is b (assuming
352  *  the expansion took place in the s in the first place).
353  *  If s is not the expansion variable, an attempt is made to convert the
354  *  series to a polynomial and return the corresponding coefficient from
355  *  there. */
356 ex pseries::coeff(const ex &s, int n) const
357 {
358         if (var.is_equal(s)) {
359                 if (seq.empty())
360                         return _ex0;
361                 
362                 // Binary search in sequence for given power
363                 numeric looking_for = numeric(n);
364                 int lo = 0, hi = seq.size() - 1;
365                 while (lo <= hi) {
366                         int mid = (lo + hi) / 2;
367                         GINAC_ASSERT(is_exactly_a<numeric>(seq[mid].coeff));
368                         int cmp = ex_to<numeric>(seq[mid].coeff).compare(looking_for);
369                         switch (cmp) {
370                                 case -1:
371                                         lo = mid + 1;
372                                         break;
373                                 case 0:
374                                         return seq[mid].rest;
375                                 case 1:
376                                         hi = mid - 1;
377                                         break;
378                                 default:
379                                         throw(std::logic_error("pseries::coeff: compare() didn't return -1, 0 or 1"));
380                         }
381                 }
382                 return _ex0;
383         } else
384                 return convert_to_poly().coeff(s, n);
385 }
386
387 /** Does nothing. */
388 ex pseries::collect(const ex &s, bool distributed) const
389 {
390         return *this;
391 }
392
393 /** Perform coefficient-wise automatic term rewriting rules in this class. */
394 ex pseries::eval() const
395 {
396         return hold();
397 }
398
399 /** Evaluate coefficients numerically. */
400 ex pseries::evalf() const
401 {
402         // Construct a new series with evaluated coefficients
403         epvector new_seq;
404         new_seq.reserve(seq.size());
405         for (auto & it : seq)
406                 new_seq.emplace_back(expair(it.rest.evalf(), it.coeff));
407
408         return dynallocate<pseries>(relational(var,point), std::move(new_seq)).setflag(status_flags::evaluated);
409 }
410
411 ex pseries::conjugate() const
412 {
413         if(!var.info(info_flags::real))
414                 return conjugate_function(*this).hold();
415
416         std::unique_ptr<epvector> newseq(conjugateepvector(seq));
417         ex newpoint = point.conjugate();
418
419         if (!newseq && are_ex_trivially_equal(point, newpoint)) {
420                 return *this;
421         }
422
423         return dynallocate<pseries>(var==newpoint, newseq ? std::move(*newseq) : seq);
424 }
425
426 ex pseries::real_part() const
427 {
428         if(!var.info(info_flags::real))
429                 return real_part_function(*this).hold();
430         ex newpoint = point.real_part();
431         if(newpoint != point)
432                 return real_part_function(*this).hold();
433
434         epvector v;
435         v.reserve(seq.size());
436         for (auto & it : seq)
437                 v.emplace_back(expair(it.rest.real_part(), it.coeff));
438         return dynallocate<pseries>(var==point, std::move(v));
439 }
440
441 ex pseries::imag_part() const
442 {
443         if(!var.info(info_flags::real))
444                 return imag_part_function(*this).hold();
445         ex newpoint = point.real_part();
446         if(newpoint != point)
447                 return imag_part_function(*this).hold();
448
449         epvector v;
450         v.reserve(seq.size());
451         for (auto & it : seq)
452                 v.emplace_back(expair(it.rest.imag_part(), it.coeff));
453         return dynallocate<pseries>(var==point, std::move(v));
454 }
455
456 ex pseries::eval_integ() const
457 {
458         std::unique_ptr<epvector> newseq(nullptr);
459         for (auto i=seq.begin(); i!=seq.end(); ++i) {
460                 if (newseq) {
461                         newseq->emplace_back(expair(i->rest.eval_integ(), i->coeff));
462                         continue;
463                 }
464                 ex newterm = i->rest.eval_integ();
465                 if (!are_ex_trivially_equal(newterm, i->rest)) {
466                         newseq.reset(new epvector);
467                         newseq->reserve(seq.size());
468                         for (auto j=seq.begin(); j!=i; ++j)
469                                 newseq->push_back(*j);
470                         newseq->emplace_back(expair(newterm, i->coeff));
471                 }
472         }
473
474         ex newpoint = point.eval_integ();
475         if (newseq || !are_ex_trivially_equal(newpoint, point))
476                 return dynallocate<pseries>(var==newpoint, std::move(*newseq));
477         return *this;
478 }
479
480 ex pseries::evalm() const
481 {
482         // evalm each coefficient
483         epvector newseq;
484         bool something_changed = false;
485         for (auto i=seq.begin(); i!=seq.end(); ++i) {
486                 if (something_changed) {
487                         ex newcoeff = i->rest.evalm();
488                         if (!newcoeff.is_zero())
489                                 newseq.emplace_back(expair(newcoeff, i->coeff));
490                 } else {
491                         ex newcoeff = i->rest.evalm();
492                         if (!are_ex_trivially_equal(newcoeff, i->rest)) {
493                                 something_changed = true;
494                                 newseq.reserve(seq.size());
495                                 std::copy(seq.begin(), i, std::back_inserter<epvector>(newseq));
496                                 if (!newcoeff.is_zero())
497                                         newseq.emplace_back(expair(newcoeff, i->coeff));
498                         }
499                 }
500         }
501         if (something_changed)
502                 return dynallocate<pseries>(var==point, std::move(newseq));
503         else
504                 return *this;
505 }
506
507 ex pseries::subs(const exmap & m, unsigned options) const
508 {
509         // If expansion variable is being substituted, convert the series to a
510         // polynomial and do the substitution there because the result might
511         // no longer be a power series
512         if (m.find(var) != m.end())
513                 return convert_to_poly(true).subs(m, options);
514         
515         // Otherwise construct a new series with substituted coefficients and
516         // expansion point
517         epvector newseq;
518         newseq.reserve(seq.size());
519         for (auto & it : seq)
520                 newseq.emplace_back(expair(it.rest.subs(m, options), it.coeff));
521         return dynallocate<pseries>(relational(var,point.subs(m, options)), std::move(newseq));
522 }
523
524 /** Implementation of ex::expand() for a power series.  It expands all the
525  *  terms individually and returns the resulting series as a new pseries. */
526 ex pseries::expand(unsigned options) const
527 {
528         epvector newseq;
529         for (auto & it : seq) {
530                 ex restexp = it.rest.expand();
531                 if (!restexp.is_zero())
532                         newseq.emplace_back(expair(restexp, it.coeff));
533         }
534         return dynallocate<pseries>(relational(var,point), std::move(newseq)).setflag(options == 0 ? status_flags::expanded : 0);
535 }
536
537 /** Implementation of ex::diff() for a power series.
538  *  @see ex::diff */
539 ex pseries::derivative(const symbol & s) const
540 {
541         epvector new_seq;
542
543         if (s == var) {
544                 
545                 // FIXME: coeff might depend on var
546                 for (auto & it : seq) {
547                         if (is_order_function(it.rest)) {
548                                 new_seq.emplace_back(expair(it.rest, it.coeff - 1));
549                         } else {
550                                 ex c = it.rest * it.coeff;
551                                 if (!c.is_zero())
552                                         new_seq.emplace_back(expair(c, it.coeff - 1));
553                         }
554                 }
555
556         } else {
557
558                 for (auto & it : seq) {
559                         if (is_order_function(it.rest)) {
560                                 new_seq.push_back(it);
561                         } else {
562                                 ex c = it.rest.diff(s);
563                                 if (!c.is_zero())
564                                         new_seq.emplace_back(expair(c, it.coeff));
565                         }
566                 }
567         }
568
569         return pseries(relational(var,point), std::move(new_seq));
570 }
571
572 ex pseries::convert_to_poly(bool no_order) const
573 {
574         ex e;
575         for (auto & it : seq) {
576                 if (is_order_function(it.rest)) {
577                         if (!no_order)
578                                 e += Order(pow(var - point, it.coeff));
579                 } else
580                         e += it.rest * pow(var - point, it.coeff);
581         }
582         return e;
583 }
584
585 bool pseries::is_terminating() const
586 {
587         return seq.empty() || !is_order_function((seq.end()-1)->rest);
588 }
589
590 ex pseries::coeffop(size_t i) const
591 {
592         if (i >= nops())
593                 throw (std::out_of_range("coeffop() out of range"));
594         return seq[i].rest;
595 }
596
597 ex pseries::exponop(size_t i) const
598 {
599         if (i >= nops())
600                 throw (std::out_of_range("exponop() out of range"));
601         return seq[i].coeff;
602 }
603
604
605 /*
606  *  Implementations of series expansion
607  */
608
609 /** Default implementation of ex::series(). This performs Taylor expansion.
610  *  @see ex::series */
611 ex basic::series(const relational & r, int order, unsigned options) const
612 {
613         epvector seq;
614         const symbol &s = ex_to<symbol>(r.lhs());
615
616         // default for order-values that make no sense for Taylor expansion
617         if ((order <= 0) && this->has(s)) {
618                 seq.emplace_back(expair(Order(_ex1), order));
619                 return pseries(r, std::move(seq));
620         }
621
622         // do Taylor expansion
623         numeric fac = 1;
624         ex deriv = *this;
625         ex coeff = deriv.subs(r, subs_options::no_pattern);
626
627         if (!coeff.is_zero()) {
628                 seq.emplace_back(expair(coeff, _ex0));
629         }
630
631         int n;
632         for (n=1; n<order; ++n) {
633                 fac = fac.div(n);
634                 // We need to test for zero in order to see if the series terminates.
635                 // The problem is that there is no such thing as a perfect test for
636                 // zero.  Expanding the term occasionally helps a little...
637                 deriv = deriv.diff(s).expand();
638                 if (deriv.is_zero())  // Series terminates
639                         return pseries(r, std::move(seq));
640
641                 coeff = deriv.subs(r, subs_options::no_pattern);
642                 if (!coeff.is_zero())
643                         seq.emplace_back(expair(fac * coeff, n));
644         }
645         
646         // Higher-order terms, if present
647         deriv = deriv.diff(s);
648         if (!deriv.expand().is_zero())
649                 seq.emplace_back(expair(Order(_ex1), n));
650         return pseries(r, std::move(seq));
651 }
652
653
654 /** Implementation of ex::series() for symbols.
655  *  @see ex::series */
656 ex symbol::series(const relational & r, int order, unsigned options) const
657 {
658         epvector seq;
659         const ex point = r.rhs();
660         GINAC_ASSERT(is_a<symbol>(r.lhs()));
661
662         if (this->is_equal_same_type(ex_to<symbol>(r.lhs()))) {
663                 if (order > 0 && !point.is_zero())
664                         seq.emplace_back(expair(point, _ex0));
665                 if (order > 1)
666                         seq.emplace_back(expair(_ex1, _ex1));
667                 else
668                         seq.emplace_back(expair(Order(_ex1), numeric(order)));
669         } else
670                 seq.emplace_back(expair(*this, _ex0));
671         return pseries(r, std::move(seq));
672 }
673
674
675 /** Add one series object to another, producing a pseries object that
676  *  represents the sum.
677  *
678  *  @param other  pseries object to add with
679  *  @return the sum as a pseries */
680 ex pseries::add_series(const pseries &other) const
681 {
682         // Adding two series with different variables or expansion points
683         // results in an empty (constant) series 
684         if (!is_compatible_to(other)) {
685                 epvector nul { expair(Order(_ex1), _ex0) };
686                 return pseries(relational(var,point), std::move(nul));
687         }
688         
689         // Series addition
690         epvector new_seq;
691         auto a = seq.begin(), a_end = seq.end();
692         auto b = other.seq.begin(), b_end = other.seq.end();
693         int pow_a = std::numeric_limits<int>::max(), pow_b = std::numeric_limits<int>::max();
694         for (;;) {
695                 // If a is empty, fill up with elements from b and stop
696                 if (a == a_end) {
697                         while (b != b_end) {
698                                 new_seq.push_back(*b);
699                                 ++b;
700                         }
701                         break;
702                 } else
703                         pow_a = ex_to<numeric>((*a).coeff).to_int();
704                 
705                 // If b is empty, fill up with elements from a and stop
706                 if (b == b_end) {
707                         while (a != a_end) {
708                                 new_seq.push_back(*a);
709                                 ++a;
710                         }
711                         break;
712                 } else
713                         pow_b = ex_to<numeric>((*b).coeff).to_int();
714                 
715                 // a and b are non-empty, compare powers
716                 if (pow_a < pow_b) {
717                         // a has lesser power, get coefficient from a
718                         new_seq.push_back(*a);
719                         if (is_order_function((*a).rest))
720                                 break;
721                         ++a;
722                 } else if (pow_b < pow_a) {
723                         // b has lesser power, get coefficient from b
724                         new_seq.push_back(*b);
725                         if (is_order_function((*b).rest))
726                                 break;
727                         ++b;
728                 } else {
729                         // Add coefficient of a and b
730                         if (is_order_function((*a).rest) || is_order_function((*b).rest)) {
731                                 new_seq.emplace_back(expair(Order(_ex1), (*a).coeff));
732                                 break;  // Order term ends the sequence
733                         } else {
734                                 ex sum = (*a).rest + (*b).rest;
735                                 if (!(sum.is_zero()))
736                                         new_seq.emplace_back(expair(sum, numeric(pow_a)));
737                                 ++a;
738                                 ++b;
739                         }
740                 }
741         }
742         return pseries(relational(var,point), std::move(new_seq));
743 }
744
745
746 /** Implementation of ex::series() for sums. This performs series addition when
747  *  adding pseries objects.
748  *  @see ex::series */
749 ex add::series(const relational & r, int order, unsigned options) const
750 {
751         ex acc; // Series accumulator
752         
753         // Get first term from overall_coeff
754         acc = overall_coeff.series(r, order, options);
755         
756         // Add remaining terms
757         for (auto & it : seq) {
758                 ex op;
759                 if (is_exactly_a<pseries>(it.rest))
760                         op = it.rest;
761                 else
762                         op = it.rest.series(r, order, options);
763                 if (!it.coeff.is_equal(_ex1))
764                         op = ex_to<pseries>(op).mul_const(ex_to<numeric>(it.coeff));
765                 
766                 // Series addition
767                 acc = ex_to<pseries>(acc).add_series(ex_to<pseries>(op));
768         }
769         return acc;
770 }
771
772
773 /** Multiply a pseries object with a numeric constant, producing a pseries
774  *  object that represents the product.
775  *
776  *  @param other  constant to multiply with
777  *  @return the product as a pseries */
778 ex pseries::mul_const(const numeric &other) const
779 {
780         epvector new_seq;
781         new_seq.reserve(seq.size());
782         
783         for (auto & it : seq) {
784                 if (!is_order_function(it.rest))
785                         new_seq.emplace_back(expair(it.rest * other, it.coeff));
786                 else
787                         new_seq.push_back(it);
788         }
789         return pseries(relational(var,point), std::move(new_seq));
790 }
791
792
793 /** Multiply one pseries object to another, producing a pseries object that
794  *  represents the product.
795  *
796  *  @param other  pseries object to multiply with
797  *  @return the product as a pseries */
798 ex pseries::mul_series(const pseries &other) const
799 {
800         // Multiplying two series with different variables or expansion points
801         // results in an empty (constant) series 
802         if (!is_compatible_to(other)) {
803                 epvector nul { expair(Order(_ex1), _ex0) };
804                 return pseries(relational(var,point), std::move(nul));
805         }
806
807         if (seq.empty() || other.seq.empty()) {
808                 return dynallocate<pseries>(var==point, epvector());
809         }
810         
811         // Series multiplication
812         epvector new_seq;
813         const int a_max = degree(var);
814         const int b_max = other.degree(var);
815         const int a_min = ldegree(var);
816         const int b_min = other.ldegree(var);
817         const int cdeg_min = a_min + b_min;
818         int cdeg_max = a_max + b_max;
819         
820         int higher_order_a = std::numeric_limits<int>::max();
821         int higher_order_b = std::numeric_limits<int>::max();
822         if (is_order_function(coeff(var, a_max)))
823                 higher_order_a = a_max + b_min;
824         if (is_order_function(other.coeff(var, b_max)))
825                 higher_order_b = b_max + a_min;
826         const int higher_order_c = std::min(higher_order_a, higher_order_b);
827         if (cdeg_max >= higher_order_c)
828                 cdeg_max = higher_order_c - 1;
829
830         std::map<int, ex> rest_map_a, rest_map_b;
831         for (const auto& it : seq)
832                 rest_map_a[ex_to<numeric>(it.coeff).to_int()] = it.rest;
833
834         if (other.var.is_equal(var))
835                 for (const auto& it : other.seq)
836                         rest_map_b[ex_to<numeric>(it.coeff).to_int()] = it.rest;
837
838         for (int cdeg=cdeg_min; cdeg<=cdeg_max; ++cdeg) {
839                 ex co = _ex0;
840                 // c(i)=a(0)b(i)+...+a(i)b(0)
841                 for (int i=a_min; cdeg-i>=b_min; ++i) {
842                         const auto& ita = rest_map_a.find(i);
843                         if (ita == rest_map_a.end())
844                                 continue;
845                         const auto& itb = rest_map_b.find(cdeg-i);
846                         if (itb == rest_map_b.end())
847                                 continue;
848                         if (!is_order_function(ita->second) && !is_order_function(itb->second))
849                                 co += ita->second * itb->second;
850                 }
851                 if (!co.is_zero())
852                         new_seq.emplace_back(expair(co, numeric(cdeg)));
853         }
854         if (higher_order_c < std::numeric_limits<int>::max())
855                 new_seq.emplace_back(expair(Order(_ex1), numeric(higher_order_c)));
856         return pseries(relational(var, point), std::move(new_seq));
857 }
858
859
860 /** Implementation of ex::series() for product. This performs series
861  *  multiplication when multiplying series.
862  *  @see ex::series */
863 ex mul::series(const relational & r, int order, unsigned options) const
864 {
865         pseries acc; // Series accumulator
866
867         GINAC_ASSERT(is_a<symbol>(r.lhs()));
868         const ex& sym = r.lhs();
869                 
870         // holds ldegrees of the series of individual factors
871         std::vector<int> ldegrees;
872         std::vector<bool> ldegree_redo;
873
874         // find minimal degrees
875         // first round: obtain a bound up to which minimal degrees have to be
876         // considered
877         for (auto & it : seq) {
878
879                 ex expon = it.coeff;
880                 int factor = 1;
881                 ex buf;
882                 if (expon.info(info_flags::integer)) {
883                         buf = it.rest;
884                         factor = ex_to<numeric>(expon).to_int();
885                 } else {
886                         buf = recombine_pair_to_ex(it);
887                 }
888
889                 int real_ldegree = 0;
890                 bool flag_redo = false;
891                 try {
892                         real_ldegree = buf.expand().ldegree(sym-r.rhs());
893                 } catch (std::runtime_error &) {}
894
895                 if (real_ldegree == 0) {
896                         if ( factor < 0 ) {
897                                 // This case must terminate, otherwise we would have division by
898                                 // zero.
899                                 int orderloop = 0;
900                                 do {
901                                         orderloop++;
902                                         real_ldegree = buf.series(r, orderloop, options).ldegree(sym);
903                                 } while (real_ldegree == orderloop);
904                         } else {
905                                 // Here it is possible that buf does not have a ldegree, therefore
906                                 // check only if ldegree is negative, otherwise reconsider the case
907                                 // in the second round.
908                                 real_ldegree = buf.series(r, 0, options).ldegree(sym);
909                                 if (real_ldegree == 0)
910                                         flag_redo = true;
911                         }
912                 }
913
914                 ldegrees.push_back(factor * real_ldegree);
915                 ldegree_redo.push_back(flag_redo);
916         }
917
918         int degbound = order-std::accumulate(ldegrees.begin(), ldegrees.end(), 0);
919         // Second round: determine the remaining positive ldegrees by the series
920         // method.
921         // here we can ignore ldegrees larger than degbound
922         size_t j = 0;
923         for (auto & it : seq) {
924                 if ( ldegree_redo[j] ) {
925                         ex expon = it.coeff;
926                         int factor = 1;
927                         ex buf;
928                         if (expon.info(info_flags::integer)) {
929                                 buf = it.rest;
930                                 factor = ex_to<numeric>(expon).to_int();
931                         } else {
932                                 buf = recombine_pair_to_ex(it);
933                         }
934                         int real_ldegree = 0;
935                         int orderloop = 0;
936                         do {
937                                 orderloop++;
938                                 real_ldegree = buf.series(r, orderloop, options).ldegree(sym);
939                         } while ((real_ldegree == orderloop)
940                               && (factor*real_ldegree < degbound));
941                         ldegrees[j] = factor * real_ldegree;
942                         degbound -= factor * real_ldegree;
943                 }
944                 j++;
945         }
946
947         int degsum = std::accumulate(ldegrees.begin(), ldegrees.end(), 0);
948
949         if (degsum > order) {
950                 return dynallocate<pseries>(r, epvector{{Order(_ex1), order}});
951         }
952
953         // Multiply with remaining terms
954         auto itd = ldegrees.begin();
955         for (auto it=seq.begin(), itend=seq.end(); it!=itend; ++it, ++itd) {
956
957                 // do series expansion with adjusted order
958                 ex op = recombine_pair_to_ex(*it).series(r, order-degsum+(*itd), options);
959
960                 // Series multiplication
961                 if (it == seq.begin())
962                         acc = ex_to<pseries>(op);
963                 else
964                         acc = ex_to<pseries>(acc.mul_series(ex_to<pseries>(op)));
965         }
966
967         return acc.mul_const(ex_to<numeric>(overall_coeff));
968 }
969
970
971 /** Compute the p-th power of a series.
972  *
973  *  @param p  power to compute
974  *  @param deg  truncation order of series calculation */
975 ex pseries::power_const(const numeric &p, int deg) const
976 {
977         // method:
978         // (due to Leonhard Euler)
979         // let A(x) be this series and for the time being let it start with a
980         // constant (later we'll generalize):
981         //     A(x) = a_0 + a_1*x + a_2*x^2 + ...
982         // We want to compute
983         //     C(x) = A(x)^p
984         //     C(x) = c_0 + c_1*x + c_2*x^2 + ...
985         // Taking the derivative on both sides and multiplying with A(x) one
986         // immediately arrives at
987         //     C'(x)*A(x) = p*C(x)*A'(x)
988         // Multiplying this out and comparing coefficients we get the recurrence
989         // formula
990         //     c_i = (i*p*a_i*c_0 + ((i-1)*p-1)*a_{i-1}*c_1 + ...
991         //                    ... + (p-(i-1))*a_1*c_{i-1})/(a_0*i)
992         // which can easily be solved given the starting value c_0 = (a_0)^p.
993         // For the more general case where the leading coefficient of A(x) is not
994         // a constant, just consider A2(x) = A(x)*x^m, with some integer m and
995         // repeat the above derivation.  The leading power of C2(x) = A2(x)^p is
996         // then of course a_0^p*x^(p*m) but the recurrence formula still holds.
997         
998         if (seq.empty()) {
999                 // as a special case, handle the empty (zero) series honoring the
1000                 // usual power laws such as implemented in power::eval()
1001                 if (p.real().is_zero())
1002                         throw std::domain_error("pseries::power_const(): pow(0,I) is undefined");
1003                 else if (p.real().is_negative())
1004                         throw pole_error("pseries::power_const(): division by zero",1);
1005                 else
1006                         return *this;
1007         }
1008
1009         const int base_ldeg = ldegree(var);
1010         if (!(p*base_ldeg).is_integer())
1011                 throw std::runtime_error("pseries::power_const(): trying to assemble a Puiseux series");
1012         int new_ldeg = (p*base_ldeg).to_int();
1013
1014         const int base_deg = degree(var);
1015         int new_deg = deg;
1016         if (p.is_pos_integer()) {
1017                 // No need to compute beyond p*base_deg.
1018                 new_deg = std::min((p*base_deg).to_int(), deg);
1019         }
1020
1021         // adjust number of coefficients
1022         int numcoeff = new_deg - new_ldeg;
1023         if (new_deg < deg)
1024                 numcoeff += 1;
1025
1026         if (numcoeff <= 0) {
1027                 return dynallocate<pseries>(relational(var, point),
1028                                             epvector{{Order(_ex1), deg}});
1029         }
1030         
1031         // O(x^n)^(-m) is undefined
1032         if (seq.size() == 1 && is_order_function(seq[0].rest) && p.real().is_negative())
1033                 throw pole_error("pseries::power_const(): division by zero",1);
1034         
1035         // Compute coefficients of the powered series
1036         exvector co;
1037         co.reserve(numcoeff);
1038         co.push_back(pow(coeff(var, base_ldeg), p));
1039         for (int i=1; i<numcoeff; ++i) {
1040                 ex sum = _ex0;
1041                 for (int j=1; j<=i; ++j) {
1042                         ex c = coeff(var, j + base_ldeg);
1043                         if (is_order_function(c)) {
1044                                 co.push_back(Order(_ex1));
1045                                 break;
1046                         } else
1047                                 sum += (p * j - (i - j)) * co[i - j] * c;
1048                 }
1049                 co.push_back(sum / coeff(var, base_ldeg) / i);
1050         }
1051         
1052         // Construct new series (of non-zero coefficients)
1053         epvector new_seq;
1054         bool higher_order = false;
1055         for (int i=0; i<numcoeff; ++i) {
1056                 if (!co[i].is_zero()) {
1057                         new_seq.emplace_back(expair(co[i], new_ldeg + i));
1058                 }
1059                 if (is_order_function(co[i])) {
1060                         higher_order = true;
1061                         break;
1062                 }
1063         }
1064         if (!higher_order && new_deg == deg) {
1065                 new_seq.emplace_back(expair{Order(_ex1), new_deg});
1066         }
1067
1068         return pseries(relational(var,point), std::move(new_seq));
1069 }
1070
1071
1072 /** Return a new pseries object with the powers shifted by deg. */
1073 pseries pseries::shift_exponents(int deg) const
1074 {
1075         epvector newseq = seq;
1076         for (auto & it : newseq)
1077                 it.coeff += deg;
1078         return pseries(relational(var, point), std::move(newseq));
1079 }
1080
1081
1082 /** Implementation of ex::series() for powers. This performs Laurent expansion
1083  *  of reciprocals of series at singularities.
1084  *  @see ex::series */
1085 ex power::series(const relational & r, int order, unsigned options) const
1086 {
1087         // If basis is already a series, just power it
1088         if (is_exactly_a<pseries>(basis))
1089                 return ex_to<pseries>(basis).power_const(ex_to<numeric>(exponent), order);
1090
1091         // Basis is not a series, may there be a singularity?
1092         bool must_expand_basis = false;
1093         try {
1094                 basis.subs(r, subs_options::no_pattern);
1095         } catch (pole_error &) {
1096                 must_expand_basis = true;
1097         }
1098
1099         bool exponent_is_regular = true;
1100         try {
1101                 exponent.subs(r, subs_options::no_pattern);
1102         } catch (pole_error &) {
1103                 exponent_is_regular = false;
1104         }
1105
1106         if (!exponent_is_regular) {
1107                 ex l = exponent*log(basis);
1108                 // this == exp(l);
1109                 ex le = l.series(r, order, options);
1110                 // Note: expanding exp(l) won't help, since that will attempt
1111                 // Taylor expansion, and fail (because exponent is "singular")
1112                 // Still l itself might be expanded in Taylor series.
1113                 // Examples:
1114                 // sin(x)/x*log(cos(x))
1115                 // 1/x*log(1 + x)
1116                 return exp(le).series(r, order, options);
1117                 // Note: if l happens to have a Laurent expansion (with
1118                 // negative powers of (var - point)), expanding exp(le)
1119                 // will barf (which is The Right Thing).
1120         }
1121
1122         // Is the expression of type something^(-int)?
1123         if (!must_expand_basis && !exponent.info(info_flags::negint)
1124          && (!is_a<add>(basis) || !is_a<numeric>(exponent)))
1125                 return basic::series(r, order, options);
1126
1127         // Is the expression of type 0^something?
1128         if (!must_expand_basis && !basis.subs(r, subs_options::no_pattern).is_zero()
1129          && (!is_a<add>(basis) || !is_a<numeric>(exponent)))
1130                 return basic::series(r, order, options);
1131
1132         // Singularity encountered, is the basis equal to (var - point)?
1133         if (basis.is_equal(r.lhs() - r.rhs())) {
1134                 epvector new_seq;
1135                 if (ex_to<numeric>(exponent).to_int() < order)
1136                         new_seq.emplace_back(expair(_ex1, exponent));
1137                 else
1138                         new_seq.emplace_back(expair(Order(_ex1), exponent));
1139                 return pseries(r, std::move(new_seq));
1140         }
1141
1142         // No, expand basis into series
1143
1144         numeric numexp;
1145         if (is_a<numeric>(exponent)) {
1146                 numexp = ex_to<numeric>(exponent);
1147         } else {
1148                 numexp = 0;
1149         }
1150         const ex& sym = r.lhs();
1151         // find existing minimal degree
1152         ex eb = basis.expand();
1153         int real_ldegree = 0;
1154         if (eb.info(info_flags::rational_function))
1155                 real_ldegree = eb.ldegree(sym-r.rhs());
1156         if (real_ldegree == 0) {
1157                 int orderloop = 0;
1158                 do {
1159                         orderloop++;
1160                         real_ldegree = basis.series(r, orderloop, options).ldegree(sym);
1161                 } while (real_ldegree == orderloop);
1162         }
1163
1164         if (!(real_ldegree*numexp).is_integer())
1165                 throw std::runtime_error("pseries::power_const(): trying to assemble a Puiseux series");
1166         int extra_terms = (real_ldegree*(1-numexp)).to_int();
1167         ex e = basis.series(r, order + std::max(0, extra_terms), options);
1168         
1169         ex result;
1170         try {
1171                 result = ex_to<pseries>(e).power_const(numexp, order);
1172         } catch (pole_error &) {
1173                 epvector ser { expair(Order(_ex1), order) };
1174                 result = pseries(r, std::move(ser));
1175         }
1176
1177         return result;
1178 }
1179
1180
1181 /** Re-expansion of a pseries object. */
1182 ex pseries::series(const relational & r, int order, unsigned options) const
1183 {
1184         const ex p = r.rhs();
1185         GINAC_ASSERT(is_a<symbol>(r.lhs()));
1186         const symbol &s = ex_to<symbol>(r.lhs());
1187         
1188         if (var.is_equal(s) && point.is_equal(p)) {
1189                 if (order > degree(s))
1190                         return *this;
1191                 else {
1192                         epvector new_seq;
1193                         for (auto & it : seq) {
1194                                 int o = ex_to<numeric>(it.coeff).to_int();
1195                                 if (o >= order) {
1196                                         new_seq.emplace_back(expair(Order(_ex1), o));
1197                                         break;
1198                                 }
1199                                 new_seq.push_back(it);
1200                         }
1201                         return pseries(r, std::move(new_seq));
1202                 }
1203         } else
1204                 return convert_to_poly().series(r, order, options);
1205 }
1206
1207 ex integral::series(const relational & r, int order, unsigned options) const
1208 {
1209         if (x.subs(r) != x)
1210                 throw std::logic_error("Cannot series expand wrt dummy variable");
1211         
1212         // Expanding integrand with r substituted taken in boundaries.
1213         ex fseries = f.series(r, order, options);
1214         epvector fexpansion;
1215         fexpansion.reserve(fseries.nops());
1216         for (size_t i=0; i<fseries.nops(); ++i) {
1217                 ex currcoeff = ex_to<pseries>(fseries).coeffop(i);
1218                 currcoeff = (currcoeff == Order(_ex1))
1219                         ? currcoeff
1220                         : integral(x, a.subs(r), b.subs(r), currcoeff);
1221                 if (currcoeff != 0)
1222                         fexpansion.emplace_back(
1223                                 expair(currcoeff, ex_to<pseries>(fseries).exponop(i)));
1224         }
1225
1226         // Expanding lower boundary
1227         ex result = dynallocate<pseries>(r, std::move(fexpansion));
1228         ex aseries = (a-a.subs(r)).series(r, order, options);
1229         fseries = f.series(x == (a.subs(r)), order, options);
1230         for (size_t i=0; i<fseries.nops(); ++i) {
1231                 ex currcoeff = ex_to<pseries>(fseries).coeffop(i);
1232                 if (is_order_function(currcoeff))
1233                         break;
1234                 ex currexpon = ex_to<pseries>(fseries).exponop(i);
1235                 int orderforf = order-ex_to<numeric>(currexpon).to_int()-1;
1236                 currcoeff = currcoeff.series(r, orderforf);
1237                 ex term = ex_to<pseries>(aseries).power_const(ex_to<numeric>(currexpon+1),order);
1238                 term = ex_to<pseries>(term).mul_const(ex_to<numeric>(-1/(currexpon+1)));
1239                 term = ex_to<pseries>(term).mul_series(ex_to<pseries>(currcoeff));
1240                 result = ex_to<pseries>(result).add_series(ex_to<pseries>(term));
1241         }
1242
1243         // Expanding upper boundary
1244         ex bseries = (b-b.subs(r)).series(r, order, options);
1245         fseries = f.series(x == (b.subs(r)), order, options);
1246         for (size_t i=0; i<fseries.nops(); ++i) {
1247                 ex currcoeff = ex_to<pseries>(fseries).coeffop(i);
1248                 if (is_order_function(currcoeff))
1249                         break;
1250                 ex currexpon = ex_to<pseries>(fseries).exponop(i);
1251                 int orderforf = order-ex_to<numeric>(currexpon).to_int()-1;
1252                 currcoeff = currcoeff.series(r, orderforf);
1253                 ex term = ex_to<pseries>(bseries).power_const(ex_to<numeric>(currexpon+1),order);
1254                 term = ex_to<pseries>(term).mul_const(ex_to<numeric>(1/(currexpon+1)));
1255                 term = ex_to<pseries>(term).mul_series(ex_to<pseries>(currcoeff));
1256                 result = ex_to<pseries>(result).add_series(ex_to<pseries>(term));
1257         }
1258
1259         return result;
1260 }
1261
1262
1263 /** Compute the truncated series expansion of an expression.
1264  *  This function returns an expression containing an object of class pseries 
1265  *  to represent the series. If the series does not terminate within the given
1266  *  truncation order, the last term of the series will be an order term.
1267  *
1268  *  @param r  expansion relation, lhs holds variable and rhs holds point
1269  *  @param order  truncation order of series calculations
1270  *  @param options  of class series_options
1271  *  @return an expression holding a pseries object */
1272 ex ex::series(const ex & r, int order, unsigned options) const
1273 {
1274         ex e;
1275         relational rel_;
1276         
1277         if (is_a<relational>(r))
1278                 rel_ = ex_to<relational>(r);
1279         else if (is_a<symbol>(r))
1280                 rel_ = relational(r,_ex0);
1281         else
1282                 throw (std::logic_error("ex::series(): expansion point has unknown type"));
1283         
1284         e = bp->series(rel_, order, options);
1285         return e;
1286 }
1287
1288 GINAC_BIND_UNARCHIVER(pseries);
1289
1290 } // namespace GiNaC