]> www.ginac.de Git - ginac.git/blob - ginac/pseries.cpp
synced to 1.0
[ginac.git] / ginac / pseries.cpp
1 /** @file pseries.cpp
2  *
3  *  Implementation of class for extended truncated power series and
4  *  methods for series expansion. */
5
6 /*
7  *  GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; either version 2 of the License, or
12  *  (at your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  */
23
24 #include <iostream>
25 #include <stdexcept>
26
27 #include "pseries.h"
28 #include "add.h"
29 #include "inifcns.h" // for Order function
30 #include "lst.h"
31 #include "mul.h"
32 #include "power.h"
33 #include "relational.h"
34 #include "operators.h"
35 #include "symbol.h"
36 #include "print.h"
37 #include "archive.h"
38 #include "utils.h"
39
40 namespace GiNaC {
41
42 GINAC_IMPLEMENT_REGISTERED_CLASS(pseries, basic)
43
44
45 /*
46  *  Default ctor, dtor, copy ctor, assignment operator and helpers
47  */
48
49 pseries::pseries() : inherited(TINFO_pseries) { }
50
51 void pseries::copy(const pseries &other)
52 {
53         inherited::copy(other);
54         seq = other.seq;
55         var = other.var;
56         point = other.point;
57 }
58
59 DEFAULT_DESTROY(pseries)
60
61
62 /*
63  *  Other ctors
64  */
65
66 /** Construct pseries from a vector of coefficients and powers.
67  *  expair.rest holds the coefficient, expair.coeff holds the power.
68  *  The powers must be integers (positive or negative) and in ascending order;
69  *  the last coefficient can be Order(_ex1) to represent a truncated,
70  *  non-terminating series.
71  *
72  *  @param rel_  expansion variable and point (must hold a relational)
73  *  @param ops_  vector of {coefficient, power} pairs (coefficient must not be zero)
74  *  @return newly constructed pseries */
75 pseries::pseries(const ex &rel_, const epvector &ops_) : basic(TINFO_pseries), seq(ops_)
76 {
77         GINAC_ASSERT(is_exactly_a<relational>(rel_));
78         GINAC_ASSERT(is_exactly_a<symbol>(rel_.lhs()));
79         point = rel_.rhs();
80         var = rel_.lhs();
81 }
82
83
84 /*
85  *  Archiving
86  */
87
88 pseries::pseries(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
89 {
90         for (unsigned int i=0; true; ++i) {
91                 ex rest;
92                 ex coeff;
93                 if (n.find_ex("coeff", rest, sym_lst, i) && n.find_ex("power", coeff, sym_lst, i))
94                         seq.push_back(expair(rest, coeff));
95                 else
96                         break;
97         }
98         n.find_ex("var", var, sym_lst);
99         n.find_ex("point", point, sym_lst);
100 }
101
102 void pseries::archive(archive_node &n) const
103 {
104         inherited::archive(n);
105         epvector::const_iterator i = seq.begin(), iend = seq.end();
106         while (i != iend) {
107                 n.add_ex("coeff", i->rest);
108                 n.add_ex("power", i->coeff);
109                 ++i;
110         }
111         n.add_ex("var", var);
112         n.add_ex("point", point);
113 }
114
115 DEFAULT_UNARCHIVE(pseries)
116
117 //////////
118 // functions overriding virtual functions from base classes
119 //////////
120
121 void pseries::print(const print_context & c, unsigned level) const
122 {
123         if (is_a<print_tree>(c)) {
124
125                 c.s << std::string(level, ' ') << class_name()
126                     << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec
127                     << std::endl;
128                 unsigned delta_indent = static_cast<const print_tree &>(c).delta_indent;
129                 unsigned num = seq.size();
130                 for (unsigned i=0; i<num; ++i) {
131                         seq[i].rest.print(c, level + delta_indent);
132                         seq[i].coeff.print(c, level + delta_indent);
133                         c.s << std::string(level + delta_indent, ' ') << "-----" << std::endl;
134                 }
135                 var.print(c, level + delta_indent);
136                 point.print(c, level + delta_indent);
137
138         } else if (is_a<print_python_repr>(c)) {
139                 c.s << class_name() << "(relational(";
140                 var.print(c);
141                 c.s << ',';
142                 point.print(c);
143                 c.s << "),[";
144                 unsigned num = seq.size();
145                 for (unsigned i=0; i<num; ++i) {
146                         if (i)
147                                 c.s << ',';
148                         c.s << '(';
149                         seq[i].rest.print(c);
150                         c.s << ',';
151                         seq[i].coeff.print(c);
152                         c.s << ')';
153                 }
154                 c.s << "])";
155         } else {
156
157                 if (precedence() <= level)
158                         c.s << "(";
159                 
160                 std::string par_open = is_a<print_latex>(c) ? "{(" : "(";
161                 std::string par_close = is_a<print_latex>(c) ? ")}" : ")";
162                 
163                 // objects of type pseries must not have any zero entries, so the
164                 // trivial (zero) pseries needs a special treatment here:
165                 if (seq.empty())
166                         c.s << '0';
167                 epvector::const_iterator i = seq.begin(), end = seq.end();
168                 while (i != end) {
169                         // print a sign, if needed
170                         if (i != seq.begin())
171                                 c.s << '+';
172                         if (!is_order_function(i->rest)) {
173                                 // print 'rest', i.e. the expansion coefficient
174                                 if (i->rest.info(info_flags::numeric) &&
175                                         i->rest.info(info_flags::positive)) {
176                                         i->rest.print(c);
177                                 } else {
178                                         c.s << par_open;
179                                         i->rest.print(c);
180                                         c.s << par_close;
181                                 }
182                                 // print 'coeff', something like (x-1)^42
183                                 if (!i->coeff.is_zero()) {
184                                         if (is_a<print_latex>(c))
185                                                 c.s << ' ';
186                                         else
187                                                 c.s << '*';
188                                         if (!point.is_zero()) {
189                                                 c.s << par_open;
190                                                 (var-point).print(c);
191                                                 c.s << par_close;
192                                         } else
193                                                 var.print(c);
194                                         if (i->coeff.compare(_ex1)) {
195                                                 if (is_a<print_python>(c))
196                                                         c.s << "**";
197                                                 else
198                                                         c.s << '^';
199                                                 if (i->coeff.info(info_flags::negative)) {
200                                                         c.s << par_open;
201                                                         i->coeff.print(c);
202                                                         c.s << par_close;
203                                                 } else {
204                                                         if (is_a<print_latex>(c)) {
205                                                                 c.s << '{';
206                                                                 i->coeff.print(c);
207                                                                 c.s << '}';
208                                                         } else
209                                                                 i->coeff.print(c);
210                                                 }
211                                         }
212                                 }
213                         } else
214                                 Order(power(var-point,i->coeff)).print(c);
215                         ++i;
216                 }
217
218                 if (precedence() <= level)
219                         c.s << ")";
220         }
221 }
222
223 int pseries::compare_same_type(const basic & other) const
224 {
225         GINAC_ASSERT(is_a<pseries>(other));
226         const pseries &o = static_cast<const pseries &>(other);
227         
228         // first compare the lengths of the series...
229         if (seq.size()>o.seq.size())
230                 return 1;
231         if (seq.size()<o.seq.size())
232                 return -1;
233         
234         // ...then the expansion point...
235         int cmpval = var.compare(o.var);
236         if (cmpval)
237                 return cmpval;
238         cmpval = point.compare(o.point);
239         if (cmpval)
240                 return cmpval;
241         
242         // ...and if that failed the individual elements
243         epvector::const_iterator it = seq.begin(), o_it = o.seq.begin();
244         while (it!=seq.end() && o_it!=o.seq.end()) {
245                 cmpval = it->compare(*o_it);
246                 if (cmpval)
247                         return cmpval;
248                 ++it;
249                 ++o_it;
250         }
251
252         // so they are equal.
253         return 0;
254 }
255
256 /** Return the number of operands including a possible order term. */
257 unsigned pseries::nops(void) const
258 {
259         return seq.size();
260 }
261
262 /** Return the ith term in the series when represented as a sum. */
263 ex pseries::op(int i) const
264 {
265         if (i < 0 || unsigned(i) >= seq.size())
266                 throw (std::out_of_range("op() out of range"));
267         return seq[i].rest * power(var - point, seq[i].coeff);
268 }
269
270 ex &pseries::let_op(int i)
271 {
272         throw (std::logic_error("let_op not defined for pseries"));
273 }
274
275 /** Return degree of highest power of the series.  This is usually the exponent
276  *  of the Order term.  If s is not the expansion variable of the series, the
277  *  series is examined termwise. */
278 int pseries::degree(const ex &s) const
279 {
280         if (var.is_equal(s)) {
281                 // Return last exponent
282                 if (seq.size())
283                         return ex_to<numeric>((seq.end()-1)->coeff).to_int();
284                 else
285                         return 0;
286         } else {
287                 epvector::const_iterator it = seq.begin(), itend = seq.end();
288                 if (it == itend)
289                         return 0;
290                 int max_pow = INT_MIN;
291                 while (it != itend) {
292                         int pow = it->rest.degree(s);
293                         if (pow > max_pow)
294                                 max_pow = pow;
295                         ++it;
296                 }
297                 return max_pow;
298         }
299 }
300
301 /** Return degree of lowest power of the series.  This is usually the exponent
302  *  of the leading term.  If s is not the expansion variable of the series, the
303  *  series is examined termwise.  If s is the expansion variable but the
304  *  expansion point is not zero the series is not expanded to find the degree.
305  *  I.e.: (1-x) + (1-x)^2 + Order((1-x)^3) has ldegree(x) 1, not 0. */
306 int pseries::ldegree(const ex &s) const
307 {
308         if (var.is_equal(s)) {
309                 // Return first exponent
310                 if (seq.size())
311                         return ex_to<numeric>((seq.begin())->coeff).to_int();
312                 else
313                         return 0;
314         } else {
315                 epvector::const_iterator it = seq.begin(), itend = seq.end();
316                 if (it == itend)
317                         return 0;
318                 int min_pow = INT_MAX;
319                 while (it != itend) {
320                         int pow = it->rest.ldegree(s);
321                         if (pow < min_pow)
322                                 min_pow = pow;
323                         ++it;
324                 }
325                 return min_pow;
326         }
327 }
328
329 /** Return coefficient of degree n in power series if s is the expansion
330  *  variable.  If the expansion point is nonzero, by definition the n=1
331  *  coefficient in s of a+b*(s-z)+c*(s-z)^2+Order((s-z)^3) is b (assuming
332  *  the expansion took place in the s in the first place).
333  *  If s is not the expansion variable, an attempt is made to convert the
334  *  series to a polynomial and return the corresponding coefficient from
335  *  there. */
336 ex pseries::coeff(const ex &s, int n) const
337 {
338         if (var.is_equal(s)) {
339                 if (seq.empty())
340                         return _ex0;
341                 
342                 // Binary search in sequence for given power
343                 numeric looking_for = numeric(n);
344                 int lo = 0, hi = seq.size() - 1;
345                 while (lo <= hi) {
346                         int mid = (lo + hi) / 2;
347                         GINAC_ASSERT(is_exactly_a<numeric>(seq[mid].coeff));
348                         int cmp = ex_to<numeric>(seq[mid].coeff).compare(looking_for);
349                         switch (cmp) {
350                                 case -1:
351                                         lo = mid + 1;
352                                         break;
353                                 case 0:
354                                         return seq[mid].rest;
355                                 case 1:
356                                         hi = mid - 1;
357                                         break;
358                                 default:
359                                         throw(std::logic_error("pseries::coeff: compare() didn't return -1, 0 or 1"));
360                         }
361                 }
362                 return _ex0;
363         } else
364                 return convert_to_poly().coeff(s, n);
365 }
366
367 /** Does nothing. */
368 ex pseries::collect(const ex &s, bool distributed) const
369 {
370         return *this;
371 }
372
373 /** Perform coefficient-wise automatic term rewriting rules in this class. */
374 ex pseries::eval(int level) const
375 {
376         if (level == 1)
377                 return this->hold();
378         
379         if (level == -max_recursion_level)
380                 throw (std::runtime_error("pseries::eval(): recursion limit exceeded"));
381         
382         // Construct a new series with evaluated coefficients
383         epvector new_seq;
384         new_seq.reserve(seq.size());
385         epvector::const_iterator it = seq.begin(), itend = seq.end();
386         while (it != itend) {
387                 new_seq.push_back(expair(it->rest.eval(level-1), it->coeff));
388                 ++it;
389         }
390         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
391 }
392
393 /** Evaluate coefficients numerically. */
394 ex pseries::evalf(int level) const
395 {
396         if (level == 1)
397                 return *this;
398         
399         if (level == -max_recursion_level)
400                 throw (std::runtime_error("pseries::evalf(): recursion limit exceeded"));
401         
402         // Construct a new series with evaluated coefficients
403         epvector new_seq;
404         new_seq.reserve(seq.size());
405         epvector::const_iterator it = seq.begin(), itend = seq.end();
406         while (it != itend) {
407                 new_seq.push_back(expair(it->rest.evalf(level-1), it->coeff));
408                 ++it;
409         }
410         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
411 }
412
413 ex pseries::subs(const lst & ls, const lst & lr, bool no_pattern) const
414 {
415         // If expansion variable is being substituted, convert the series to a
416         // polynomial and do the substitution there because the result might
417         // no longer be a power series
418         if (ls.has(var))
419                 return convert_to_poly(true).subs(ls, lr, no_pattern);
420         
421         // Otherwise construct a new series with substituted coefficients and
422         // expansion point
423         epvector newseq;
424         newseq.reserve(seq.size());
425         epvector::const_iterator it = seq.begin(), itend = seq.end();
426         while (it != itend) {
427                 newseq.push_back(expair(it->rest.subs(ls, lr, no_pattern), it->coeff));
428                 ++it;
429         }
430         return (new pseries(relational(var,point.subs(ls, lr, no_pattern)), newseq))->setflag(status_flags::dynallocated);
431 }
432
433 /** Implementation of ex::expand() for a power series.  It expands all the
434  *  terms individually and returns the resulting series as a new pseries. */
435 ex pseries::expand(unsigned options) const
436 {
437         epvector newseq;
438         epvector::const_iterator i = seq.begin(), end = seq.end();
439         while (i != end) {
440                 ex restexp = i->rest.expand();
441                 if (!restexp.is_zero())
442                         newseq.push_back(expair(restexp, i->coeff));
443                 ++i;
444         }
445         return (new pseries(relational(var,point), newseq))
446                 ->setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0));
447 }
448
449 /** Implementation of ex::diff() for a power series.
450  *  @see ex::diff */
451 ex pseries::derivative(const symbol & s) const
452 {
453         epvector new_seq;
454         epvector::const_iterator it = seq.begin(), itend = seq.end();
455
456         if (s == var) {
457                 
458                 // FIXME: coeff might depend on var
459                 while (it != itend) {
460                         if (is_order_function(it->rest)) {
461                                 new_seq.push_back(expair(it->rest, it->coeff - 1));
462                         } else {
463                                 ex c = it->rest * it->coeff;
464                                 if (!c.is_zero())
465                                         new_seq.push_back(expair(c, it->coeff - 1));
466                         }
467                         ++it;
468                 }
469
470         } else {
471
472                 while (it != itend) {
473                         if (is_order_function(it->rest)) {
474                                 new_seq.push_back(*it);
475                         } else {
476                                 ex c = it->rest.diff(s);
477                                 if (!c.is_zero())
478                                         new_seq.push_back(expair(c, it->coeff));
479                         }
480                         ++it;
481                 }
482         }
483
484         return pseries(relational(var,point), new_seq);
485 }
486
487 ex pseries::convert_to_poly(bool no_order) const
488 {
489         ex e;
490         epvector::const_iterator it = seq.begin(), itend = seq.end();
491         
492         while (it != itend) {
493                 if (is_order_function(it->rest)) {
494                         if (!no_order)
495                                 e += Order(power(var - point, it->coeff));
496                 } else
497                         e += it->rest * power(var - point, it->coeff);
498                 ++it;
499         }
500         return e;
501 }
502
503 bool pseries::is_terminating(void) const
504 {
505         return seq.empty() || !is_order_function((seq.end()-1)->rest);
506 }
507
508
509 /*
510  *  Implementations of series expansion
511  */
512
513 /** Default implementation of ex::series(). This performs Taylor expansion.
514  *  @see ex::series */
515 ex basic::series(const relational & r, int order, unsigned options) const
516 {
517         epvector seq;
518         numeric fac = 1;
519         ex deriv = *this;
520         ex coeff = deriv.subs(r);
521         const symbol &s = ex_to<symbol>(r.lhs());
522         
523         if (!coeff.is_zero())
524                 seq.push_back(expair(coeff, _ex0));
525         
526         int n;
527         for (n=1; n<order; ++n) {
528                 fac = fac.mul(n);
529                 // We need to test for zero in order to see if the series terminates.
530                 // The problem is that there is no such thing as a perfect test for
531                 // zero.  Expanding the term occasionally helps a little...
532                 deriv = deriv.diff(s).expand();
533                 if (deriv.is_zero())  // Series terminates
534                         return pseries(r, seq);
535
536                 coeff = deriv.subs(r);
537                 if (!coeff.is_zero())
538                         seq.push_back(expair(fac.inverse() * coeff, n));
539         }
540         
541         // Higher-order terms, if present
542         deriv = deriv.diff(s);
543         if (!deriv.expand().is_zero())
544                 seq.push_back(expair(Order(_ex1), n));
545         return pseries(r, seq);
546 }
547
548
549 /** Implementation of ex::series() for symbols.
550  *  @see ex::series */
551 ex symbol::series(const relational & r, int order, unsigned options) const
552 {
553         epvector seq;
554         const ex point = r.rhs();
555         GINAC_ASSERT(is_exactly_a<symbol>(r.lhs()));
556
557         if (this->is_equal_same_type(ex_to<symbol>(r.lhs()))) {
558                 if (order > 0 && !point.is_zero())
559                         seq.push_back(expair(point, _ex0));
560                 if (order > 1)
561                         seq.push_back(expair(_ex1, _ex1));
562                 else
563                         seq.push_back(expair(Order(_ex1), numeric(order)));
564         } else
565                 seq.push_back(expair(*this, _ex0));
566         return pseries(r, seq);
567 }
568
569
570 /** Add one series object to another, producing a pseries object that
571  *  represents the sum.
572  *
573  *  @param other  pseries object to add with
574  *  @return the sum as a pseries */
575 ex pseries::add_series(const pseries &other) const
576 {
577         // Adding two series with different variables or expansion points
578         // results in an empty (constant) series 
579         if (!is_compatible_to(other)) {
580                 epvector nul;
581                 nul.push_back(expair(Order(_ex1), _ex0));
582                 return pseries(relational(var,point), nul);
583         }
584         
585         // Series addition
586         epvector new_seq;
587         epvector::const_iterator a = seq.begin();
588         epvector::const_iterator b = other.seq.begin();
589         epvector::const_iterator a_end = seq.end();
590         epvector::const_iterator b_end = other.seq.end();
591         int pow_a = INT_MAX, pow_b = INT_MAX;
592         for (;;) {
593                 // If a is empty, fill up with elements from b and stop
594                 if (a == a_end) {
595                         while (b != b_end) {
596                                 new_seq.push_back(*b);
597                                 ++b;
598                         }
599                         break;
600                 } else
601                         pow_a = ex_to<numeric>((*a).coeff).to_int();
602                 
603                 // If b is empty, fill up with elements from a and stop
604                 if (b == b_end) {
605                         while (a != a_end) {
606                                 new_seq.push_back(*a);
607                                 ++a;
608                         }
609                         break;
610                 } else
611                         pow_b = ex_to<numeric>((*b).coeff).to_int();
612                 
613                 // a and b are non-empty, compare powers
614                 if (pow_a < pow_b) {
615                         // a has lesser power, get coefficient from a
616                         new_seq.push_back(*a);
617                         if (is_order_function((*a).rest))
618                                 break;
619                         ++a;
620                 } else if (pow_b < pow_a) {
621                         // b has lesser power, get coefficient from b
622                         new_seq.push_back(*b);
623                         if (is_order_function((*b).rest))
624                                 break;
625                         ++b;
626                 } else {
627                         // Add coefficient of a and b
628                         if (is_order_function((*a).rest) || is_order_function((*b).rest)) {
629                                 new_seq.push_back(expair(Order(_ex1), (*a).coeff));
630                                 break;  // Order term ends the sequence
631                         } else {
632                                 ex sum = (*a).rest + (*b).rest;
633                                 if (!(sum.is_zero()))
634                                         new_seq.push_back(expair(sum, numeric(pow_a)));
635                                 ++a;
636                                 ++b;
637                         }
638                 }
639         }
640         return pseries(relational(var,point), new_seq);
641 }
642
643
644 /** Implementation of ex::series() for sums. This performs series addition when
645  *  adding pseries objects.
646  *  @see ex::series */
647 ex add::series(const relational & r, int order, unsigned options) const
648 {
649         ex acc; // Series accumulator
650         
651         // Get first term from overall_coeff
652         acc = overall_coeff.series(r, order, options);
653         
654         // Add remaining terms
655         epvector::const_iterator it = seq.begin();
656         epvector::const_iterator itend = seq.end();
657         for (; it!=itend; ++it) {
658                 ex op;
659                 if (is_exactly_a<pseries>(it->rest))
660                         op = it->rest;
661                 else
662                         op = it->rest.series(r, order, options);
663                 if (!it->coeff.is_equal(_ex1))
664                         op = ex_to<pseries>(op).mul_const(ex_to<numeric>(it->coeff));
665                 
666                 // Series addition
667                 acc = ex_to<pseries>(acc).add_series(ex_to<pseries>(op));
668         }
669         return acc;
670 }
671
672
673 /** Multiply a pseries object with a numeric constant, producing a pseries
674  *  object that represents the product.
675  *
676  *  @param other  constant to multiply with
677  *  @return the product as a pseries */
678 ex pseries::mul_const(const numeric &other) const
679 {
680         epvector new_seq;
681         new_seq.reserve(seq.size());
682         
683         epvector::const_iterator it = seq.begin(), itend = seq.end();
684         while (it != itend) {
685                 if (!is_order_function(it->rest))
686                         new_seq.push_back(expair(it->rest * other, it->coeff));
687                 else
688                         new_seq.push_back(*it);
689                 ++it;
690         }
691         return pseries(relational(var,point), new_seq);
692 }
693
694
695 /** Multiply one pseries object to another, producing a pseries object that
696  *  represents the product.
697  *
698  *  @param other  pseries object to multiply with
699  *  @return the product as a pseries */
700 ex pseries::mul_series(const pseries &other) const
701 {
702         // Multiplying two series with different variables or expansion points
703         // results in an empty (constant) series 
704         if (!is_compatible_to(other)) {
705                 epvector nul;
706                 nul.push_back(expair(Order(_ex1), _ex0));
707                 return pseries(relational(var,point), nul);
708         }
709         
710         // Series multiplication
711         epvector new_seq;
712         int a_max = degree(var);
713         int b_max = other.degree(var);
714         int a_min = ldegree(var);
715         int b_min = other.ldegree(var);
716         int cdeg_min = a_min + b_min;
717         int cdeg_max = a_max + b_max;
718         
719         int higher_order_a = INT_MAX;
720         int higher_order_b = INT_MAX;
721         if (is_order_function(coeff(var, a_max)))
722                 higher_order_a = a_max + b_min;
723         if (is_order_function(other.coeff(var, b_max)))
724                 higher_order_b = b_max + a_min;
725         int higher_order_c = std::min(higher_order_a, higher_order_b);
726         if (cdeg_max >= higher_order_c)
727                 cdeg_max = higher_order_c - 1;
728         
729         for (int cdeg=cdeg_min; cdeg<=cdeg_max; ++cdeg) {
730                 ex co = _ex0;
731                 // c(i)=a(0)b(i)+...+a(i)b(0)
732                 for (int i=a_min; cdeg-i>=b_min; ++i) {
733                         ex a_coeff = coeff(var, i);
734                         ex b_coeff = other.coeff(var, cdeg-i);
735                         if (!is_order_function(a_coeff) && !is_order_function(b_coeff))
736                                 co += a_coeff * b_coeff;
737                 }
738                 if (!co.is_zero())
739                         new_seq.push_back(expair(co, numeric(cdeg)));
740         }
741         if (higher_order_c < INT_MAX)
742                 new_seq.push_back(expair(Order(_ex1), numeric(higher_order_c)));
743         return pseries(relational(var, point), new_seq);
744 }
745
746
747 /** Implementation of ex::series() for product. This performs series
748  *  multiplication when multiplying series.
749  *  @see ex::series */
750 ex mul::series(const relational & r, int order, unsigned options) const
751 {
752         pseries acc; // Series accumulator
753
754         // Multiply with remaining terms
755         const epvector::const_iterator itbeg = seq.begin();
756         const epvector::const_iterator itend = seq.end();
757         for (epvector::const_iterator it=itbeg; it!=itend; ++it) {
758                 ex op = recombine_pair_to_ex(*it).series(r, order, options);
759
760                 // Series multiplication
761                 if (it==itbeg)
762                         acc = ex_to<pseries>(op);
763                 else
764                         acc = ex_to<pseries>(acc.mul_series(ex_to<pseries>(op)));
765         }
766         return acc.mul_const(ex_to<numeric>(overall_coeff));
767 }
768
769
770 /** Compute the p-th power of a series.
771  *
772  *  @param p  power to compute
773  *  @param deg  truncation order of series calculation */
774 ex pseries::power_const(const numeric &p, int deg) const
775 {
776         // method:
777         // (due to Leonhard Euler)
778         // let A(x) be this series and for the time being let it start with a
779         // constant (later we'll generalize):
780         //     A(x) = a_0 + a_1*x + a_2*x^2 + ...
781         // We want to compute
782         //     C(x) = A(x)^p
783         //     C(x) = c_0 + c_1*x + c_2*x^2 + ...
784         // Taking the derivative on both sides and multiplying with A(x) one
785         // immediately arrives at
786         //     C'(x)*A(x) = p*C(x)*A'(x)
787         // Multiplying this out and comparing coefficients we get the recurrence
788         // formula
789         //     c_i = (i*p*a_i*c_0 + ((i-1)*p-1)*a_{i-1}*c_1 + ...
790         //                    ... + (p-(i-1))*a_1*c_{i-1})/(a_0*i)
791         // which can easily be solved given the starting value c_0 = (a_0)^p.
792         // For the more general case where the leading coefficient of A(x) is not
793         // a constant, just consider A2(x) = A(x)*x^m, with some integer m and
794         // repeat the above derivation.  The leading power of C2(x) = A2(x)^2 is
795         // then of course x^(p*m) but the recurrence formula still holds.
796         
797         if (seq.empty()) {
798                 // as a special case, handle the empty (zero) series honoring the
799                 // usual power laws such as implemented in power::eval()
800                 if (p.real().is_zero())
801                         throw std::domain_error("pseries::power_const(): pow(0,I) is undefined");
802                 else if (p.real().is_negative())
803                         throw pole_error("pseries::power_const(): division by zero",1);
804                 else
805                         return *this;
806         }
807         
808         const int ldeg = ldegree(var);
809         if (!(p*ldeg).is_integer())
810                 throw std::runtime_error("pseries::power_const(): trying to assemble a Puiseux series");
811
812         // O(x^n)^(-m) is undefined
813         if (seq.size() == 1 && is_order_function(seq[0].rest) && p.real().is_negative())
814                 throw pole_error("pseries::power_const(): division by zero",1);
815         
816         // Compute coefficients of the powered series
817         exvector co;
818         co.reserve(deg);
819         co.push_back(power(coeff(var, ldeg), p));
820         bool all_sums_zero = true;
821         for (int i=1; i<deg; ++i) {
822                 ex sum = _ex0;
823                 for (int j=1; j<=i; ++j) {
824                         ex c = coeff(var, j + ldeg);
825                         if (is_order_function(c)) {
826                                 co.push_back(Order(_ex1));
827                                 break;
828                         } else
829                                 sum += (p * j - (i - j)) * co[i - j] * c;
830                 }
831                 if (!sum.is_zero())
832                         all_sums_zero = false;
833                 co.push_back(sum / coeff(var, ldeg) / i);
834         }
835         
836         // Construct new series (of non-zero coefficients)
837         epvector new_seq;
838         bool higher_order = false;
839         for (int i=0; i<deg; ++i) {
840                 if (!co[i].is_zero())
841                         new_seq.push_back(expair(co[i], p * ldeg + i));
842                 if (is_order_function(co[i])) {
843                         higher_order = true;
844                         break;
845                 }
846         }
847         if (!higher_order && !all_sums_zero)
848                 new_seq.push_back(expair(Order(_ex1), p * ldeg + deg));
849         return pseries(relational(var,point), new_seq);
850 }
851
852
853 /** Return a new pseries object with the powers shifted by deg. */
854 pseries pseries::shift_exponents(int deg) const
855 {
856         epvector newseq = seq;
857         epvector::iterator i = newseq.begin(), end  = newseq.end();
858         while (i != end) {
859                 i->coeff += deg;
860                 ++i;
861         }
862         return pseries(relational(var, point), newseq);
863 }
864
865
866 /** Implementation of ex::series() for powers. This performs Laurent expansion
867  *  of reciprocals of series at singularities.
868  *  @see ex::series */
869 ex power::series(const relational & r, int order, unsigned options) const
870 {
871         // If basis is already a series, just power it
872         if (is_exactly_a<pseries>(basis))
873                 return ex_to<pseries>(basis).power_const(ex_to<numeric>(exponent), order);
874
875         // Basis is not a series, may there be a singularity?
876         bool must_expand_basis = false;
877         try {
878                 basis.subs(r);
879         } catch (pole_error) {
880                 must_expand_basis = true;
881         }
882                 
883         // Is the expression of type something^(-int)?
884         if (!must_expand_basis && !exponent.info(info_flags::negint))
885                 return basic::series(r, order, options);
886                 
887         // Is the expression of type 0^something?
888         if (!must_expand_basis && !basis.subs(r).is_zero())
889                 return basic::series(r, order, options);
890
891         // Singularity encountered, is the basis equal to (var - point)?
892         if (basis.is_equal(r.lhs() - r.rhs())) {
893                 epvector new_seq;
894                 if (ex_to<numeric>(exponent).to_int() < order)
895                         new_seq.push_back(expair(_ex1, exponent));
896                 else
897                         new_seq.push_back(expair(Order(_ex1), exponent));
898                 return pseries(r, new_seq);
899         }
900
901         // No, expand basis into series
902         ex e = basis.series(r, order, options);
903         return ex_to<pseries>(e).power_const(ex_to<numeric>(exponent), order);
904 }
905
906
907 /** Re-expansion of a pseries object. */
908 ex pseries::series(const relational & r, int order, unsigned options) const
909 {
910         const ex p = r.rhs();
911         GINAC_ASSERT(is_exactly_a<symbol>(r.lhs()));
912         const symbol &s = ex_to<symbol>(r.lhs());
913         
914         if (var.is_equal(s) && point.is_equal(p)) {
915                 if (order > degree(s))
916                         return *this;
917                 else {
918                         epvector new_seq;
919                         epvector::const_iterator it = seq.begin(), itend = seq.end();
920                         while (it != itend) {
921                                 int o = ex_to<numeric>(it->coeff).to_int();
922                                 if (o >= order) {
923                                         new_seq.push_back(expair(Order(_ex1), o));
924                                         break;
925                                 }
926                                 new_seq.push_back(*it);
927                                 ++it;
928                         }
929                         return pseries(r, new_seq);
930                 }
931         } else
932                 return convert_to_poly().series(r, order, options);
933 }
934
935
936 /** Compute the truncated series expansion of an expression.
937  *  This function returns an expression containing an object of class pseries 
938  *  to represent the series. If the series does not terminate within the given
939  *  truncation order, the last term of the series will be an order term.
940  *
941  *  @param r  expansion relation, lhs holds variable and rhs holds point
942  *  @param order  truncation order of series calculations
943  *  @param options  of class series_options
944  *  @return an expression holding a pseries object */
945 ex ex::series(const ex & r, int order, unsigned options) const
946 {
947         GINAC_ASSERT(bp!=0);
948         ex e;
949         relational rel_;
950         
951         if (is_exactly_a<relational>(r))
952                 rel_ = ex_to<relational>(r);
953         else if (is_exactly_a<symbol>(r))
954                 rel_ = relational(r,_ex0);
955         else
956                 throw (std::logic_error("ex::series(): expansion point has unknown type"));
957         
958         try {
959                 e = bp->series(rel_, order, options);
960         } catch (std::exception &x) {
961                 throw (std::logic_error(std::string("unable to compute series (") + x.what() + ")"));
962         }
963         return e;
964 }
965
966 } // namespace GiNaC