1 /** @file inifcns_nstdsums.cpp
3 * Implementation of some special functions that have a representation as nested sums.
6 * classical polylogarithm Li(n,x)
7 * multiple polylogarithm Li(lst(m_1,...,m_k),lst(x_1,...,x_k))
8 * G(lst(a_1,...,a_k),y) or G(lst(a_1,...,a_k),lst(s_1,...,s_k),y)
9 * Nielsen's generalized polylogarithm S(n,p,x)
10 * harmonic polylogarithm H(m,x) or H(lst(m_1,...,m_k),x)
11 * multiple zeta value zeta(m) or zeta(lst(m_1,...,m_k))
12 * alternating Euler sum zeta(m,s) or zeta(lst(m_1,...,m_k),lst(s_1,...,s_k))
16 * - All formulae used can be looked up in the following publications:
17 * [Kol] Nielsen's Generalized Polylogarithms, K.S.Kolbig, SIAM J.Math.Anal. 17 (1986), pp. 1232-1258.
18 * [Cra] Fast Evaluation of Multiple Zeta Sums, R.E.Crandall, Math.Comp. 67 (1998), pp. 1163-1172.
19 * [ReV] Harmonic Polylogarithms, E.Remiddi, J.A.M.Vermaseren, Int.J.Mod.Phys. A15 (2000), pp. 725-754
20 * [BBB] Special Values of Multiple Polylogarithms, J.Borwein, D.Bradley, D.Broadhurst, P.Lisonek, Trans.Amer.Math.Soc. 353/3 (2001), pp. 907-941
21 * [VSW] Numerical evaluation of multiple polylogarithms, J.Vollinga, S.Weinzierl, hep-ph/0410259
23 * - The order of parameters and arguments of Li and zeta is defined according to the nested sums
24 * representation. The parameters for H are understood as in [ReV]. They can be in expanded --- only
25 * 0, 1 and -1 --- or in compactified --- a string with zeros in front of 1 or -1 is written as a single
26 * number --- notation.
28 * - All functions can be numerically evaluated with arguments in the whole complex plane. The parameters
29 * for Li, zeta and S must be positive integers. If you want to have an alternating Euler sum, you have
30 * to give the signs of the parameters as a second argument s to zeta(m,s) containing 1 and -1.
32 * - The calculation of classical polylogarithms is speeded up by using Bernoulli numbers and
33 * look-up tables. S uses look-up tables as well. The zeta function applies the algorithms in
34 * [Cra] and [BBB] for speed up. Multiple polylogarithms use Hoelder convolution [BBB].
36 * - The functions have no means to do a series expansion into nested sums. To do this, you have to convert
37 * these functions into the appropriate objects from the nestedsums library, do the expansion and convert
40 * - Numerical testing of this implementation has been performed by doing a comparison of results
41 * between this software and the commercial M.......... 4.1. Multiple zeta values have been checked
42 * by means of evaluations into simple zeta values. Harmonic polylogarithms have been checked by
43 * comparison to S(n,p,x) for corresponding parameter combinations and by continuity checks
44 * around |x|=1 along with comparisons to corresponding zeta functions. Multiple polylogarithms were
45 * checked against H and zeta and by means of shuffle and quasi-shuffle relations.
50 * GiNaC Copyright (C) 1999-2015 Johannes Gutenberg University Mainz, Germany
52 * This program is free software; you can redistribute it and/or modify
53 * it under the terms of the GNU General Public License as published by
54 * the Free Software Foundation; either version 2 of the License, or
55 * (at your option) any later version.
57 * This program is distributed in the hope that it will be useful,
58 * but WITHOUT ANY WARRANTY; without even the implied warranty of
59 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
60 * GNU General Public License for more details.
62 * You should have received a copy of the GNU General Public License
63 * along with this program; if not, write to the Free Software
64 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
74 #include "operators.h"
77 #include "relational.h"
90 //////////////////////////////////////////////////////////////////////
92 // Classical polylogarithm Li(n,x)
96 //////////////////////////////////////////////////////////////////////
99 // anonymous namespace for helper functions
103 // lookup table for factors built from Bernoulli numbers
105 std::vector<std::vector<cln::cl_N>> Xn;
106 // initial size of Xn that should suffice for 32bit machines (must be even)
107 const int xninitsizestep = 26;
108 int xninitsize = xninitsizestep;
112 // This function calculates the X_n. The X_n are needed for speed up of classical polylogarithms.
113 // With these numbers the polylogs can be calculated as follows:
114 // Li_p (x) = \sum_{n=0}^\infty X_{p-2}(n) u^{n+1}/(n+1)! with u = -log(1-x)
115 // X_0(n) = B_n (Bernoulli numbers)
116 // X_p(n) = \sum_{k=0}^n binomial(n,k) B_{n-k} / (k+1) * X_{p-1}(k)
117 // The calculation of Xn depends on X0 and X{n-1}.
118 // X_0 is special, it holds only the non-zero Bernoulli numbers with index 2 or greater.
119 // This results in a slightly more complicated algorithm for the X_n.
120 // The first index in Xn corresponds to the index of the polylog minus 2.
121 // The second index in Xn corresponds to the index from the actual sum.
125 // calculate X_2 and higher (corresponding to Li_4 and higher)
126 std::vector<cln::cl_N> buf(xninitsize);
127 std::vector<cln::cl_N>::iterator it = buf.begin();
129 *it = -(cln::expt(cln::cl_I(2),n+1) - 1) / cln::expt(cln::cl_I(2),n+1); // i == 1
131 for (int i=2; i<=xninitsize; i++) {
133 result = 0; // k == 0
135 result = Xn[0][i/2-1]; // k == 0
137 for (int k=1; k<i-1; k++) {
138 if ( !(((i-k) & 1) && ((i-k) > 1)) ) {
139 result = result + cln::binomial(i,k) * Xn[0][(i-k)/2-1] * Xn[n-1][k-1] / (k+1);
142 result = result - cln::binomial(i,i-1) * Xn[n-1][i-2] / 2 / i; // k == i-1
143 result = result + Xn[n-1][i-1] / (i+1); // k == i
150 // special case to handle the X_0 correct
151 std::vector<cln::cl_N> buf(xninitsize);
152 std::vector<cln::cl_N>::iterator it = buf.begin();
154 *it = cln::cl_I(-3)/cln::cl_I(4); // i == 1
156 *it = cln::cl_I(17)/cln::cl_I(36); // i == 2
158 for (int i=3; i<=xninitsize; i++) {
160 result = -Xn[0][(i-3)/2]/2;
161 *it = (cln::binomial(i,1)/cln::cl_I(2) + cln::binomial(i,i-1)/cln::cl_I(i))*result;
164 result = Xn[0][i/2-1] + Xn[0][i/2-1]/(i+1);
165 for (int k=1; k<i/2; k++) {
166 result = result + cln::binomial(i,k*2) * Xn[0][k-1] * Xn[0][i/2-k-1] / (k*2+1);
175 std::vector<cln::cl_N> buf(xninitsize/2);
176 std::vector<cln::cl_N>::iterator it = buf.begin();
177 for (int i=1; i<=xninitsize/2; i++) {
178 *it = bernoulli(i*2).to_cl_N();
187 // doubles the number of entries in each Xn[]
190 const int pos0 = xninitsize / 2;
192 for (int i=1; i<=xninitsizestep/2; ++i) {
193 Xn[0].push_back(bernoulli((i+pos0)*2).to_cl_N());
196 int xend = xninitsize + xninitsizestep;
199 for (int i=xninitsize+1; i<=xend; ++i) {
201 result = -Xn[0][(i-3)/2]/2;
202 Xn[1].push_back((cln::binomial(i,1)/cln::cl_I(2) + cln::binomial(i,i-1)/cln::cl_I(i))*result);
204 result = Xn[0][i/2-1] + Xn[0][i/2-1]/(i+1);
205 for (int k=1; k<i/2; k++) {
206 result = result + cln::binomial(i,k*2) * Xn[0][k-1] * Xn[0][i/2-k-1] / (k*2+1);
208 Xn[1].push_back(result);
212 for (size_t n=2; n<Xn.size(); ++n) {
213 for (int i=xninitsize+1; i<=xend; ++i) {
215 result = 0; // k == 0
217 result = Xn[0][i/2-1]; // k == 0
219 for (int k=1; k<i-1; ++k) {
220 if ( !(((i-k) & 1) && ((i-k) > 1)) ) {
221 result = result + cln::binomial(i,k) * Xn[0][(i-k)/2-1] * Xn[n-1][k-1] / (k+1);
224 result = result - cln::binomial(i,i-1) * Xn[n-1][i-2] / 2 / i; // k == i-1
225 result = result + Xn[n-1][i-1] / (i+1); // k == i
226 Xn[n].push_back(result);
230 xninitsize += xninitsizestep;
234 // calculates Li(2,x) without Xn
235 cln::cl_N Li2_do_sum(const cln::cl_N& x)
239 cln::cl_N num = x * cln::cl_float(1, cln::float_format(Digits));
240 cln::cl_I den = 1; // n^2 = 1
245 den = den + i; // n^2 = 4, 9, 16, ...
247 res = res + num / den;
248 } while (res != resbuf);
253 // calculates Li(2,x) with Xn
254 cln::cl_N Li2_do_sum_Xn(const cln::cl_N& x)
256 std::vector<cln::cl_N>::const_iterator it = Xn[0].begin();
257 std::vector<cln::cl_N>::const_iterator xend = Xn[0].end();
258 cln::cl_N u = -cln::log(1-x);
259 cln::cl_N factor = u * cln::cl_float(1, cln::float_format(Digits));
260 cln::cl_N uu = cln::square(u);
261 cln::cl_N res = u - uu/4;
266 factor = factor * uu / (2*i * (2*i+1));
267 res = res + (*it) * factor;
271 it = Xn[0].begin() + (i-1);
274 } while (res != resbuf);
279 // calculates Li(n,x), n>2 without Xn
280 cln::cl_N Lin_do_sum(int n, const cln::cl_N& x)
282 cln::cl_N factor = x * cln::cl_float(1, cln::float_format(Digits));
289 res = res + factor / cln::expt(cln::cl_I(i),n);
291 } while (res != resbuf);
296 // calculates Li(n,x), n>2 with Xn
297 cln::cl_N Lin_do_sum_Xn(int n, const cln::cl_N& x)
299 std::vector<cln::cl_N>::const_iterator it = Xn[n-2].begin();
300 std::vector<cln::cl_N>::const_iterator xend = Xn[n-2].end();
301 cln::cl_N u = -cln::log(1-x);
302 cln::cl_N factor = u * cln::cl_float(1, cln::float_format(Digits));
308 factor = factor * u / i;
309 res = res + (*it) * factor;
313 it = Xn[n-2].begin() + (i-2);
314 xend = Xn[n-2].end();
316 } while (res != resbuf);
321 // forward declaration needed by function Li_projection and C below
322 const cln::cl_N S_num(int n, int p, const cln::cl_N& x);
325 // helper function for classical polylog Li
326 cln::cl_N Li_projection(int n, const cln::cl_N& x, const cln::float_format_t& prec)
328 // treat n=2 as special case
330 // check if precalculated X0 exists
335 if (cln::realpart(x) < 0.5) {
336 // choose the faster algorithm
337 // the switching point was empirically determined. the optimal point
338 // depends on hardware, Digits, ... so an approx value is okay.
339 // it solves also the problem with precision due to the u=-log(1-x) transformation
340 if (cln::abs(cln::realpart(x)) < 0.25) {
342 return Li2_do_sum(x);
344 return Li2_do_sum_Xn(x);
347 // choose the faster algorithm
348 if (cln::abs(cln::realpart(x)) > 0.75) {
352 return -Li2_do_sum(1-x) - cln::log(x) * cln::log(1-x) + cln::zeta(2);
355 return -Li2_do_sum_Xn(1-x) - cln::log(x) * cln::log(1-x) + cln::zeta(2);
359 // check if precalculated Xn exist
361 for (int i=xnsize; i<n-1; i++) {
366 if (cln::realpart(x) < 0.5) {
367 // choose the faster algorithm
368 // with n>=12 the "normal" summation always wins against the method with Xn
369 if ((cln::abs(cln::realpart(x)) < 0.3) || (n >= 12)) {
370 return Lin_do_sum(n, x);
372 return Lin_do_sum_Xn(n, x);
375 cln::cl_N result = 0;
376 if ( x != 1 ) result = -cln::expt(cln::log(x), n-1) * cln::log(1-x) / cln::factorial(n-1);
377 for (int j=0; j<n-1; j++) {
378 result = result + (S_num(n-j-1, 1, 1) - S_num(1, n-j-1, 1-x))
379 * cln::expt(cln::log(x), j) / cln::factorial(j);
386 // helper function for classical polylog Li
387 const cln::cl_N Lin_numeric(const int n, const cln::cl_N& x)
391 return -cln::log(1-x);
402 return -(1-cln::expt(cln::cl_I(2),1-n)) * cln::zeta(n);
404 if (cln::abs(realpart(x)) < 0.4 && cln::abs(cln::abs(x)-1) < 0.01) {
405 cln::cl_N result = -cln::expt(cln::log(x), n-1) * cln::log(1-x) / cln::factorial(n-1);
406 for (int j=0; j<n-1; j++) {
407 result = result + (S_num(n-j-1, 1, 1) - S_num(1, n-j-1, 1-x))
408 * cln::expt(cln::log(x), j) / cln::factorial(j);
413 // what is the desired float format?
414 // first guess: default format
415 cln::float_format_t prec = cln::default_float_format;
416 const cln::cl_N value = x;
417 // second guess: the argument's format
418 if (!instanceof(realpart(x), cln::cl_RA_ring))
419 prec = cln::float_format(cln::the<cln::cl_F>(cln::realpart(value)));
420 else if (!instanceof(imagpart(x), cln::cl_RA_ring))
421 prec = cln::float_format(cln::the<cln::cl_F>(cln::imagpart(value)));
424 if (cln::abs(value) > 1) {
425 cln::cl_N result = -cln::expt(cln::log(-value),n) / cln::factorial(n);
426 // check if argument is complex. if it is real, the new polylog has to be conjugated.
427 if (cln::zerop(cln::imagpart(value))) {
429 result = result + conjugate(Li_projection(n, cln::recip(value), prec));
432 result = result - conjugate(Li_projection(n, cln::recip(value), prec));
437 result = result + Li_projection(n, cln::recip(value), prec);
440 result = result - Li_projection(n, cln::recip(value), prec);
444 for (int j=0; j<n-1; j++) {
445 add = add + (1+cln::expt(cln::cl_I(-1),n-j)) * (1-cln::expt(cln::cl_I(2),1-n+j))
446 * Lin_numeric(n-j,1) * cln::expt(cln::log(-value),j) / cln::factorial(j);
448 result = result - add;
452 return Li_projection(n, value, prec);
457 } // end of anonymous namespace
460 //////////////////////////////////////////////////////////////////////
462 // Multiple polylogarithm Li(n,x)
466 //////////////////////////////////////////////////////////////////////
469 // anonymous namespace for helper function
473 // performs the actual series summation for multiple polylogarithms
474 cln::cl_N multipleLi_do_sum(const std::vector<int>& s, const std::vector<cln::cl_N>& x)
476 // ensure all x <> 0.
477 for (std::vector<cln::cl_N>::const_iterator it = x.begin(); it != x.end(); ++it) {
478 if ( *it == 0 ) return cln::cl_float(0, cln::float_format(Digits));
481 const int j = s.size();
482 bool flag_accidental_zero = false;
484 std::vector<cln::cl_N> t(j);
485 cln::cl_F one = cln::cl_float(1, cln::float_format(Digits));
492 t[j-1] = t[j-1] + cln::expt(x[j-1], q) / cln::expt(cln::cl_I(q),s[j-1]) * one;
493 for (int k=j-2; k>=0; k--) {
494 t[k] = t[k] + t[k+1] * cln::expt(x[k], q+j-1-k) / cln::expt(cln::cl_I(q+j-1-k), s[k]);
497 t[j-1] = t[j-1] + cln::expt(x[j-1], q) / cln::expt(cln::cl_I(q),s[j-1]) * one;
498 for (int k=j-2; k>=0; k--) {
499 flag_accidental_zero = cln::zerop(t[k+1]);
500 t[k] = t[k] + t[k+1] * cln::expt(x[k], q+j-1-k) / cln::expt(cln::cl_I(q+j-1-k), s[k]);
502 } while ( (t[0] != t0buf) || cln::zerop(t[0]) || flag_accidental_zero );
508 // forward declaration for Li_eval()
509 lst convert_parameter_Li_to_H(const lst& m, const lst& x, ex& pf);
512 // type used by the transformation functions for G
513 typedef std::vector<int> Gparameter;
516 // G_eval1-function for G transformations
517 ex G_eval1(int a, int scale, const exvector& gsyms)
520 const ex& scs = gsyms[std::abs(scale)];
521 const ex& as = gsyms[std::abs(a)];
523 return -log(1 - scs/as);
528 return log(gsyms[std::abs(scale)]);
533 // G_eval-function for G transformations
534 ex G_eval(const Gparameter& a, int scale, const exvector& gsyms)
536 // check for properties of G
537 ex sc = gsyms[std::abs(scale)];
539 bool all_zero = true;
540 bool all_ones = true;
542 for (Gparameter::const_iterator it = a.begin(); it != a.end(); ++it) {
544 const ex sym = gsyms[std::abs(*it)];
558 // care about divergent G: shuffle to separate divergencies that will be canceled
559 // later on in the transformation
560 if (newa.nops() > 1 && newa.op(0) == sc && !all_ones && a.front()!=0) {
563 Gparameter::const_iterator it = a.begin();
565 for (; it != a.end(); ++it) {
566 short_a.push_back(*it);
568 ex result = G_eval1(a.front(), scale, gsyms) * G_eval(short_a, scale, gsyms);
569 it = short_a.begin();
570 for (int i=1; i<count_ones; ++i) {
573 for (; it != short_a.end(); ++it) {
576 Gparameter::const_iterator it2 = short_a.begin();
577 for (; it2 != it; ++it2) {
578 newa.push_back(*it2);
581 newa.push_back(a[0]);
584 for (; it2 != short_a.end(); ++it2) {
585 newa.push_back(*it2);
587 result -= G_eval(newa, scale, gsyms);
589 return result / count_ones;
592 // G({1,...,1};y) -> G({1};y)^k / k!
593 if (all_ones && a.size() > 1) {
594 return pow(G_eval1(a.front(),scale, gsyms), count_ones) / factorial(count_ones);
597 // G({0,...,0};y) -> log(y)^k / k!
599 return pow(log(gsyms[std::abs(scale)]), a.size()) / factorial(a.size());
602 // no special cases anymore -> convert it into Li
605 ex argbuf = gsyms[std::abs(scale)];
607 for (Gparameter::const_iterator it=a.begin(); it!=a.end(); ++it) {
609 const ex& sym = gsyms[std::abs(*it)];
610 x.append(argbuf / sym);
618 return pow(-1, x.nops()) * Li(m, x);
622 // converts data for G: pending_integrals -> a
623 Gparameter convert_pending_integrals_G(const Gparameter& pending_integrals)
625 GINAC_ASSERT(pending_integrals.size() != 1);
627 if (pending_integrals.size() > 0) {
628 // get rid of the first element, which would stand for the new upper limit
629 Gparameter new_a(pending_integrals.begin()+1, pending_integrals.end());
632 // just return empty parameter list
639 // check the parameters a and scale for G and return information about convergence, depth, etc.
640 // convergent : true if G(a,scale) is convergent
641 // depth : depth of G(a,scale)
642 // trailing_zeros : number of trailing zeros of a
643 // min_it : iterator of a pointing on the smallest element in a
644 Gparameter::const_iterator check_parameter_G(const Gparameter& a, int scale,
645 bool& convergent, int& depth, int& trailing_zeros, Gparameter::const_iterator& min_it)
651 Gparameter::const_iterator lastnonzero = a.end();
652 for (Gparameter::const_iterator it = a.begin(); it != a.end(); ++it) {
653 if (std::abs(*it) > 0) {
657 if (std::abs(*it) < scale) {
659 if ((min_it == a.end()) || (std::abs(*it) < std::abs(*min_it))) {
667 if (lastnonzero == a.end())
669 return ++lastnonzero;
673 // add scale to pending_integrals if pending_integrals is empty
674 Gparameter prepare_pending_integrals(const Gparameter& pending_integrals, int scale)
676 GINAC_ASSERT(pending_integrals.size() != 1);
678 if (pending_integrals.size() > 0) {
679 return pending_integrals;
681 Gparameter new_pending_integrals;
682 new_pending_integrals.push_back(scale);
683 return new_pending_integrals;
688 // handles trailing zeroes for an otherwise convergent integral
689 ex trailing_zeros_G(const Gparameter& a, int scale, const exvector& gsyms)
692 int depth, trailing_zeros;
693 Gparameter::const_iterator last, dummyit;
694 last = check_parameter_G(a, scale, convergent, depth, trailing_zeros, dummyit);
696 GINAC_ASSERT(convergent);
698 if ((trailing_zeros > 0) && (depth > 0)) {
700 Gparameter new_a(a.begin(), a.end()-1);
701 result += G_eval1(0, scale, gsyms) * trailing_zeros_G(new_a, scale, gsyms);
702 for (Gparameter::const_iterator it = a.begin(); it != last; ++it) {
703 Gparameter new_a(a.begin(), it);
705 new_a.insert(new_a.end(), it, a.end()-1);
706 result -= trailing_zeros_G(new_a, scale, gsyms);
709 return result / trailing_zeros;
711 return G_eval(a, scale, gsyms);
716 // G transformation [VSW] (57),(58)
717 ex depth_one_trafo_G(const Gparameter& pending_integrals, const Gparameter& a, int scale, const exvector& gsyms)
719 // pendint = ( y1, b1, ..., br )
720 // a = ( 0, ..., 0, amin )
723 // int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) G(0, ..., 0, sr; y2)
724 // where sr replaces amin
726 GINAC_ASSERT(a.back() != 0);
727 GINAC_ASSERT(a.size() > 0);
730 Gparameter new_pending_integrals = prepare_pending_integrals(pending_integrals, std::abs(a.back()));
731 const int psize = pending_integrals.size();
734 // G(sr_{+-}; y2 ) = G(y2_{-+}; sr) - G(0; sr) + ln(-y2_{-+})
739 result += log(gsyms[ex_to<numeric>(scale).to_int()]);
741 new_pending_integrals.push_back(-scale);
744 new_pending_integrals.push_back(scale);
748 result *= trailing_zeros_G(convert_pending_integrals_G(pending_integrals),
749 pending_integrals.front(),
754 result += trailing_zeros_G(convert_pending_integrals_G(new_pending_integrals),
755 new_pending_integrals.front(),
759 new_pending_integrals.back() = 0;
760 result -= trailing_zeros_G(convert_pending_integrals_G(new_pending_integrals),
761 new_pending_integrals.front(),
768 // G_m(sr_{+-}; y2) = -zeta_m + int_0^y2 dt/t G_{m-1}( (1/y2)_{+-}; 1/t )
769 // - int_0^sr dt/t G_{m-1}( (1/y2)_{+-}; 1/t )
772 result -= zeta(a.size());
774 result *= trailing_zeros_G(convert_pending_integrals_G(pending_integrals),
775 pending_integrals.front(),
779 // term int_0^sr dt/t G_{m-1}( (1/y2)_{+-}; 1/t )
780 // = int_0^sr dt/t G_{m-1}( t_{+-}; y2 )
781 Gparameter new_a(a.begin()+1, a.end());
782 new_pending_integrals.push_back(0);
783 result -= depth_one_trafo_G(new_pending_integrals, new_a, scale, gsyms);
785 // term int_0^y2 dt/t G_{m-1}( (1/y2)_{+-}; 1/t )
786 // = int_0^y2 dt/t G_{m-1}( t_{+-}; y2 )
787 Gparameter new_pending_integrals_2;
788 new_pending_integrals_2.push_back(scale);
789 new_pending_integrals_2.push_back(0);
791 result += trailing_zeros_G(convert_pending_integrals_G(pending_integrals),
792 pending_integrals.front(),
794 * depth_one_trafo_G(new_pending_integrals_2, new_a, scale, gsyms);
796 result += depth_one_trafo_G(new_pending_integrals_2, new_a, scale, gsyms);
803 // forward declaration
804 ex shuffle_G(const Gparameter & a0, const Gparameter & a1, const Gparameter & a2,
805 const Gparameter& pendint, const Gparameter& a_old, int scale,
806 const exvector& gsyms, bool flag_trailing_zeros_only);
809 // G transformation [VSW]
810 ex G_transform(const Gparameter& pendint, const Gparameter& a, int scale,
811 const exvector& gsyms, bool flag_trailing_zeros_only)
813 // main recursion routine
815 // pendint = ( y1, b1, ..., br )
816 // a = ( a1, ..., amin, ..., aw )
819 // int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) G(a1,...,sr,...,aw,y2)
820 // where sr replaces amin
822 // find smallest alpha, determine depth and trailing zeros, and check for convergence
824 int depth, trailing_zeros;
825 Gparameter::const_iterator min_it;
826 Gparameter::const_iterator firstzero =
827 check_parameter_G(a, scale, convergent, depth, trailing_zeros, min_it);
828 int min_it_pos = min_it - a.begin();
830 // special case: all a's are zero
837 result = G_eval(a, scale, gsyms);
839 if (pendint.size() > 0) {
840 result *= trailing_zeros_G(convert_pending_integrals_G(pendint),
847 // handle trailing zeros
848 if (trailing_zeros > 0) {
850 Gparameter new_a(a.begin(), a.end()-1);
851 result += G_eval1(0, scale, gsyms) * G_transform(pendint, new_a, scale, gsyms, flag_trailing_zeros_only);
852 for (Gparameter::const_iterator it = a.begin(); it != firstzero; ++it) {
853 Gparameter new_a(a.begin(), it);
855 new_a.insert(new_a.end(), it, a.end()-1);
856 result -= G_transform(pendint, new_a, scale, gsyms, flag_trailing_zeros_only);
858 return result / trailing_zeros;
861 // convergence case or flag_trailing_zeros_only
862 if (convergent || flag_trailing_zeros_only) {
863 if (pendint.size() > 0) {
864 return G_eval(convert_pending_integrals_G(pendint),
865 pendint.front(), gsyms)*
866 G_eval(a, scale, gsyms);
868 return G_eval(a, scale, gsyms);
872 // call basic transformation for depth equal one
874 return depth_one_trafo_G(pendint, a, scale, gsyms);
878 // int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) G(a1,...,sr,...,aw,y2)
879 // = int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) G(a1,...,0,...,aw,y2)
880 // + int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) int_0^{sr} ds_{r+1} d/ds_{r+1} G(a1,...,s_{r+1},...,aw,y2)
882 // smallest element in last place
883 if (min_it + 1 == a.end()) {
884 do { --min_it; } while (*min_it == 0);
886 Gparameter a1(a.begin(),min_it+1);
887 Gparameter a2(min_it+1,a.end());
889 ex result = G_transform(pendint, a2, scale, gsyms, flag_trailing_zeros_only)*
890 G_transform(empty, a1, scale, gsyms, flag_trailing_zeros_only);
892 result -= shuffle_G(empty, a1, a2, pendint, a, scale, gsyms, flag_trailing_zeros_only);
897 Gparameter::iterator changeit;
899 // first term G(a_1,..,0,...,a_w;a_0)
900 Gparameter new_pendint = prepare_pending_integrals(pendint, a[min_it_pos]);
901 Gparameter new_a = a;
902 new_a[min_it_pos] = 0;
903 ex result = G_transform(empty, new_a, scale, gsyms, flag_trailing_zeros_only);
904 if (pendint.size() > 0) {
905 result *= trailing_zeros_G(convert_pending_integrals_G(pendint),
906 pendint.front(), gsyms);
910 changeit = new_a.begin() + min_it_pos;
911 changeit = new_a.erase(changeit);
912 if (changeit != new_a.begin()) {
913 // smallest in the middle
914 new_pendint.push_back(*changeit);
915 result -= trailing_zeros_G(convert_pending_integrals_G(new_pendint),
916 new_pendint.front(), gsyms)*
917 G_transform(empty, new_a, scale, gsyms, flag_trailing_zeros_only);
918 int buffer = *changeit;
920 result += G_transform(new_pendint, new_a, scale, gsyms, flag_trailing_zeros_only);
922 new_pendint.pop_back();
924 new_pendint.push_back(*changeit);
925 result += trailing_zeros_G(convert_pending_integrals_G(new_pendint),
926 new_pendint.front(), gsyms)*
927 G_transform(empty, new_a, scale, gsyms, flag_trailing_zeros_only);
929 result -= G_transform(new_pendint, new_a, scale, gsyms, flag_trailing_zeros_only);
931 // smallest at the front
932 new_pendint.push_back(scale);
933 result += trailing_zeros_G(convert_pending_integrals_G(new_pendint),
934 new_pendint.front(), gsyms)*
935 G_transform(empty, new_a, scale, gsyms, flag_trailing_zeros_only);
936 new_pendint.back() = *changeit;
937 result -= trailing_zeros_G(convert_pending_integrals_G(new_pendint),
938 new_pendint.front(), gsyms)*
939 G_transform(empty, new_a, scale, gsyms, flag_trailing_zeros_only);
941 result += G_transform(new_pendint, new_a, scale, gsyms, flag_trailing_zeros_only);
947 // shuffles the two parameter list a1 and a2 and calls G_transform for every term except
948 // for the one that is equal to a_old
949 ex shuffle_G(const Gparameter & a0, const Gparameter & a1, const Gparameter & a2,
950 const Gparameter& pendint, const Gparameter& a_old, int scale,
951 const exvector& gsyms, bool flag_trailing_zeros_only)
953 if (a1.size()==0 && a2.size()==0) {
954 // veto the one configuration we don't want
955 if ( a0 == a_old ) return 0;
957 return G_transform(pendint, a0, scale, gsyms, flag_trailing_zeros_only);
963 aa0.insert(aa0.end(),a1.begin(),a1.end());
964 return shuffle_G(aa0, empty, empty, pendint, a_old, scale, gsyms, flag_trailing_zeros_only);
970 aa0.insert(aa0.end(),a2.begin(),a2.end());
971 return shuffle_G(aa0, empty, empty, pendint, a_old, scale, gsyms, flag_trailing_zeros_only);
974 Gparameter a1_removed(a1.begin()+1,a1.end());
975 Gparameter a2_removed(a2.begin()+1,a2.end());
980 a01.push_back( a1[0] );
981 a02.push_back( a2[0] );
983 return shuffle_G(a01, a1_removed, a2, pendint, a_old, scale, gsyms, flag_trailing_zeros_only)
984 + shuffle_G(a02, a1, a2_removed, pendint, a_old, scale, gsyms, flag_trailing_zeros_only);
987 // handles the transformations and the numerical evaluation of G
988 // the parameter x, s and y must only contain numerics
990 G_numeric(const std::vector<cln::cl_N>& x, const std::vector<int>& s,
993 // do acceleration transformation (hoelder convolution [BBB])
994 // the parameter x, s and y must only contain numerics
996 G_do_hoelder(std::vector<cln::cl_N> x, /* yes, it's passed by value */
997 const std::vector<int>& s, const cln::cl_N& y)
1000 const std::size_t size = x.size();
1001 for (std::size_t i = 0; i < size; ++i)
1004 for (std::size_t r = 0; r <= size; ++r) {
1005 cln::cl_N buffer(1 & r ? -1 : 1);
1010 for (std::size_t i = 0; i < size; ++i) {
1011 if (x[i] == cln::cl_RA(1)/p) {
1012 p = p/2 + cln::cl_RA(3)/2;
1018 cln::cl_RA q = p/(p-1);
1019 std::vector<cln::cl_N> qlstx;
1020 std::vector<int> qlsts;
1021 for (std::size_t j = r; j >= 1; --j) {
1022 qlstx.push_back(cln::cl_N(1) - x[j-1]);
1023 if (instanceof(x[j-1], cln::cl_R_ring) && realpart(x[j-1]) > 1) {
1026 qlsts.push_back(-s[j-1]);
1029 if (qlstx.size() > 0) {
1030 buffer = buffer*G_numeric(qlstx, qlsts, 1/q);
1032 std::vector<cln::cl_N> plstx;
1033 std::vector<int> plsts;
1034 for (std::size_t j = r+1; j <= size; ++j) {
1035 plstx.push_back(x[j-1]);
1036 plsts.push_back(s[j-1]);
1038 if (plstx.size() > 0) {
1039 buffer = buffer*G_numeric(plstx, plsts, 1/p);
1041 result = result + buffer;
1046 class less_object_for_cl_N
1049 bool operator() (const cln::cl_N & a, const cln::cl_N & b) const
1052 if (abs(a) != abs(b))
1053 return (abs(a) < abs(b)) ? true : false;
1056 if (phase(a) != phase(b))
1057 return (phase(a) < phase(b)) ? true : false;
1059 // equal, therefore "less" is not true
1065 // convergence transformation, used for numerical evaluation of G function.
1066 // the parameter x, s and y must only contain numerics
1068 G_do_trafo(const std::vector<cln::cl_N>& x, const std::vector<int>& s,
1069 const cln::cl_N& y, bool flag_trailing_zeros_only)
1071 // sort (|x|<->position) to determine indices
1072 typedef std::multimap<cln::cl_N, std::size_t, less_object_for_cl_N> sortmap_t;
1074 std::size_t size = 0;
1075 for (std::size_t i = 0; i < x.size(); ++i) {
1077 sortmap.insert(std::make_pair(x[i], i));
1081 // include upper limit (scale)
1082 sortmap.insert(std::make_pair(y, x.size()));
1084 // generate missing dummy-symbols
1086 // holding dummy-symbols for the G/Li transformations
1088 gsyms.push_back(symbol("GSYMS_ERROR"));
1089 cln::cl_N lastentry(0);
1090 for (sortmap_t::const_iterator it = sortmap.begin(); it != sortmap.end(); ++it) {
1091 if (it != sortmap.begin()) {
1092 if (it->second < x.size()) {
1093 if (x[it->second] == lastentry) {
1094 gsyms.push_back(gsyms.back());
1098 if (y == lastentry) {
1099 gsyms.push_back(gsyms.back());
1104 std::ostringstream os;
1106 gsyms.push_back(symbol(os.str()));
1108 if (it->second < x.size()) {
1109 lastentry = x[it->second];
1115 // fill position data according to sorted indices and prepare substitution list
1116 Gparameter a(x.size());
1118 std::size_t pos = 1;
1120 for (sortmap_t::const_iterator it = sortmap.begin(); it != sortmap.end(); ++it) {
1121 if (it->second < x.size()) {
1122 if (s[it->second] > 0) {
1123 a[it->second] = pos;
1125 a[it->second] = -int(pos);
1127 subslst[gsyms[pos]] = numeric(x[it->second]);
1130 subslst[gsyms[pos]] = numeric(y);
1135 // do transformation
1137 ex result = G_transform(pendint, a, scale, gsyms, flag_trailing_zeros_only);
1138 // replace dummy symbols with their values
1139 result = result.eval().expand();
1140 result = result.subs(subslst).evalf();
1141 if (!is_a<numeric>(result))
1142 throw std::logic_error("G_do_trafo: G_transform returned non-numeric result");
1144 cln::cl_N ret = ex_to<numeric>(result).to_cl_N();
1148 // handles the transformations and the numerical evaluation of G
1149 // the parameter x, s and y must only contain numerics
1151 G_numeric(const std::vector<cln::cl_N>& x, const std::vector<int>& s,
1154 // check for convergence and necessary accelerations
1155 bool need_trafo = false;
1156 bool need_hoelder = false;
1157 bool have_trailing_zero = false;
1158 std::size_t depth = 0;
1159 for (std::size_t i = 0; i < x.size(); ++i) {
1162 const cln::cl_N x_y = abs(x[i]) - y;
1163 if (instanceof(x_y, cln::cl_R_ring) &&
1164 realpart(x_y) < cln::least_negative_float(cln::float_format(Digits - 2)))
1167 if (abs(abs(x[i]/y) - 1) < 0.01)
1168 need_hoelder = true;
1171 if (zerop(x.back())) {
1172 have_trailing_zero = true;
1176 if (depth == 1 && x.size() == 2 && !need_trafo)
1177 return - Li_projection(2, y/x[1], cln::float_format(Digits));
1179 // do acceleration transformation (hoelder convolution [BBB])
1180 if (need_hoelder && !have_trailing_zero)
1181 return G_do_hoelder(x, s, y);
1183 // convergence transformation
1185 return G_do_trafo(x, s, y, have_trailing_zero);
1188 std::vector<cln::cl_N> newx;
1189 newx.reserve(x.size());
1191 m.reserve(x.size());
1194 cln::cl_N factor = y;
1195 for (std::size_t i = 0; i < x.size(); ++i) {
1199 newx.push_back(factor/x[i]);
1201 m.push_back(mcount);
1207 return sign*multipleLi_do_sum(m, newx);
1211 ex mLi_numeric(const lst& m, const lst& x)
1213 // let G_numeric do the transformation
1214 std::vector<cln::cl_N> newx;
1215 newx.reserve(x.nops());
1217 s.reserve(x.nops());
1218 cln::cl_N factor(1);
1219 for (lst::const_iterator itm = m.begin(), itx = x.begin(); itm != m.end(); ++itm, ++itx) {
1220 for (int i = 1; i < *itm; ++i) {
1221 newx.push_back(cln::cl_N(0));
1224 const cln::cl_N xi = ex_to<numeric>(*itx).to_cl_N();
1226 newx.push_back(factor);
1227 if ( !instanceof(factor, cln::cl_R_ring) && imagpart(factor) < 0 ) {
1234 return numeric(cln::cl_N(1 & m.nops() ? - 1 : 1)*G_numeric(newx, s, cln::cl_N(1)));
1238 } // end of anonymous namespace
1241 //////////////////////////////////////////////////////////////////////
1243 // Generalized multiple polylogarithm G(x, y) and G(x, s, y)
1247 //////////////////////////////////////////////////////////////////////
1250 static ex G2_evalf(const ex& x_, const ex& y)
1252 if ((!y.info(info_flags::numeric)) || (!y.info(info_flags::positive))) {
1253 return G(x_, y).hold();
1255 lst x = is_a<lst>(x_) ? ex_to<lst>(x_) : lst(x_);
1256 if (x.nops() == 0) {
1260 return G(x_, y).hold();
1263 s.reserve(x.nops());
1264 bool all_zero = true;
1265 for (lst::const_iterator it = x.begin(); it != x.end(); ++it) {
1266 if (!(*it).info(info_flags::numeric)) {
1267 return G(x_, y).hold();
1272 if ( !ex_to<numeric>(*it).is_real() && ex_to<numeric>(*it).imag() < 0 ) {
1280 return pow(log(y), x.nops()) / factorial(x.nops());
1282 std::vector<cln::cl_N> xv;
1283 xv.reserve(x.nops());
1284 for (lst::const_iterator it = x.begin(); it != x.end(); ++it)
1285 xv.push_back(ex_to<numeric>(*it).to_cl_N());
1286 cln::cl_N result = G_numeric(xv, s, ex_to<numeric>(y).to_cl_N());
1287 return numeric(result);
1291 static ex G2_eval(const ex& x_, const ex& y)
1293 //TODO eval to MZV or H or S or Lin
1295 if ((!y.info(info_flags::numeric)) || (!y.info(info_flags::positive))) {
1296 return G(x_, y).hold();
1298 lst x = is_a<lst>(x_) ? ex_to<lst>(x_) : lst(x_);
1299 if (x.nops() == 0) {
1303 return G(x_, y).hold();
1306 s.reserve(x.nops());
1307 bool all_zero = true;
1308 bool crational = true;
1309 for (lst::const_iterator it = x.begin(); it != x.end(); ++it) {
1310 if (!(*it).info(info_flags::numeric)) {
1311 return G(x_, y).hold();
1313 if (!(*it).info(info_flags::crational)) {
1319 if ( !ex_to<numeric>(*it).is_real() && ex_to<numeric>(*it).imag() < 0 ) {
1327 return pow(log(y), x.nops()) / factorial(x.nops());
1329 if (!y.info(info_flags::crational)) {
1333 return G(x_, y).hold();
1335 std::vector<cln::cl_N> xv;
1336 xv.reserve(x.nops());
1337 for (lst::const_iterator it = x.begin(); it != x.end(); ++it)
1338 xv.push_back(ex_to<numeric>(*it).to_cl_N());
1339 cln::cl_N result = G_numeric(xv, s, ex_to<numeric>(y).to_cl_N());
1340 return numeric(result);
1344 // option do_not_evalf_params() removed.
1345 unsigned G2_SERIAL::serial = function::register_new(function_options("G", 2).
1346 evalf_func(G2_evalf).
1350 // derivative_func(G2_deriv).
1351 // print_func<print_latex>(G2_print_latex).
1354 static ex G3_evalf(const ex& x_, const ex& s_, const ex& y)
1356 if ((!y.info(info_flags::numeric)) || (!y.info(info_flags::positive))) {
1357 return G(x_, s_, y).hold();
1359 lst x = is_a<lst>(x_) ? ex_to<lst>(x_) : lst(x_);
1360 lst s = is_a<lst>(s_) ? ex_to<lst>(s_) : lst(s_);
1361 if (x.nops() != s.nops()) {
1362 return G(x_, s_, y).hold();
1364 if (x.nops() == 0) {
1368 return G(x_, s_, y).hold();
1370 std::vector<int> sn;
1371 sn.reserve(s.nops());
1372 bool all_zero = true;
1373 for (lst::const_iterator itx = x.begin(), its = s.begin(); itx != x.end(); ++itx, ++its) {
1374 if (!(*itx).info(info_flags::numeric)) {
1375 return G(x_, y).hold();
1377 if (!(*its).info(info_flags::real)) {
1378 return G(x_, y).hold();
1383 if ( ex_to<numeric>(*itx).is_real() ) {
1384 if ( ex_to<numeric>(*itx).is_positive() ) {
1396 if ( ex_to<numeric>(*itx).imag() > 0 ) {
1405 return pow(log(y), x.nops()) / factorial(x.nops());
1407 std::vector<cln::cl_N> xn;
1408 xn.reserve(x.nops());
1409 for (lst::const_iterator it = x.begin(); it != x.end(); ++it)
1410 xn.push_back(ex_to<numeric>(*it).to_cl_N());
1411 cln::cl_N result = G_numeric(xn, sn, ex_to<numeric>(y).to_cl_N());
1412 return numeric(result);
1416 static ex G3_eval(const ex& x_, const ex& s_, const ex& y)
1418 //TODO eval to MZV or H or S or Lin
1420 if ((!y.info(info_flags::numeric)) || (!y.info(info_flags::positive))) {
1421 return G(x_, s_, y).hold();
1423 lst x = is_a<lst>(x_) ? ex_to<lst>(x_) : lst(x_);
1424 lst s = is_a<lst>(s_) ? ex_to<lst>(s_) : lst(s_);
1425 if (x.nops() != s.nops()) {
1426 return G(x_, s_, y).hold();
1428 if (x.nops() == 0) {
1432 return G(x_, s_, y).hold();
1434 std::vector<int> sn;
1435 sn.reserve(s.nops());
1436 bool all_zero = true;
1437 bool crational = true;
1438 for (lst::const_iterator itx = x.begin(), its = s.begin(); itx != x.end(); ++itx, ++its) {
1439 if (!(*itx).info(info_flags::numeric)) {
1440 return G(x_, s_, y).hold();
1442 if (!(*its).info(info_flags::real)) {
1443 return G(x_, s_, y).hold();
1445 if (!(*itx).info(info_flags::crational)) {
1451 if ( ex_to<numeric>(*itx).is_real() ) {
1452 if ( ex_to<numeric>(*itx).is_positive() ) {
1464 if ( ex_to<numeric>(*itx).imag() > 0 ) {
1473 return pow(log(y), x.nops()) / factorial(x.nops());
1475 if (!y.info(info_flags::crational)) {
1479 return G(x_, s_, y).hold();
1481 std::vector<cln::cl_N> xn;
1482 xn.reserve(x.nops());
1483 for (lst::const_iterator it = x.begin(); it != x.end(); ++it)
1484 xn.push_back(ex_to<numeric>(*it).to_cl_N());
1485 cln::cl_N result = G_numeric(xn, sn, ex_to<numeric>(y).to_cl_N());
1486 return numeric(result);
1490 // option do_not_evalf_params() removed.
1491 // This is safe: in the code above it only matters if s_ > 0 or s_ < 0,
1492 // s_ is allowed to be of floating type.
1493 unsigned G3_SERIAL::serial = function::register_new(function_options("G", 3).
1494 evalf_func(G3_evalf).
1498 // derivative_func(G3_deriv).
1499 // print_func<print_latex>(G3_print_latex).
1502 //////////////////////////////////////////////////////////////////////
1504 // Classical polylogarithm and multiple polylogarithm Li(m,x)
1508 //////////////////////////////////////////////////////////////////////
1511 static ex Li_evalf(const ex& m_, const ex& x_)
1513 // classical polylogs
1514 if (m_.info(info_flags::posint)) {
1515 if (x_.info(info_flags::numeric)) {
1516 int m__ = ex_to<numeric>(m_).to_int();
1517 const cln::cl_N x__ = ex_to<numeric>(x_).to_cl_N();
1518 const cln::cl_N result = Lin_numeric(m__, x__);
1519 return numeric(result);
1521 // try to numerically evaluate second argument
1522 ex x_val = x_.evalf();
1523 if (x_val.info(info_flags::numeric)) {
1524 int m__ = ex_to<numeric>(m_).to_int();
1525 const cln::cl_N x__ = ex_to<numeric>(x_val).to_cl_N();
1526 const cln::cl_N result = Lin_numeric(m__, x__);
1527 return numeric(result);
1531 // multiple polylogs
1532 if (is_a<lst>(m_) && is_a<lst>(x_)) {
1534 const lst& m = ex_to<lst>(m_);
1535 const lst& x = ex_to<lst>(x_);
1536 if (m.nops() != x.nops()) {
1537 return Li(m_,x_).hold();
1539 if (x.nops() == 0) {
1542 if ((m.op(0) == _ex1) && (x.op(0) == _ex1)) {
1543 return Li(m_,x_).hold();
1546 for (lst::const_iterator itm = m.begin(), itx = x.begin(); itm != m.end(); ++itm, ++itx) {
1547 if (!(*itm).info(info_flags::posint)) {
1548 return Li(m_, x_).hold();
1550 if (!(*itx).info(info_flags::numeric)) {
1551 return Li(m_, x_).hold();
1558 return mLi_numeric(m, x);
1561 return Li(m_,x_).hold();
1565 static ex Li_eval(const ex& m_, const ex& x_)
1567 if (is_a<lst>(m_)) {
1568 if (is_a<lst>(x_)) {
1569 // multiple polylogs
1570 const lst& m = ex_to<lst>(m_);
1571 const lst& x = ex_to<lst>(x_);
1572 if (m.nops() != x.nops()) {
1573 return Li(m_,x_).hold();
1575 if (x.nops() == 0) {
1579 bool is_zeta = true;
1580 bool do_evalf = true;
1581 bool crational = true;
1582 for (lst::const_iterator itm = m.begin(), itx = x.begin(); itm != m.end(); ++itm, ++itx) {
1583 if (!(*itm).info(info_flags::posint)) {
1584 return Li(m_,x_).hold();
1586 if ((*itx != _ex1) && (*itx != _ex_1)) {
1587 if (itx != x.begin()) {
1595 if (!(*itx).info(info_flags::numeric)) {
1598 if (!(*itx).info(info_flags::crational)) {
1604 for (lst::const_iterator itx = x.begin(); itx != x.end(); ++itx) {
1605 GINAC_ASSERT((*itx == _ex1) || (*itx == _ex_1));
1606 // XXX: 1 + 0.0*I is considered equal to 1. However
1607 // the former is a not automatically converted
1608 // to a real number. Do the conversion explicitly
1609 // to avoid the "numeric::operator>(): complex inequality"
1610 // exception (and similar problems).
1611 newx.append(*itx != _ex_1 ? _ex1 : _ex_1);
1613 return zeta(m_, newx);
1617 lst newm = convert_parameter_Li_to_H(m, x, prefactor);
1618 return prefactor * H(newm, x[0]);
1620 if (do_evalf && !crational) {
1621 return mLi_numeric(m,x);
1624 return Li(m_, x_).hold();
1625 } else if (is_a<lst>(x_)) {
1626 return Li(m_, x_).hold();
1629 // classical polylogs
1637 return (pow(2,1-m_)-1) * zeta(m_);
1643 if (x_.is_equal(I)) {
1644 return power(Pi,_ex2)/_ex_48 + Catalan*I;
1646 if (x_.is_equal(-I)) {
1647 return power(Pi,_ex2)/_ex_48 - Catalan*I;
1650 if (m_.info(info_flags::posint) && x_.info(info_flags::numeric) && !x_.info(info_flags::crational)) {
1651 int m__ = ex_to<numeric>(m_).to_int();
1652 const cln::cl_N x__ = ex_to<numeric>(x_).to_cl_N();
1653 const cln::cl_N result = Lin_numeric(m__, x__);
1654 return numeric(result);
1657 return Li(m_, x_).hold();
1661 static ex Li_series(const ex& m, const ex& x, const relational& rel, int order, unsigned options)
1663 if (is_a<lst>(m) || is_a<lst>(x)) {
1665 epvector seq { expair(Li(m, x), 0) };
1666 return pseries(rel, std::move(seq));
1669 // classical polylog
1670 const ex x_pt = x.subs(rel, subs_options::no_pattern);
1671 if (m.info(info_flags::numeric) && x_pt.info(info_flags::numeric)) {
1672 // First special case: x==0 (derivatives have poles)
1673 if (x_pt.is_zero()) {
1676 // manually construct the primitive expansion
1677 for (int i=1; i<order; ++i)
1678 ser += pow(s,i) / pow(numeric(i), m);
1679 // substitute the argument's series expansion
1680 ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
1681 // maybe that was terminating, so add a proper order term
1682 epvector nseq { expair(Order(_ex1), order) };
1683 ser += pseries(rel, std::move(nseq));
1684 // reexpanding it will collapse the series again
1685 return ser.series(rel, order);
1687 // TODO special cases: x==1 (branch point) and x real, >=1 (branch cut)
1688 throw std::runtime_error("Li_series: don't know how to do the series expansion at this point!");
1690 // all other cases should be safe, by now:
1691 throw do_taylor(); // caught by function::series()
1695 static ex Li_deriv(const ex& m_, const ex& x_, unsigned deriv_param)
1697 GINAC_ASSERT(deriv_param < 2);
1698 if (deriv_param == 0) {
1701 if (m_.nops() > 1) {
1702 throw std::runtime_error("don't know how to derivate multiple polylogarithm!");
1705 if (is_a<lst>(m_)) {
1711 if (is_a<lst>(x_)) {
1717 return Li(m-1, x) / x;
1724 static void Li_print_latex(const ex& m_, const ex& x_, const print_context& c)
1727 if (is_a<lst>(m_)) {
1733 if (is_a<lst>(x_)) {
1738 c.s << "\\mathrm{Li}_{";
1739 lst::const_iterator itm = m.begin();
1742 for (; itm != m.end(); itm++) {
1747 lst::const_iterator itx = x.begin();
1750 for (; itx != x.end(); itx++) {
1758 REGISTER_FUNCTION(Li,
1759 evalf_func(Li_evalf).
1761 series_func(Li_series).
1762 derivative_func(Li_deriv).
1763 print_func<print_latex>(Li_print_latex).
1764 do_not_evalf_params());
1767 //////////////////////////////////////////////////////////////////////
1769 // Nielsen's generalized polylogarithm S(n,p,x)
1773 //////////////////////////////////////////////////////////////////////
1776 // anonymous namespace for helper functions
1780 // lookup table for special Euler-Zagier-Sums (used for S_n,p(x))
1782 std::vector<std::vector<cln::cl_N>> Yn;
1783 int ynsize = 0; // number of Yn[]
1784 int ynlength = 100; // initial length of all Yn[i]
1787 // This function calculates the Y_n. The Y_n are needed for the evaluation of S_{n,p}(x).
1788 // The Y_n are basically Euler-Zagier sums with all m_i=1. They are subsums in the Z-sum
1789 // representing S_{n,p}(x).
1790 // The first index in Y_n corresponds to the parameter p minus one, i.e. the depth of the
1791 // equivalent Z-sum.
1792 // The second index in Y_n corresponds to the running index of the outermost sum in the full Z-sum
1793 // representing S_{n,p}(x).
1794 // The calculation of Y_n uses the values from Y_{n-1}.
1795 void fill_Yn(int n, const cln::float_format_t& prec)
1797 const int initsize = ynlength;
1798 //const int initsize = initsize_Yn;
1799 cln::cl_N one = cln::cl_float(1, prec);
1802 std::vector<cln::cl_N> buf(initsize);
1803 std::vector<cln::cl_N>::iterator it = buf.begin();
1804 std::vector<cln::cl_N>::iterator itprev = Yn[n-1].begin();
1805 *it = (*itprev) / cln::cl_N(n+1) * one;
1808 // sums with an index smaller than the depth are zero and need not to be calculated.
1809 // calculation starts with depth, which is n+2)
1810 for (int i=n+2; i<=initsize+n; i++) {
1811 *it = *(it-1) + (*itprev) / cln::cl_N(i) * one;
1817 std::vector<cln::cl_N> buf(initsize);
1818 std::vector<cln::cl_N>::iterator it = buf.begin();
1821 for (int i=2; i<=initsize; i++) {
1822 *it = *(it-1) + 1 / cln::cl_N(i) * one;
1831 // make Yn longer ...
1832 void make_Yn_longer(int newsize, const cln::float_format_t& prec)
1835 cln::cl_N one = cln::cl_float(1, prec);
1837 Yn[0].resize(newsize);
1838 std::vector<cln::cl_N>::iterator it = Yn[0].begin();
1840 for (int i=ynlength+1; i<=newsize; i++) {
1841 *it = *(it-1) + 1 / cln::cl_N(i) * one;
1845 for (int n=1; n<ynsize; n++) {
1846 Yn[n].resize(newsize);
1847 std::vector<cln::cl_N>::iterator it = Yn[n].begin();
1848 std::vector<cln::cl_N>::iterator itprev = Yn[n-1].begin();
1851 for (int i=ynlength+n+1; i<=newsize+n; i++) {
1852 *it = *(it-1) + (*itprev) / cln::cl_N(i) * one;
1862 // helper function for S(n,p,x)
1864 cln::cl_N C(int n, int p)
1868 for (int k=0; k<p; k++) {
1869 for (int j=0; j<=(n+k-1)/2; j++) {
1873 result = result - 2 * cln::expt(cln::pi(),2*j) * S_num(n-2*j,p,1) / cln::factorial(2*j);
1876 result = result + 2 * cln::expt(cln::pi(),2*j) * S_num(n-2*j,p,1) / cln::factorial(2*j);
1883 result = result + cln::factorial(n+k-1)
1884 * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1)
1885 / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
1888 result = result - cln::factorial(n+k-1)
1889 * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1)
1890 / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
1895 result = result - cln::factorial(n+k-1) * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1)
1896 / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
1899 result = result + cln::factorial(n+k-1)
1900 * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1)
1901 / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
1909 if (((np)/2+n) & 1) {
1910 result = -result - cln::expt(cln::pi(),np) / (np * cln::factorial(n-1) * cln::factorial(p));
1913 result = -result + cln::expt(cln::pi(),np) / (np * cln::factorial(n-1) * cln::factorial(p));
1921 // helper function for S(n,p,x)
1922 // [Kol] remark to (9.1)
1923 cln::cl_N a_k(int k)
1932 for (int m=2; m<=k; m++) {
1933 result = result + cln::expt(cln::cl_N(-1),m) * cln::zeta(m) * a_k(k-m);
1940 // helper function for S(n,p,x)
1941 // [Kol] remark to (9.1)
1942 cln::cl_N b_k(int k)
1951 for (int m=2; m<=k; m++) {
1952 result = result + cln::expt(cln::cl_N(-1),m) * cln::zeta(m) * b_k(k-m);
1959 // helper function for S(n,p,x)
1960 cln::cl_N S_do_sum(int n, int p, const cln::cl_N& x, const cln::float_format_t& prec)
1962 static cln::float_format_t oldprec = cln::default_float_format;
1965 return Li_projection(n+1, x, prec);
1968 // precision has changed, we need to clear lookup table Yn
1969 if ( oldprec != prec ) {
1976 // check if precalculated values are sufficient
1978 for (int i=ynsize; i<p-1; i++) {
1983 // should be done otherwise
1984 cln::cl_F one = cln::cl_float(1, cln::float_format(Digits));
1985 cln::cl_N xf = x * one;
1986 //cln::cl_N xf = x * cln::cl_float(1, prec);
1990 cln::cl_N factor = cln::expt(xf, p);
1994 if (i-p >= ynlength) {
1996 make_Yn_longer(ynlength*2, prec);
1998 res = res + factor / cln::expt(cln::cl_I(i),n+1) * Yn[p-2][i-p]; // should we check it? or rely on magic number? ...
1999 //res = res + factor / cln::expt(cln::cl_I(i),n+1) * (*it); // should we check it? or rely on magic number? ...
2000 factor = factor * xf;
2002 } while (res != resbuf);
2008 // helper function for S(n,p,x)
2009 cln::cl_N S_projection(int n, int p, const cln::cl_N& x, const cln::float_format_t& prec)
2012 if (cln::abs(cln::realpart(x)) > cln::cl_F("0.5")) {
2014 cln::cl_N result = cln::expt(cln::cl_I(-1),p) * cln::expt(cln::log(x),n)
2015 * cln::expt(cln::log(1-x),p) / cln::factorial(n) / cln::factorial(p);
2017 for (int s=0; s<n; s++) {
2019 for (int r=0; r<p; r++) {
2020 res2 = res2 + cln::expt(cln::cl_I(-1),r) * cln::expt(cln::log(1-x),r)
2021 * S_do_sum(p-r,n-s,1-x,prec) / cln::factorial(r);
2023 result = result + cln::expt(cln::log(x),s) * (S_num(n-s,p,1) - res2) / cln::factorial(s);
2029 return S_do_sum(n, p, x, prec);
2033 // helper function for S(n,p,x)
2034 const cln::cl_N S_num(int n, int p, const cln::cl_N& x)
2038 // [Kol] (2.22) with (2.21)
2039 return cln::zeta(p+1);
2044 return cln::zeta(n+1);
2049 for (int nu=0; nu<n; nu++) {
2050 for (int rho=0; rho<=p; rho++) {
2051 result = result + b_k(n-nu-1) * b_k(p-rho) * a_k(nu+rho+1)
2052 * cln::factorial(nu+rho+1) / cln::factorial(rho) / cln::factorial(nu+1);
2055 result = result * cln::expt(cln::cl_I(-1),n+p-1);
2062 return -(1-cln::expt(cln::cl_I(2),-n)) * cln::zeta(n+1);
2064 // throw std::runtime_error("don't know how to evaluate this function!");
2067 // what is the desired float format?
2068 // first guess: default format
2069 cln::float_format_t prec = cln::default_float_format;
2070 const cln::cl_N value = x;
2071 // second guess: the argument's format
2072 if (!instanceof(realpart(value), cln::cl_RA_ring))
2073 prec = cln::float_format(cln::the<cln::cl_F>(cln::realpart(value)));
2074 else if (!instanceof(imagpart(value), cln::cl_RA_ring))
2075 prec = cln::float_format(cln::the<cln::cl_F>(cln::imagpart(value)));
2078 // the condition abs(1-value)>1 avoids an infinite recursion in the region abs(value)<=1 && abs(value)>0.95 && abs(1-value)<=1 && abs(1-value)>0.95
2079 // we don't care here about abs(value)<1 && real(value)>0.5, this will be taken care of in S_projection
2080 if ((cln::realpart(value) < -0.5) || (n == 0) || ((cln::abs(value) <= 1) && (cln::abs(value) > 0.95) && (cln::abs(1-value) > 1) )) {
2082 cln::cl_N result = cln::expt(cln::cl_I(-1),p) * cln::expt(cln::log(value),n)
2083 * cln::expt(cln::log(1-value),p) / cln::factorial(n) / cln::factorial(p);
2085 for (int s=0; s<n; s++) {
2087 for (int r=0; r<p; r++) {
2088 res2 = res2 + cln::expt(cln::cl_I(-1),r) * cln::expt(cln::log(1-value),r)
2089 * S_num(p-r,n-s,1-value) / cln::factorial(r);
2091 result = result + cln::expt(cln::log(value),s) * (S_num(n-s,p,1) - res2) / cln::factorial(s);
2098 if (cln::abs(value) > 1) {
2102 for (int s=0; s<p; s++) {
2103 for (int r=0; r<=s; r++) {
2104 result = result + cln::expt(cln::cl_I(-1),s) * cln::expt(cln::log(-value),r) * cln::factorial(n+s-r-1)
2105 / cln::factorial(r) / cln::factorial(s-r) / cln::factorial(n-1)
2106 * S_num(n+s-r,p-s,cln::recip(value));
2109 result = result * cln::expt(cln::cl_I(-1),n);
2112 for (int r=0; r<n; r++) {
2113 res2 = res2 + cln::expt(cln::log(-value),r) * C(n-r,p) / cln::factorial(r);
2115 res2 = res2 + cln::expt(cln::log(-value),n+p) / cln::factorial(n+p);
2117 result = result + cln::expt(cln::cl_I(-1),p) * res2;
2122 if ((cln::abs(value) > 0.95) && (cln::abs(value-9.53) < 9.47)) {
2125 for (int s=0; s<p-1; s++)
2128 ex res = H(m,numeric(value)).evalf();
2129 return ex_to<numeric>(res).to_cl_N();
2132 return S_projection(n, p, value, prec);
2137 } // end of anonymous namespace
2140 //////////////////////////////////////////////////////////////////////
2142 // Nielsen's generalized polylogarithm S(n,p,x)
2146 //////////////////////////////////////////////////////////////////////
2149 static ex S_evalf(const ex& n, const ex& p, const ex& x)
2151 if (n.info(info_flags::posint) && p.info(info_flags::posint)) {
2152 const int n_ = ex_to<numeric>(n).to_int();
2153 const int p_ = ex_to<numeric>(p).to_int();
2154 if (is_a<numeric>(x)) {
2155 const cln::cl_N x_ = ex_to<numeric>(x).to_cl_N();
2156 const cln::cl_N result = S_num(n_, p_, x_);
2157 return numeric(result);
2159 ex x_val = x.evalf();
2160 if (is_a<numeric>(x_val)) {
2161 const cln::cl_N x_val_ = ex_to<numeric>(x_val).to_cl_N();
2162 const cln::cl_N result = S_num(n_, p_, x_val_);
2163 return numeric(result);
2167 return S(n, p, x).hold();
2171 static ex S_eval(const ex& n, const ex& p, const ex& x)
2173 if (n.info(info_flags::posint) && p.info(info_flags::posint)) {
2179 for (int i=ex_to<numeric>(p).to_int()-1; i>0; i--) {
2187 if (x.info(info_flags::numeric) && (!x.info(info_flags::crational))) {
2188 int n_ = ex_to<numeric>(n).to_int();
2189 int p_ = ex_to<numeric>(p).to_int();
2190 const cln::cl_N x_ = ex_to<numeric>(x).to_cl_N();
2191 const cln::cl_N result = S_num(n_, p_, x_);
2192 return numeric(result);
2197 return pow(-log(1-x), p) / factorial(p);
2199 return S(n, p, x).hold();
2203 static ex S_series(const ex& n, const ex& p, const ex& x, const relational& rel, int order, unsigned options)
2206 return Li(n+1, x).series(rel, order, options);
2209 const ex x_pt = x.subs(rel, subs_options::no_pattern);
2210 if (n.info(info_flags::posint) && p.info(info_flags::posint) && x_pt.info(info_flags::numeric)) {
2211 // First special case: x==0 (derivatives have poles)
2212 if (x_pt.is_zero()) {
2215 // manually construct the primitive expansion
2216 // subsum = Euler-Zagier-Sum is needed
2217 // dirty hack (slow ...) calculation of subsum:
2218 std::vector<ex> presubsum, subsum;
2219 subsum.push_back(0);
2220 for (int i=1; i<order-1; ++i) {
2221 subsum.push_back(subsum[i-1] + numeric(1, i));
2223 for (int depth=2; depth<p; ++depth) {
2225 for (int i=1; i<order-1; ++i) {
2226 subsum[i] = subsum[i-1] + numeric(1, i) * presubsum[i-1];
2230 for (int i=1; i<order; ++i) {
2231 ser += pow(s,i) / pow(numeric(i), n+1) * subsum[i-1];
2233 // substitute the argument's series expansion
2234 ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
2235 // maybe that was terminating, so add a proper order term
2236 epvector nseq { expair(Order(_ex1), order) };
2237 ser += pseries(rel, std::move(nseq));
2238 // reexpanding it will collapse the series again
2239 return ser.series(rel, order);
2241 // TODO special cases: x==1 (branch point) and x real, >=1 (branch cut)
2242 throw std::runtime_error("S_series: don't know how to do the series expansion at this point!");
2244 // all other cases should be safe, by now:
2245 throw do_taylor(); // caught by function::series()
2249 static ex S_deriv(const ex& n, const ex& p, const ex& x, unsigned deriv_param)
2251 GINAC_ASSERT(deriv_param < 3);
2252 if (deriv_param < 2) {
2256 return S(n-1, p, x) / x;
2258 return S(n, p-1, x) / (1-x);
2263 static void S_print_latex(const ex& n, const ex& p, const ex& x, const print_context& c)
2265 c.s << "\\mathrm{S}_{";
2275 REGISTER_FUNCTION(S,
2276 evalf_func(S_evalf).
2278 series_func(S_series).
2279 derivative_func(S_deriv).
2280 print_func<print_latex>(S_print_latex).
2281 do_not_evalf_params());
2284 //////////////////////////////////////////////////////////////////////
2286 // Harmonic polylogarithm H(m,x)
2290 //////////////////////////////////////////////////////////////////////
2293 // anonymous namespace for helper functions
2297 // regulates the pole (used by 1/x-transformation)
2298 symbol H_polesign("IMSIGN");
2301 // convert parameters from H to Li representation
2302 // parameters are expected to be in expanded form, i.e. only 0, 1 and -1
2303 // returns true if some parameters are negative
2304 bool convert_parameter_H_to_Li(const lst& l, lst& m, lst& s, ex& pf)
2306 // expand parameter list
2308 for (lst::const_iterator it = l.begin(); it != l.end(); it++) {
2310 for (ex count=*it-1; count > 0; count--) {
2314 } else if (*it < -1) {
2315 for (ex count=*it+1; count < 0; count++) {
2326 bool has_negative_parameters = false;
2328 for (lst::const_iterator it = mexp.begin(); it != mexp.end(); it++) {
2334 m.append((*it+acc-1) * signum);
2336 m.append((*it-acc+1) * signum);
2342 has_negative_parameters = true;
2345 if (has_negative_parameters) {
2346 for (std::size_t i=0; i<m.nops(); i++) {
2348 m.let_op(i) = -m.op(i);
2356 return has_negative_parameters;
2360 // recursivly transforms H to corresponding multiple polylogarithms
2361 struct map_trafo_H_convert_to_Li : public map_function
2363 ex operator()(const ex& e)
2365 if (is_a<add>(e) || is_a<mul>(e)) {
2366 return e.map(*this);
2368 if (is_a<function>(e)) {
2369 std::string name = ex_to<function>(e).get_name();
2372 if (is_a<lst>(e.op(0))) {
2373 parameter = ex_to<lst>(e.op(0));
2375 parameter = lst(e.op(0));
2382 if (convert_parameter_H_to_Li(parameter, m, s, pf)) {
2383 s.let_op(0) = s.op(0) * arg;
2384 return pf * Li(m, s).hold();
2386 for (std::size_t i=0; i<m.nops(); i++) {
2389 s.let_op(0) = s.op(0) * arg;
2390 return Li(m, s).hold();
2399 // recursivly transforms H to corresponding zetas
2400 struct map_trafo_H_convert_to_zeta : public map_function
2402 ex operator()(const ex& e)
2404 if (is_a<add>(e) || is_a<mul>(e)) {
2405 return e.map(*this);
2407 if (is_a<function>(e)) {
2408 std::string name = ex_to<function>(e).get_name();
2411 if (is_a<lst>(e.op(0))) {
2412 parameter = ex_to<lst>(e.op(0));
2414 parameter = lst(e.op(0));
2420 if (convert_parameter_H_to_Li(parameter, m, s, pf)) {
2421 return pf * zeta(m, s);
2432 // remove trailing zeros from H-parameters
2433 struct map_trafo_H_reduce_trailing_zeros : public map_function
2435 ex operator()(const ex& e)
2437 if (is_a<add>(e) || is_a<mul>(e)) {
2438 return e.map(*this);
2440 if (is_a<function>(e)) {
2441 std::string name = ex_to<function>(e).get_name();
2444 if (is_a<lst>(e.op(0))) {
2445 parameter = ex_to<lst>(e.op(0));
2447 parameter = lst(e.op(0));
2450 if (parameter.op(parameter.nops()-1) == 0) {
2453 if (parameter.nops() == 1) {
2458 lst::const_iterator it = parameter.begin();
2459 while ((it != parameter.end()) && (*it == 0)) {
2462 if (it == parameter.end()) {
2463 return pow(log(arg),parameter.nops()) / factorial(parameter.nops());
2467 parameter.remove_last();
2468 std::size_t lastentry = parameter.nops();
2469 while ((lastentry > 0) && (parameter[lastentry-1] == 0)) {
2474 ex result = log(arg) * H(parameter,arg).hold();
2476 for (ex i=0; i<lastentry; i++) {
2477 if (parameter[i] > 0) {
2479 result -= (acc + parameter[i]-1) * H(parameter, arg).hold();
2482 } else if (parameter[i] < 0) {
2484 result -= (acc + abs(parameter[i]+1)) * H(parameter, arg).hold();
2492 if (lastentry < parameter.nops()) {
2493 result = result / (parameter.nops()-lastentry+1);
2494 return result.map(*this);
2506 // returns an expression with zeta functions corresponding to the parameter list for H
2507 ex convert_H_to_zeta(const lst& m)
2509 symbol xtemp("xtemp");
2510 map_trafo_H_reduce_trailing_zeros filter;
2511 map_trafo_H_convert_to_zeta filter2;
2512 return filter2(filter(H(m, xtemp).hold())).subs(xtemp == 1);
2516 // convert signs form Li to H representation
2517 lst convert_parameter_Li_to_H(const lst& m, const lst& x, ex& pf)
2520 lst::const_iterator itm = m.begin();
2521 lst::const_iterator itx = ++x.begin();
2526 while (itx != x.end()) {
2527 GINAC_ASSERT((*itx == _ex1) || (*itx == _ex_1));
2528 // XXX: 1 + 0.0*I is considered equal to 1. However the former
2529 // is not automatically converted to a real number.
2530 // Do the conversion explicitly to avoid the
2531 // "numeric::operator>(): complex inequality" exception.
2532 signum *= (*itx != _ex_1) ? 1 : -1;
2534 res.append((*itm) * signum);
2542 // multiplies an one-dimensional H with another H
2544 ex trafo_H_mult(const ex& h1, const ex& h2)
2549 ex h1nops = h1.op(0).nops();
2550 ex h2nops = h2.op(0).nops();
2552 hshort = h2.op(0).op(0);
2553 hlong = ex_to<lst>(h1.op(0));
2555 hshort = h1.op(0).op(0);
2557 hlong = ex_to<lst>(h2.op(0));
2559 hlong = h2.op(0).op(0);
2562 for (std::size_t i=0; i<=hlong.nops(); i++) {
2566 newparameter.append(hlong[j]);
2568 newparameter.append(hshort);
2569 for (; j<hlong.nops(); j++) {
2570 newparameter.append(hlong[j]);
2572 res += H(newparameter, h1.op(1)).hold();
2578 // applies trafo_H_mult recursively on expressions
2579 struct map_trafo_H_mult : public map_function
2581 ex operator()(const ex& e)
2584 return e.map(*this);
2592 for (std::size_t pos=0; pos<e.nops(); pos++) {
2593 if (is_a<power>(e.op(pos)) && is_a<function>(e.op(pos).op(0))) {
2594 std::string name = ex_to<function>(e.op(pos).op(0)).get_name();
2596 for (ex i=0; i<e.op(pos).op(1); i++) {
2597 Hlst.append(e.op(pos).op(0));
2601 } else if (is_a<function>(e.op(pos))) {
2602 std::string name = ex_to<function>(e.op(pos)).get_name();
2604 if (e.op(pos).op(0).nops() > 1) {
2607 Hlst.append(e.op(pos));
2612 result *= e.op(pos);
2615 if (Hlst.nops() > 0) {
2616 firstH = Hlst[Hlst.nops()-1];
2623 if (Hlst.nops() > 0) {
2624 ex buffer = trafo_H_mult(firstH, Hlst.op(0));
2626 for (std::size_t i=1; i<Hlst.nops(); i++) {
2627 result *= Hlst.op(i);
2629 result = result.expand();
2630 map_trafo_H_mult recursion;
2631 return recursion(result);
2642 // do integration [ReV] (55)
2643 // put parameter 0 in front of existing parameters
2644 ex trafo_H_1tx_prepend_zero(const ex& e, const ex& arg)
2648 if (is_a<function>(e)) {
2649 name = ex_to<function>(e).get_name();
2654 for (std::size_t i=0; i<e.nops(); i++) {
2655 if (is_a<function>(e.op(i))) {
2656 std::string name = ex_to<function>(e.op(i)).get_name();
2664 lst newparameter = ex_to<lst>(h.op(0));
2665 newparameter.prepend(0);
2666 ex addzeta = convert_H_to_zeta(newparameter);
2667 return e.subs(h == (addzeta-H(newparameter, h.op(1)).hold())).expand();
2669 return e * (-H(lst(ex(0)),1/arg).hold());
2674 // do integration [ReV] (49)
2675 // put parameter 1 in front of existing parameters
2676 ex trafo_H_prepend_one(const ex& e, const ex& arg)
2680 if (is_a<function>(e)) {
2681 name = ex_to<function>(e).get_name();
2686 for (std::size_t i=0; i<e.nops(); i++) {
2687 if (is_a<function>(e.op(i))) {
2688 std::string name = ex_to<function>(e.op(i)).get_name();
2696 lst newparameter = ex_to<lst>(h.op(0));
2697 newparameter.prepend(1);
2698 return e.subs(h == H(newparameter, h.op(1)).hold());
2700 return e * H(lst(ex(1)),1-arg).hold();
2705 // do integration [ReV] (55)
2706 // put parameter -1 in front of existing parameters
2707 ex trafo_H_1tx_prepend_minusone(const ex& e, const ex& arg)
2711 if (is_a<function>(e)) {
2712 name = ex_to<function>(e).get_name();
2717 for (std::size_t i=0; i<e.nops(); i++) {
2718 if (is_a<function>(e.op(i))) {
2719 std::string name = ex_to<function>(e.op(i)).get_name();
2727 lst newparameter = ex_to<lst>(h.op(0));
2728 newparameter.prepend(-1);
2729 ex addzeta = convert_H_to_zeta(newparameter);
2730 return e.subs(h == (addzeta-H(newparameter, h.op(1)).hold())).expand();
2732 ex addzeta = convert_H_to_zeta(lst(ex(-1)));
2733 return (e * (addzeta - H(lst(ex(-1)),1/arg).hold())).expand();
2738 // do integration [ReV] (55)
2739 // put parameter -1 in front of existing parameters
2740 ex trafo_H_1mxt1px_prepend_minusone(const ex& e, const ex& arg)
2744 if (is_a<function>(e)) {
2745 name = ex_to<function>(e).get_name();
2750 for (std::size_t i = 0; i < e.nops(); i++) {
2751 if (is_a<function>(e.op(i))) {
2752 std::string name = ex_to<function>(e.op(i)).get_name();
2760 lst newparameter = ex_to<lst>(h.op(0));
2761 newparameter.prepend(-1);
2762 return e.subs(h == H(newparameter, h.op(1)).hold()).expand();
2764 return (e * H(lst(ex(-1)),(1-arg)/(1+arg)).hold()).expand();
2769 // do integration [ReV] (55)
2770 // put parameter 1 in front of existing parameters
2771 ex trafo_H_1mxt1px_prepend_one(const ex& e, const ex& arg)
2775 if (is_a<function>(e)) {
2776 name = ex_to<function>(e).get_name();
2781 for (std::size_t i = 0; i < e.nops(); i++) {
2782 if (is_a<function>(e.op(i))) {
2783 std::string name = ex_to<function>(e.op(i)).get_name();
2791 lst newparameter = ex_to<lst>(h.op(0));
2792 newparameter.prepend(1);
2793 return e.subs(h == H(newparameter, h.op(1)).hold()).expand();
2795 return (e * H(lst(ex(1)),(1-arg)/(1+arg)).hold()).expand();
2800 // do x -> 1-x transformation
2801 struct map_trafo_H_1mx : public map_function
2803 ex operator()(const ex& e)
2805 if (is_a<add>(e) || is_a<mul>(e)) {
2806 return e.map(*this);
2809 if (is_a<function>(e)) {
2810 std::string name = ex_to<function>(e).get_name();
2813 lst parameter = ex_to<lst>(e.op(0));
2816 // special cases if all parameters are either 0, 1 or -1
2817 bool allthesame = true;
2818 if (parameter.op(0) == 0) {
2819 for (std::size_t i = 1; i < parameter.nops(); i++) {
2820 if (parameter.op(i) != 0) {
2827 for (int i=parameter.nops(); i>0; i--) {
2828 newparameter.append(1);
2830 return pow(-1, parameter.nops()) * H(newparameter, 1-arg).hold();
2832 } else if (parameter.op(0) == -1) {
2833 throw std::runtime_error("map_trafo_H_1mx: cannot handle weights equal -1!");
2835 for (std::size_t i = 1; i < parameter.nops(); i++) {
2836 if (parameter.op(i) != 1) {
2843 for (int i=parameter.nops(); i>0; i--) {
2844 newparameter.append(0);
2846 return pow(-1, parameter.nops()) * H(newparameter, 1-arg).hold();
2850 lst newparameter = parameter;
2851 newparameter.remove_first();
2853 if (parameter.op(0) == 0) {
2856 ex res = convert_H_to_zeta(parameter);
2857 //ex res = convert_from_RV(parameter, 1).subs(H(wild(1),wild(2))==zeta(wild(1)));
2858 map_trafo_H_1mx recursion;
2859 ex buffer = recursion(H(newparameter, arg).hold());
2860 if (is_a<add>(buffer)) {
2861 for (std::size_t i = 0; i < buffer.nops(); i++) {
2862 res -= trafo_H_prepend_one(buffer.op(i), arg);
2865 res -= trafo_H_prepend_one(buffer, arg);
2872 map_trafo_H_1mx recursion;
2873 map_trafo_H_mult unify;
2874 ex res = H(lst(ex(1)), arg).hold() * H(newparameter, arg).hold();
2875 std::size_t firstzero = 0;
2876 while (parameter.op(firstzero) == 1) {
2879 for (std::size_t i = firstzero-1; i < parameter.nops()-1; i++) {
2883 newparameter.append(parameter[j+1]);
2885 newparameter.append(1);
2886 for (; j<parameter.nops()-1; j++) {
2887 newparameter.append(parameter[j+1]);
2889 res -= H(newparameter, arg).hold();
2891 res = recursion(res).expand() / firstzero;
2901 // do x -> 1/x transformation
2902 struct map_trafo_H_1overx : public map_function
2904 ex operator()(const ex& e)
2906 if (is_a<add>(e) || is_a<mul>(e)) {
2907 return e.map(*this);
2910 if (is_a<function>(e)) {
2911 std::string name = ex_to<function>(e).get_name();
2914 lst parameter = ex_to<lst>(e.op(0));
2917 // special cases if all parameters are either 0, 1 or -1
2918 bool allthesame = true;
2919 if (parameter.op(0) == 0) {
2920 for (std::size_t i = 1; i < parameter.nops(); i++) {
2921 if (parameter.op(i) != 0) {
2927 return pow(-1, parameter.nops()) * H(parameter, 1/arg).hold();
2929 } else if (parameter.op(0) == -1) {
2930 for (std::size_t i = 1; i < parameter.nops(); i++) {
2931 if (parameter.op(i) != -1) {
2937 map_trafo_H_mult unify;
2938 return unify((pow(H(lst(ex(-1)),1/arg).hold() - H(lst(ex(0)),1/arg).hold(), parameter.nops())
2939 / factorial(parameter.nops())).expand());
2942 for (std::size_t i = 1; i < parameter.nops(); i++) {
2943 if (parameter.op(i) != 1) {
2949 map_trafo_H_mult unify;
2950 return unify((pow(H(lst(ex(1)),1/arg).hold() + H(lst(ex(0)),1/arg).hold() + H_polesign, parameter.nops())
2951 / factorial(parameter.nops())).expand());
2955 lst newparameter = parameter;
2956 newparameter.remove_first();
2958 if (parameter.op(0) == 0) {
2961 ex res = convert_H_to_zeta(parameter);
2962 map_trafo_H_1overx recursion;
2963 ex buffer = recursion(H(newparameter, arg).hold());
2964 if (is_a<add>(buffer)) {
2965 for (std::size_t i = 0; i < buffer.nops(); i++) {
2966 res += trafo_H_1tx_prepend_zero(buffer.op(i), arg);
2969 res += trafo_H_1tx_prepend_zero(buffer, arg);
2973 } else if (parameter.op(0) == -1) {
2975 // leading negative one
2976 ex res = convert_H_to_zeta(parameter);
2977 map_trafo_H_1overx recursion;
2978 ex buffer = recursion(H(newparameter, arg).hold());
2979 if (is_a<add>(buffer)) {
2980 for (std::size_t i = 0; i < buffer.nops(); i++) {