]> www.ginac.de Git - ginac.git/commitdiff
 author Richard Kreckel Fri, 2 Feb 2001 21:39:19 +0000 (21:39 +0000) committer Richard Kreckel Fri, 2 Feb 2001 21:39:19 +0000 (21:39 +0000)

index 390f84f1a0472d25d82116f95a48d46e92e12921..c7dbfbe6b0508240d0666b1770c18f782568ab0c 100644 (file)
@@ -447,6 +447,7 @@ static ex tan_series(const ex &x,
int order,
unsigned options)
{
int order,
unsigned options)
{
+       GINAC_ASSERT(is_ex_exactly_of_type(rel.lhs(),symbol));
// method:
// Taylor series where there is no pole falls back to tan_deriv.
// On a pole simply expand sin(x)/cos(x).
// method:
// Taylor series where there is no pole falls back to tan_deriv.
// On a pole simply expand sin(x)/cos(x).
@@ -454,7 +455,7 @@ static ex tan_series(const ex &x,
if (!(2*x_pt/Pi).info(info_flags::odd))
throw do_taylor();  // caught by function::series()
// if we got here we have to care for a simple pole
if (!(2*x_pt/Pi).info(info_flags::odd))
throw do_taylor();  // caught by function::series()
// if we got here we have to care for a simple pole
-       return (sin(x)/cos(x)).series(rel, order+2);
+       return (sin(x)/cos(x)).series(rel, order+2, options);
}

REGISTER_FUNCTION(tan, eval_func(tan_eval).
}

REGISTER_FUNCTION(tan, eval_func(tan_eval).
@@ -607,9 +608,34 @@ static ex atan_deriv(const ex & x, unsigned deriv_param)
return power(_ex1()+power(x,_ex2()), _ex_1());
}

return power(_ex1()+power(x,_ex2()), _ex_1());
}

+static ex atan_series(const ex &x,
+                      const relational &rel,
+                      int order,
+                      unsigned options)
+{
+       GINAC_ASSERT(is_ex_exactly_of_type(rel.lhs(),symbol));
+       // method:
+       // Taylor series where there is no pole or cut falls back to atan_deriv.
+       // There are two branch cuts, one runnig from I up the imaginary axis and
+       // one running from -I down the imaginary axis.  The points I and -I are
+       // poles.
+       // On the branch cuts and the poles series expand
+       //     log((1+I*x)/(1-I*x))/(2*I)
+       // (The constant term on the cut itself could be made simpler.)
+       const ex x_pt = x.subs(rel);
+       if (!(I*x_pt).info(info_flags::real))
+               throw do_taylor();     // Re(x) != 0
+       if ((I*x_pt).info(info_flags::real) && abs(I*x_pt)<_ex1())
+               throw do_taylor();     // Re(x) == 0, but abs(x)<1
+       // if we got here we have to care for cuts and poles
+       return (log((1+I*x)/(1-I*x))/(2*I)).series(rel, order, options);
+}
+
REGISTER_FUNCTION(atan, eval_func(atan_eval).
evalf_func(atan_evalf).
REGISTER_FUNCTION(atan, eval_func(atan_eval).
evalf_func(atan_evalf).
-                        derivative_func(atan_deriv));
+                        derivative_func(atan_deriv).
+                        series_func(atan_series));

//////////
// inverse tangent (atan2(y,x))

//////////
// inverse tangent (atan2(y,x))
@@ -815,6 +841,7 @@ static ex tanh_series(const ex &x,
int order,
unsigned options)
{
int order,
unsigned options)
{
+       GINAC_ASSERT(is_ex_exactly_of_type(rel.lhs(),symbol));
// method:
// Taylor series where there is no pole falls back to tanh_deriv.
// On a pole simply expand sinh(x)/cosh(x).
// method:
// Taylor series where there is no pole falls back to tanh_deriv.
// On a pole simply expand sinh(x)/cosh(x).
@@ -822,7 +849,7 @@ static ex tanh_series(const ex &x,
if (!(2*I*x_pt/Pi).info(info_flags::odd))
throw do_taylor();  // caught by function::series()
// if we got here we have to care for a simple pole
if (!(2*I*x_pt/Pi).info(info_flags::odd))
throw do_taylor();  // caught by function::series()
// if we got here we have to care for a simple pole
-       return (sinh(x)/cosh(x)).series(rel, order+2);
+       return (sinh(x)/cosh(x)).series(rel, order+2, options);
}

REGISTER_FUNCTION(tanh, eval_func(tanh_eval).
}

REGISTER_FUNCTION(tanh, eval_func(tanh_eval).
@@ -952,9 +979,34 @@ static ex atanh_deriv(const ex & x, unsigned deriv_param)
return power(_ex1()-power(x,_ex2()),_ex_1());
}

return power(_ex1()-power(x,_ex2()),_ex_1());
}

+static ex atanh_series(const ex &x,
+                       const relational &rel,
+                       int order,
+                       unsigned options)
+{
+       GINAC_ASSERT(is_ex_exactly_of_type(rel.lhs(),symbol));
+       // method:
+       // Taylor series where there is no pole or cut falls back to atan_deriv.
+       // There are two branch cuts, one runnig from 1 up the real axis and one
+       // one running from -1 down the real axis.  The points 1 and -1 are poles
+       // On the branch cuts and the poles series expand
+       //     log((1+x)/(1-x))/(2*I)
+       // (The constant term on the cut itself could be made simpler.)
+       const ex x_pt = x.subs(rel);
+       if (!(x_pt).info(info_flags::real))
+               throw do_taylor();     // Im(x) != 0
+       if ((x_pt).info(info_flags::real) && abs(x_pt)<_ex1())
+               throw do_taylor();     // Im(x) == 0, but abs(x)<1
+       // if we got here we have to care for cuts and poles
+       return (log((1+x)/(1-x))/2).series(rel, order, options);
+}
+
REGISTER_FUNCTION(atanh, eval_func(atanh_eval).
evalf_func(atanh_evalf).
REGISTER_FUNCTION(atanh, eval_func(atanh_eval).
evalf_func(atanh_evalf).
-                         derivative_func(atanh_deriv));
+                         derivative_func(atanh_deriv).
+                         series_func(atanh_series));
+

#ifndef NO_NAMESPACE_GINAC
} // namespace GiNaC

#ifndef NO_NAMESPACE_GINAC
} // namespace GiNaC