]> www.ginac.de Git - ginac.git/blob - ginac/pseries.cpp
7264d933c068bb03a9b3659a318218e43cbb510c
[ginac.git] / ginac / pseries.cpp
1 /** @file pseries.cpp
2  *
3  *  Implementation of class for extended truncated power series and
4  *  methods for series expansion. */
5
6 /*
7  *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; either version 2 of the License, or
12  *  (at your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  */
23
24 #include <stdexcept>
25
26 #include "pseries.h"
27 #include "add.h"
28 #include "inifcns.h"
29 #include "lst.h"
30 #include "mul.h"
31 #include "power.h"
32 #include "relational.h"
33 #include "symbol.h"
34 #include "archive.h"
35 #include "utils.h"
36 #include "debugmsg.h"
37
38 namespace GiNaC {
39
40 GINAC_IMPLEMENT_REGISTERED_CLASS(pseries, basic)
41
42
43 /*
44  *  Default ctor, dtor, copy ctor, assignment operator and helpers
45  */
46
47 pseries::pseries() : basic(TINFO_pseries)
48 {
49         debugmsg("pseries default ctor", LOGLEVEL_CONSTRUCT);
50 }
51
52 void pseries::copy(const pseries &other)
53 {
54         inherited::copy(other);
55         seq = other.seq;
56         var = other.var;
57         point = other.point;
58 }
59
60 DEFAULT_DESTROY(pseries)
61
62
63 /*
64  *  Other ctors
65  */
66
67 /** Construct pseries from a vector of coefficients and powers.
68  *  expair.rest holds the coefficient, expair.coeff holds the power.
69  *  The powers must be integers (positive or negative) and in ascending order;
70  *  the last coefficient can be Order(_ex1()) to represent a truncated,
71  *  non-terminating series.
72  *
73  *  @param rel_  expansion variable and point (must hold a relational)
74  *  @param ops_  vector of {coefficient, power} pairs (coefficient must not be zero)
75  *  @return newly constructed pseries */
76 pseries::pseries(const ex &rel_, const epvector &ops_) : basic(TINFO_pseries), seq(ops_)
77 {
78         debugmsg("pseries ctor from ex,epvector", LOGLEVEL_CONSTRUCT);
79         GINAC_ASSERT(is_ex_exactly_of_type(rel_, relational));
80         GINAC_ASSERT(is_ex_exactly_of_type(rel_.lhs(),symbol));
81         point = rel_.rhs();
82         var = *static_cast<symbol *>(rel_.lhs().bp);
83 }
84
85
86 /*
87  *  Archiving
88  */
89
90 pseries::pseries(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
91 {
92         debugmsg("pseries ctor from archive_node", LOGLEVEL_CONSTRUCT);
93         for (unsigned int i=0; true; ++i) {
94                 ex rest;
95                 ex coeff;
96                 if (n.find_ex("coeff", rest, sym_lst, i) && n.find_ex("power", coeff, sym_lst, i))
97                         seq.push_back(expair(rest, coeff));
98                 else
99                         break;
100         }
101         n.find_ex("var", var, sym_lst);
102         n.find_ex("point", point, sym_lst);
103 }
104
105 void pseries::archive(archive_node &n) const
106 {
107         inherited::archive(n);
108         epvector::const_iterator i = seq.begin(), iend = seq.end();
109         while (i != iend) {
110                 n.add_ex("coeff", i->rest);
111                 n.add_ex("power", i->coeff);
112                 ++i;
113         }
114         n.add_ex("var", var);
115         n.add_ex("point", point);
116 }
117
118 DEFAULT_UNARCHIVE(pseries)
119
120 //////////
121 // functions overriding virtual functions from bases classes
122 //////////
123
124 void pseries::print(std::ostream &os, unsigned upper_precedence) const
125 {
126         debugmsg("pseries print", LOGLEVEL_PRINT);
127         if (precedence<=upper_precedence) os << "(";
128         // objects of type pseries must not have any zero entries, so the
129         // trivial (zero) pseries needs a special treatment here:
130         if (seq.size()==0)
131                 os << '0';
132         for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) {
133                 // print a sign, if needed
134                 if (i!=seq.begin())
135                         os << '+';
136                 if (!is_order_function(i->rest)) {
137                         // print 'rest', i.e. the expansion coefficient
138                         if (i->rest.info(info_flags::numeric) &&
139                                 i->rest.info(info_flags::positive)) {
140                                 os << i->rest;
141                         } else
142                                 os << "(" << i->rest << ')';
143                         // print 'coeff', something like (x-1)^42
144                         if (!i->coeff.is_zero()) {
145                                 os << '*';
146                                 if (!point.is_zero())
147                                         os << '(' << var-point << ')';
148                                 else
149                                         os << var;
150                                 if (i->coeff.compare(_ex1())) {
151                                         os << '^';
152                                         if (i->coeff.info(info_flags::negative))
153                                                 os << '(' << i->coeff << ')';
154                                         else
155                                                 os << i->coeff;
156                                 }
157                         }
158                 } else {
159                         os << Order(power(var-point,i->coeff));
160                 }
161         }
162         if (precedence<=upper_precedence) os << ")";
163 }
164
165
166 void pseries::printraw(std::ostream &os) const
167 {
168         debugmsg("pseries printraw", LOGLEVEL_PRINT);
169         os << class_name() << "(" << var << ";" << point << ";";
170         for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i)
171                 os << "(" << (*i).rest << "," << (*i).coeff << "),";
172         os << ")";
173 }
174
175
176 void pseries::printtree(std::ostream & os, unsigned indent) const
177 {
178         debugmsg("pseries printtree",LOGLEVEL_PRINT);
179         os << std::string(indent,' ') << class_name()
180            << ", hash=" << hashvalue
181            << " (0x" << std::hex << hashvalue << std::dec << ")"
182            << ", flags=" << flags << std::endl;
183         for (unsigned i=0; i<seq.size(); ++i) {
184                 seq[i].rest.printtree(os,indent+delta_indent);
185                 seq[i].coeff.printtree(os,indent+delta_indent);
186                 if (i!=seq.size()-1)
187                         os << std::string(indent+delta_indent,' ') << "-----" << std::endl;
188         }
189         var.printtree(os, indent+delta_indent);
190         point.printtree(os, indent+delta_indent);
191 }
192
193 int pseries::compare_same_type(const basic & other) const
194 {
195         GINAC_ASSERT(is_of_type(other, pseries));
196         const pseries &o = static_cast<const pseries &>(other);
197         
198         // first compare the lengths of the series...
199         if (seq.size()>o.seq.size())
200                 return 1;
201         if (seq.size()<o.seq.size())
202                 return -1;
203         
204         // ...then the expansion point...
205         int cmpval = var.compare(o.var);
206         if (cmpval)
207                 return cmpval;
208         cmpval = point.compare(o.point);
209         if (cmpval)
210                 return cmpval;
211         
212         // ...and if that failed the individual elements
213         epvector::const_iterator it = seq.begin(), o_it = o.seq.begin();
214         while (it!=seq.end() && o_it!=o.seq.end()) {
215                 cmpval = it->compare(*o_it);
216                 if (cmpval)
217                         return cmpval;
218                 ++it;
219                 ++o_it;
220         }
221
222         // so they are equal.
223         return 0;
224 }
225
226 /** Return the number of operands including a possible order term. */
227 unsigned pseries::nops(void) const
228 {
229         return seq.size();
230 }
231
232
233 /** Return the ith term in the series when represented as a sum. */
234 ex pseries::op(int i) const
235 {
236         if (i < 0 || unsigned(i) >= seq.size())
237                 throw (std::out_of_range("op() out of range"));
238         return seq[i].rest * power(var - point, seq[i].coeff);
239 }
240
241
242 ex &pseries::let_op(int i)
243 {
244         throw (std::logic_error("let_op not defined for pseries"));
245 }
246
247
248 /** Return degree of highest power of the series.  This is usually the exponent
249  *  of the Order term.  If s is not the expansion variable of the series, the
250  *  series is examined termwise. */
251 int pseries::degree(const ex &s) const
252 {
253         if (var.is_equal(s)) {
254                 // Return last exponent
255                 if (seq.size())
256                         return ex_to_numeric((*(seq.end() - 1)).coeff).to_int();
257                 else
258                         return 0;
259         } else {
260                 epvector::const_iterator it = seq.begin(), itend = seq.end();
261                 if (it == itend)
262                         return 0;
263                 int max_pow = INT_MIN;
264                 while (it != itend) {
265                         int pow = it->rest.degree(s);
266                         if (pow > max_pow)
267                                 max_pow = pow;
268                         ++it;
269                 }
270                 return max_pow;
271         }
272 }
273
274 /** Return degree of lowest power of the series.  This is usually the exponent
275  *  of the leading term.  If s is not the expansion variable of the series, the
276  *  series is examined termwise.  If s is the expansion variable but the
277  *  expansion point is not zero the series is not expanded to find the degree.
278  *  I.e.: (1-x) + (1-x)^2 + Order((1-x)^3) has ldegree(x) 1, not 0. */
279 int pseries::ldegree(const ex &s) const
280 {
281         if (var.is_equal(s)) {
282                 // Return first exponent
283                 if (seq.size())
284                         return ex_to_numeric((*(seq.begin())).coeff).to_int();
285                 else
286                         return 0;
287         } else {
288                 epvector::const_iterator it = seq.begin(), itend = seq.end();
289                 if (it == itend)
290                         return 0;
291                 int min_pow = INT_MAX;
292                 while (it != itend) {
293                         int pow = it->rest.ldegree(s);
294                         if (pow < min_pow)
295                                 min_pow = pow;
296                         ++it;
297                 }
298                 return min_pow;
299         }
300 }
301
302 /** Return coefficient of degree n in power series if s is the expansion
303  *  variable.  If the expansion point is nonzero, by definition the n=1
304  *  coefficient in s of a+b*(s-z)+c*(s-z)^2+Order((s-z)^3) is b (assuming
305  *  the expansion took place in the s in the first place).
306  *  If s is not the expansion variable, an attempt is made to convert the
307  *  series to a polynomial and return the corresponding coefficient from
308  *  there. */
309 ex pseries::coeff(const ex &s, int n) const
310 {
311         if (var.is_equal(s)) {
312                 if (seq.size() == 0)
313                         return _ex0();
314                 
315                 // Binary search in sequence for given power
316                 numeric looking_for = numeric(n);
317                 int lo = 0, hi = seq.size() - 1;
318                 while (lo <= hi) {
319                         int mid = (lo + hi) / 2;
320                         GINAC_ASSERT(is_ex_exactly_of_type(seq[mid].coeff, numeric));
321                         int cmp = ex_to_numeric(seq[mid].coeff).compare(looking_for);
322                         switch (cmp) {
323                                 case -1:
324                                         lo = mid + 1;
325                                         break;
326                                 case 0:
327                                         return seq[mid].rest;
328                                 case 1:
329                                         hi = mid - 1;
330                                         break;
331                                 default:
332                                         throw(std::logic_error("pseries::coeff: compare() didn't return -1, 0 or 1"));
333                         }
334                 }
335                 return _ex0();
336         } else
337                 return convert_to_poly().coeff(s, n);
338 }
339
340 /** Does nothing. */
341 ex pseries::collect(const ex &s) const
342 {
343         return *this;
344 }
345
346
347 /** Evaluate coefficients. */
348 ex pseries::eval(int level) const
349 {
350         if (level == 1)
351                 return this->hold();
352         
353         if (level == -max_recursion_level)
354                 throw (std::runtime_error("pseries::eval(): recursion limit exceeded"));
355         
356         // Construct a new series with evaluated coefficients
357         epvector new_seq;
358         new_seq.reserve(seq.size());
359         epvector::const_iterator it = seq.begin(), itend = seq.end();
360         while (it != itend) {
361                 new_seq.push_back(expair(it->rest.eval(level-1), it->coeff));
362                 ++it;
363         }
364         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
365 }
366
367
368 /** Evaluate coefficients numerically. */
369 ex pseries::evalf(int level) const
370 {
371         if (level == 1)
372                 return *this;
373         
374         if (level == -max_recursion_level)
375                 throw (std::runtime_error("pseries::evalf(): recursion limit exceeded"));
376         
377         // Construct a new series with evaluated coefficients
378         epvector new_seq;
379         new_seq.reserve(seq.size());
380         epvector::const_iterator it = seq.begin(), itend = seq.end();
381         while (it != itend) {
382                 new_seq.push_back(expair(it->rest.evalf(level-1), it->coeff));
383                 ++it;
384         }
385         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
386 }
387
388
389 ex pseries::subs(const lst & ls, const lst & lr) const
390 {
391         // If expansion variable is being substituted, convert the series to a
392         // polynomial and do the substitution there because the result might
393         // no longer be a power series
394         if (ls.has(var))
395                 return convert_to_poly(true).subs(ls, lr);
396         
397         // Otherwise construct a new series with substituted coefficients and
398         // expansion point
399         epvector newseq;
400         newseq.reserve(seq.size());
401         epvector::const_iterator it = seq.begin(), itend = seq.end();
402         while (it != itend) {
403                 newseq.push_back(expair(it->rest.subs(ls, lr), it->coeff));
404                 ++it;
405         }
406         return (new pseries(relational(var,point.subs(ls, lr)), newseq))->setflag(status_flags::dynallocated);
407 }
408
409
410 /** Implementation of ex::expand() for a power series.  It expands all the
411  *  terms individually and returns the resulting series as a new pseries. */
412 ex pseries::expand(unsigned options) const
413 {
414         epvector newseq;
415         for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) {
416                 ex restexp = i->rest.expand();
417                 if (!restexp.is_zero())
418                         newseq.push_back(expair(restexp, i->coeff));
419         }
420         return (new pseries(relational(var,point), newseq))
421                 ->setflag(status_flags::dynallocated | status_flags::expanded);
422 }
423
424
425 /** Implementation of ex::diff() for a power series.  It treats the series as a
426  *  polynomial.
427  *  @see ex::diff */
428 ex pseries::derivative(const symbol & s) const
429 {
430         if (s == var) {
431                 epvector new_seq;
432                 epvector::const_iterator it = seq.begin(), itend = seq.end();
433                 
434                 // FIXME: coeff might depend on var
435                 while (it != itend) {
436                         if (is_order_function(it->rest)) {
437                                 new_seq.push_back(expair(it->rest, it->coeff - 1));
438                         } else {
439                                 ex c = it->rest * it->coeff;
440                                 if (!c.is_zero())
441                                         new_seq.push_back(expair(c, it->coeff - 1));
442                         }
443                         ++it;
444                 }
445                 return pseries(relational(var,point), new_seq);
446         } else {
447                 return *this;
448         }
449 }
450
451
452 /** Convert a pseries object to an ordinary polynomial.
453  *
454  *  @param no_order flag: discard higher order terms */
455 ex pseries::convert_to_poly(bool no_order) const
456 {
457         ex e;
458         epvector::const_iterator it = seq.begin(), itend = seq.end();
459         
460         while (it != itend) {
461                 if (is_order_function(it->rest)) {
462                         if (!no_order)
463                                 e += Order(power(var - point, it->coeff));
464                 } else
465                         e += it->rest * power(var - point, it->coeff);
466                 ++it;
467         }
468         return e;
469 }
470
471
472 /** Returns true if there is no order term, i.e. the series terminates and
473  *  false otherwise. */
474 bool pseries::is_terminating(void) const
475 {
476         return seq.size() == 0 || !is_order_function((seq.end()-1)->rest);
477 }
478
479
480 /*
481  *  Implementations of series expansion
482  */
483
484 /** Default implementation of ex::series(). This performs Taylor expansion.
485  *  @see ex::series */
486 ex basic::series(const relational & r, int order, unsigned options) const
487 {
488         epvector seq;
489         numeric fac(1);
490         ex deriv = *this;
491         ex coeff = deriv.subs(r);
492         const symbol &s = static_cast<symbol &>(*r.lhs().bp);
493         
494         if (!coeff.is_zero())
495                 seq.push_back(expair(coeff, numeric(0)));
496         
497         int n;
498         for (n=1; n<order; ++n) {
499                 fac = fac.mul(numeric(n));
500                 deriv = deriv.diff(s).expand();
501                 if (deriv.is_zero()) {
502                         // Series terminates
503                         return pseries(r, seq);
504                 }
505                 coeff = deriv.subs(r);
506                 if (!coeff.is_zero())
507                         seq.push_back(expair(fac.inverse() * coeff, numeric(n)));
508         }
509         
510         // Higher-order terms, if present
511         deriv = deriv.diff(s);
512         if (!deriv.expand().is_zero())
513                 seq.push_back(expair(Order(_ex1()), numeric(n)));
514         return pseries(r, seq);
515 }
516
517
518 /** Implementation of ex::series() for symbols.
519  *  @see ex::series */
520 ex symbol::series(const relational & r, int order, unsigned options) const
521 {
522         epvector seq;
523         const ex point = r.rhs();
524         GINAC_ASSERT(is_ex_exactly_of_type(r.lhs(),symbol));
525         ex s = r.lhs();
526         
527         if (this->is_equal(*s.bp)) {
528                 if (order > 0 && !point.is_zero())
529                         seq.push_back(expair(point, _ex0()));
530                 if (order > 1)
531                         seq.push_back(expair(_ex1(), _ex1()));
532                 else
533                         seq.push_back(expair(Order(_ex1()), numeric(order)));
534         } else
535                 seq.push_back(expair(*this, _ex0()));
536         return pseries(r, seq);
537 }
538
539
540 /** Add one series object to another, producing a pseries object that
541  *  represents the sum.
542  *
543  *  @param other  pseries object to add with
544  *  @return the sum as a pseries */
545 ex pseries::add_series(const pseries &other) const
546 {
547         // Adding two series with different variables or expansion points
548         // results in an empty (constant) series 
549         if (!is_compatible_to(other)) {
550                 epvector nul;
551                 nul.push_back(expair(Order(_ex1()), _ex0()));
552                 return pseries(relational(var,point), nul);
553         }
554         
555         // Series addition
556         epvector new_seq;
557         epvector::const_iterator a = seq.begin();
558         epvector::const_iterator b = other.seq.begin();
559         epvector::const_iterator a_end = seq.end();
560         epvector::const_iterator b_end = other.seq.end();
561         int pow_a = INT_MAX, pow_b = INT_MAX;
562         for (;;) {
563                 // If a is empty, fill up with elements from b and stop
564                 if (a == a_end) {
565                         while (b != b_end) {
566                                 new_seq.push_back(*b);
567                                 ++b;
568                         }
569                         break;
570                 } else
571                         pow_a = ex_to_numeric((*a).coeff).to_int();
572                 
573                 // If b is empty, fill up with elements from a and stop
574                 if (b == b_end) {
575                         while (a != a_end) {
576                                 new_seq.push_back(*a);
577                                 ++a;
578                         }
579                         break;
580                 } else
581                         pow_b = ex_to_numeric((*b).coeff).to_int();
582                 
583                 // a and b are non-empty, compare powers
584                 if (pow_a < pow_b) {
585                         // a has lesser power, get coefficient from a
586                         new_seq.push_back(*a);
587                         if (is_order_function((*a).rest))
588                                 break;
589                         ++a;
590                 } else if (pow_b < pow_a) {
591                         // b has lesser power, get coefficient from b
592                         new_seq.push_back(*b);
593                         if (is_order_function((*b).rest))
594                                 break;
595                         ++b;
596                 } else {
597                         // Add coefficient of a and b
598                         if (is_order_function((*a).rest) || is_order_function((*b).rest)) {
599                                 new_seq.push_back(expair(Order(_ex1()), (*a).coeff));
600                                 break;  // Order term ends the sequence
601                         } else {
602                                 ex sum = (*a).rest + (*b).rest;
603                                 if (!(sum.is_zero()))
604                                         new_seq.push_back(expair(sum, numeric(pow_a)));
605                                 ++a;
606                                 ++b;
607                         }
608                 }
609         }
610         return pseries(relational(var,point), new_seq);
611 }
612
613
614 /** Implementation of ex::series() for sums. This performs series addition when
615  *  adding pseries objects.
616  *  @see ex::series */
617 ex add::series(const relational & r, int order, unsigned options) const
618 {
619         ex acc; // Series accumulator
620         
621         // Get first term from overall_coeff
622         acc = overall_coeff.series(r, order, options);
623         
624         // Add remaining terms
625         epvector::const_iterator it = seq.begin();
626         epvector::const_iterator itend = seq.end();
627         for (; it!=itend; ++it) {
628                 ex op;
629                 if (is_ex_exactly_of_type(it->rest, pseries))
630                         op = it->rest;
631                 else
632                         op = it->rest.series(r, order, options);
633                 if (!it->coeff.is_equal(_ex1()))
634                         op = ex_to_pseries(op).mul_const(ex_to_numeric(it->coeff));
635                 
636                 // Series addition
637                 acc = ex_to_pseries(acc).add_series(ex_to_pseries(op));
638         }
639         return acc;
640 }
641
642
643 /** Multiply a pseries object with a numeric constant, producing a pseries
644  *  object that represents the product.
645  *
646  *  @param other  constant to multiply with
647  *  @return the product as a pseries */
648 ex pseries::mul_const(const numeric &other) const
649 {
650         epvector new_seq;
651         new_seq.reserve(seq.size());
652         
653         epvector::const_iterator it = seq.begin(), itend = seq.end();
654         while (it != itend) {
655                 if (!is_order_function(it->rest))
656                         new_seq.push_back(expair(it->rest * other, it->coeff));
657                 else
658                         new_seq.push_back(*it);
659                 ++it;
660         }
661         return pseries(relational(var,point), new_seq);
662 }
663
664
665 /** Multiply one pseries object to another, producing a pseries object that
666  *  represents the product.
667  *
668  *  @param other  pseries object to multiply with
669  *  @return the product as a pseries */
670 ex pseries::mul_series(const pseries &other) const
671 {
672         // Multiplying two series with different variables or expansion points
673         // results in an empty (constant) series 
674         if (!is_compatible_to(other)) {
675                 epvector nul;
676                 nul.push_back(expair(Order(_ex1()), _ex0()));
677                 return pseries(relational(var,point), nul);
678         }
679         
680         // Series multiplication
681         epvector new_seq;
682         
683         int a_max = degree(var);
684         int b_max = other.degree(var);
685         int a_min = ldegree(var);
686         int b_min = other.ldegree(var);
687         int cdeg_min = a_min + b_min;
688         int cdeg_max = a_max + b_max;
689         
690         int higher_order_a = INT_MAX;
691         int higher_order_b = INT_MAX;
692         if (is_order_function(coeff(var, a_max)))
693                 higher_order_a = a_max + b_min;
694         if (is_order_function(other.coeff(var, b_max)))
695                 higher_order_b = b_max + a_min;
696         int higher_order_c = std::min(higher_order_a, higher_order_b);
697         if (cdeg_max >= higher_order_c)
698                 cdeg_max = higher_order_c - 1;
699         
700         for (int cdeg=cdeg_min; cdeg<=cdeg_max; ++cdeg) {
701                 ex co = _ex0();
702                 // c(i)=a(0)b(i)+...+a(i)b(0)
703                 for (int i=a_min; cdeg-i>=b_min; ++i) {
704                         ex a_coeff = coeff(var, i);
705                         ex b_coeff = other.coeff(var, cdeg-i);
706                         if (!is_order_function(a_coeff) && !is_order_function(b_coeff))
707                                 co += a_coeff * b_coeff;
708                 }
709                 if (!co.is_zero())
710                         new_seq.push_back(expair(co, numeric(cdeg)));
711         }
712         if (higher_order_c < INT_MAX)
713                 new_seq.push_back(expair(Order(_ex1()), numeric(higher_order_c)));
714         return pseries(relational(var, point), new_seq);
715 }
716
717
718 /** Implementation of ex::series() for product. This performs series
719  *  multiplication when multiplying series.
720  *  @see ex::series */
721 ex mul::series(const relational & r, int order, unsigned options) const
722 {
723         ex acc; // Series accumulator
724         
725         // Get first term from overall_coeff
726         acc = overall_coeff.series(r, order, options);
727         
728         // Multiply with remaining terms
729         epvector::const_iterator it = seq.begin();
730         epvector::const_iterator itend = seq.end();
731         for (; it!=itend; ++it) {
732                 ex op = it->rest;
733                 if (op.info(info_flags::numeric)) {
734                         // series * const (special case, faster)
735                         ex f = power(op, it->coeff);
736                         acc = ex_to_pseries(acc).mul_const(ex_to_numeric(f));
737                         continue;
738                 } else if (!is_ex_exactly_of_type(op, pseries))
739                         op = op.series(r, order, options);
740                 if (!it->coeff.is_equal(_ex1()))
741                         op = ex_to_pseries(op).power_const(ex_to_numeric(it->coeff), order);
742
743                 // Series multiplication
744                 acc = ex_to_pseries(acc).mul_series(ex_to_pseries(op));
745         }
746         return acc;
747 }
748
749
750 /** Compute the p-th power of a series.
751  *
752  *  @param p  power to compute
753  *  @param deg  truncation order of series calculation */
754 ex pseries::power_const(const numeric &p, int deg) const
755 {
756         // method:
757         // let A(x) be this series and for the time being let it start with a
758         // constant (later we'll generalize):
759         //     A(x) = a_0 + a_1*x + a_2*x^2 + ...
760         // We want to compute
761         //     C(x) = A(x)^p
762         //     C(x) = c_0 + c_1*x + c_2*x^2 + ...
763         // Taking the derivative on both sides and multiplying with A(x) one
764         // immediately arrives at
765         //     C'(x)*A(x) = p*C(x)*A'(x)
766         // Multiplying this out and comparing coefficients we get the recurrence
767         // formula
768         //     c_i = (i*p*a_i*c_0 + ((i-1)*p-1)*a_{i-1}*c_1 + ...
769         //                    ... + (p-(i-1))*a_1*c_{i-1})/(a_0*i)
770         // which can easily be solved given the starting value c_0 = (a_0)^p.
771         // For the more general case where the leading coefficient of A(x) is not
772         // a constant, just consider A2(x) = A(x)*x^m, with some integer m and
773         // repeat the above derivation.  The leading power of C2(x) = A2(x)^2 is
774         // then of course x^(p*m) but the recurrence formula still holds.
775         
776         if (seq.size()==0) {
777                 // as a spacial case, handle the empty (zero) series honoring the
778                 // usual power laws such as implemented in power::eval()
779                 if (p.real().is_zero())
780                         throw (std::domain_error("pseries::power_const(): pow(0,I) is undefined"));
781                 else if (p.real().is_negative())
782                         throw (pole_error("pseries::power_const(): division by zero",1));
783                 else
784                         return *this;
785         }
786         
787         int ldeg = ldegree(var);
788         
789         // Compute coefficients of the powered series
790         exvector co;
791         co.reserve(deg);
792         co.push_back(power(coeff(var, ldeg), p));
793         bool all_sums_zero = true;
794         for (int i=1; i<deg; ++i) {
795                 ex sum = _ex0();
796                 for (int j=1; j<=i; ++j) {
797                         ex c = coeff(var, j + ldeg);
798                         if (is_order_function(c)) {
799                                 co.push_back(Order(_ex1()));
800                                 break;
801                         } else
802                                 sum += (p * j - (i - j)) * co[i - j] * c;
803                 }
804                 if (!sum.is_zero())
805                         all_sums_zero = false;
806                 co.push_back(sum / coeff(var, ldeg) / numeric(i));
807         }
808         
809         // Construct new series (of non-zero coefficients)
810         epvector new_seq;
811         bool higher_order = false;
812         for (int i=0; i<deg; ++i) {
813                 if (!co[i].is_zero())
814                         new_seq.push_back(expair(co[i], numeric(i) + p * ldeg));
815                 if (is_order_function(co[i])) {
816                         higher_order = true;
817                         break;
818                 }
819         }
820         if (!higher_order && !all_sums_zero)
821                 new_seq.push_back(expair(Order(_ex1()), numeric(deg) + p * ldeg));
822         return pseries(relational(var,point), new_seq);
823 }
824
825
826 /** Return a new pseries object with the powers shifted by deg. */
827 pseries pseries::shift_exponents(int deg) const
828 {
829         epvector newseq(seq);
830         for (epvector::iterator i=newseq.begin(); i!=newseq.end(); ++i)
831                 i->coeff = i->coeff + deg;
832         return pseries(relational(var, point), newseq);
833 }
834
835
836 /** Implementation of ex::series() for powers. This performs Laurent expansion
837  *  of reciprocals of series at singularities.
838  *  @see ex::series */
839 ex power::series(const relational & r, int order, unsigned options) const
840 {
841         ex e;
842         if (!is_ex_exactly_of_type(basis, pseries)) {
843                 // Basis is not a series, may there be a singularity?
844                 bool must_expand_basis = false;
845                 try {
846                         basis.subs(r);
847                 } catch (pole_error) {
848                         must_expand_basis = true;
849                 }
850                 
851                 // Is the expression of type something^(-int)?
852                 if (!must_expand_basis && !exponent.info(info_flags::negint))
853                         return basic::series(r, order, options);
854                 
855                 // Is the expression of type 0^something?
856                 if (!must_expand_basis && !basis.subs(r).is_zero())
857                         return basic::series(r, order, options);
858                 
859                 // Singularity encountered, expand basis into series
860                 e = basis.series(r, order, options);
861         } else {
862                 // Basis is a series
863                 e = basis;
864         }
865         
866         // Power e
867         return ex_to_pseries(e).power_const(ex_to_numeric(exponent), order);
868 }
869
870
871 /** Re-expansion of a pseries object. */
872 ex pseries::series(const relational & r, int order, unsigned options) const
873 {
874         const ex p = r.rhs();
875         GINAC_ASSERT(is_ex_exactly_of_type(r.lhs(),symbol));
876         const symbol &s = static_cast<symbol &>(*r.lhs().bp);
877         
878         if (var.is_equal(s) && point.is_equal(p)) {
879                 if (order > degree(s))
880                         return *this;
881                 else {
882                         epvector new_seq;
883                         epvector::const_iterator it = seq.begin(), itend = seq.end();
884                         while (it != itend) {
885                                 int o = ex_to_numeric(it->coeff).to_int();
886                                 if (o >= order) {
887                                         new_seq.push_back(expair(Order(_ex1()), o));
888                                         break;
889                                 }
890                                 new_seq.push_back(*it);
891                                 ++it;
892                         }
893                         return pseries(r, new_seq);
894                 }
895         } else
896                 return convert_to_poly().series(r, order, options);
897 }
898
899
900 /** Compute the truncated series expansion of an expression.
901  *  This function returns an expression containing an object of class pseries 
902  *  to represent the series. If the series does not terminate within the given
903  *  truncation order, the last term of the series will be an order term.
904  *
905  *  @param r  expansion relation, lhs holds variable and rhs holds point
906  *  @param order  truncation order of series calculations
907  *  @param options  of class series_options
908  *  @return an expression holding a pseries object */
909 ex ex::series(const ex & r, int order, unsigned options) const
910 {
911         GINAC_ASSERT(bp!=0);
912         ex e;
913         relational rel_;
914         
915         if (is_ex_exactly_of_type(r,relational))
916                 rel_ = ex_to_relational(r);
917         else if (is_ex_exactly_of_type(r,symbol))
918                 rel_ = relational(r,_ex0());
919         else
920                 throw (std::logic_error("ex::series(): expansion point has unknown type"));
921         
922         try {
923                 e = bp->series(rel_, order, options);
924         } catch (std::exception &x) {
925                 throw (std::logic_error(std::string("unable to compute series (") + x.what() + ")"));
926         }
927         return e;
928 }
929
930 //////////
931 // static member variables
932 //////////
933
934 // protected
935
936 unsigned pseries::precedence = 38;  // for clarity just below add::precedence
937
938 } // namespace GiNaC