]> www.ginac.de Git - ginac.git/blob - ginac/polynomial/mgcd.cpp
24da934690237e42e26a97caa35b09080eabc672
1 /** @file mgcd.cpp
2  *
3  *  Chinese remainder algorithm. */
5 /*
6  *  GiNaC Copyright (C) 1999-2010 Johannes Gutenberg University Mainz, Germany
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
21  */
23 #include "operators.h"
24 #include "chinrem_gcd.h"
25 #include "pgcd.h"
26 #include "collect_vargs.h"
27 #include "primes_factory.h"
28 #include "divide_in_z_p.h"
29 #include "poly_cra.h"
30 #include <numeric> // std::accumulate
32 #include <cln/integer.h>
34 namespace GiNaC {
36 static cln::cl_I extract_integer_content(ex& Apr, const ex& A)
37 {
38         static const cln::cl_I n1(1);
39         const numeric icont_ = A.integer_content();
40         const cln::cl_I icont = cln::the<cln::cl_I>(icont_.to_cl_N());
41         if (icont != 1) {
42                 Apr = (A/icont_).expand();
43                 return icont;
44         } else {
45                 Apr = A;
46                 return n1;
47         }
48 }
50 ex chinrem_gcd(const ex& A_, const ex& B_, const exvector& vars)
51 {
52         ex A, B;
53         const cln::cl_I a_icont = extract_integer_content(A, A_);
54         const cln::cl_I b_icont = extract_integer_content(B, B_);
55         const cln::cl_I c = cln::gcd(a_icont, b_icont);
57         const cln::cl_I a_lc = integer_lcoeff(A, vars);
58         const cln::cl_I b_lc = integer_lcoeff(B, vars);
59         const cln::cl_I g_lc = cln::gcd(a_lc, b_lc);
61         const ex& x(vars.back());
62         exp_vector_t n = std::min(degree_vector(A, vars), degree_vector(B, vars));
63         const int nTot = std::accumulate(n.begin(), n.end(), 0);
64         const cln::cl_I A_max_coeff = to_cl_I(A.max_coefficient());
65         const cln::cl_I B_max_coeff = to_cl_I(B.max_coefficient());
67         const cln::cl_I lcoeff_limit = (cln::cl_I(1) << nTot)*cln::abs(g_lc)*
68                 std::min(A_max_coeff, B_max_coeff);
71         cln::cl_I q = 0;
72         ex H = 0;
74         long p;
75         primes_factory pfactory;
76         while (true) {
77                 bool has_primes = pfactory(p, g_lc);
78                 if (!has_primes)
79                         throw chinrem_gcd_failed();
81                 const numeric pnum(p);
82                 ex Ap = A.smod(pnum);
83                 ex Bp = B.smod(pnum);
84                 ex Cp = pgcd(Ap, Bp, vars, p);
86                 const cln::cl_I g_lcp = smod(g_lc, p);
87                 const cln::cl_I Cp_lc = integer_lcoeff(Cp, vars);
88                 const cln::cl_I nlc = smod(recip(Cp_lc, p)*g_lcp, p);
89                 Cp = (Cp*numeric(nlc)).expand().smod(pnum);
90                 exp_vector_t cp_deg = degree_vector(Cp, vars);
91                 if (zerop(cp_deg))
92                         return numeric(g_lc);
93                 if (zerop(q)) {
94                         H = Cp;
95                         n = cp_deg;
96                         q = p;
97                 } else {
98                         if (cp_deg == n) {
99                                 ex H_next = chinese_remainder(H, q, Cp, p);
100                                 q = q*cln::cl_I(p);
101                                 H = H_next;
102                         } else if (cp_deg < n) {
103                                 // all previous homomorphisms are unlucky
104                                 q = p;
105                                 H = Cp;
106                                 n = cp_deg;
107                         } else {
108                                 // dp_deg > d_deg: current prime is bad
109                         }
110                 }
111                 if (q < lcoeff_limit)
112                         continue; // don't bother to do division checks
113                 ex C, dummy1, dummy2;
114                 extract_integer_content(C, H);
115                 if (divide_in_z_p(A, C, dummy1, vars, 0) &&
116                                 divide_in_z_p(B, C, dummy2, vars, 0))
117                         return (numeric(c)*C).expand();
118                 // else: try more primes
119         }
120 }
122 } // namespace GiNaC