We have the relations
-@itemize @asis
+@itemize @w{}
@item
@code{x = complex(realpart(x), imagpart(x))}
@item
The functions are related like this:
-@itemize @asis
+@itemize @w{}
@item
@code{ceiling(m/n) = floor((m+n-1)/n) = floor((m-1)/n)+1}
for rational numbers @code{m/n} (@code{m}, @code{n} integers, @code{n}>0), and
The following relations hold:
-@itemize @asis
+@itemize @w{}
@item
@code{ldb (n, b) = mask_field(n, b) >> b.position},
@item
If @code{x} is any float, one has
-@itemize @asis
+@itemize @w{}
@item
@code{cl_float(rational(x),x) = x}
@item
@var{expmarker} @var{expsign} @{@var{digit}@}+.
The exponent marker is
-@itemize @asis
+@itemize @w{}
@item
@samp{s} for short-floats,
@item
@item Complex numbers
External representation:
-@itemize @asis
+@itemize @w{}
@item
In algebraic notation: @code{@var{realpart}+@var{imagpart}i}. Of course,
if @var{imagpart} is negative, its printed representation begins with