]> www.ginac.de Git - ginac.git/blob - ginac/pseries.cpp
Added missing namespace qualifier
[ginac.git] / ginac / pseries.cpp
1 /** @file pseries.cpp
2  *
3  *  Implementation of class for extended truncated power series and
4  *  methods for series expansion. */
5
6 /*
7  *  GiNaC Copyright (C) 1999-2004 Johannes Gutenberg University Mainz, Germany
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; either version 2 of the License, or
12  *  (at your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  */
23
24 #include <numeric>
25 #include <stdexcept>
26
27 #include "pseries.h"
28 #include "add.h"
29 #include "inifcns.h" // for Order function
30 #include "lst.h"
31 #include "mul.h"
32 #include "power.h"
33 #include "relational.h"
34 #include "operators.h"
35 #include "symbol.h"
36 #include "print.h"
37 #include "archive.h"
38 #include "utils.h"
39
40 namespace GiNaC {
41
42 GINAC_IMPLEMENT_REGISTERED_CLASS(pseries, basic)
43
44
45 /*
46  *  Default ctor, dtor, copy ctor, assignment operator and helpers
47  */
48
49 pseries::pseries() : inherited(TINFO_pseries) { }
50
51 void pseries::copy(const pseries &other)
52 {
53         inherited::copy(other);
54         seq = other.seq;
55         var = other.var;
56         point = other.point;
57 }
58
59 DEFAULT_DESTROY(pseries)
60
61
62 /*
63  *  Other ctors
64  */
65
66 /** Construct pseries from a vector of coefficients and powers.
67  *  expair.rest holds the coefficient, expair.coeff holds the power.
68  *  The powers must be integers (positive or negative) and in ascending order;
69  *  the last coefficient can be Order(_ex1) to represent a truncated,
70  *  non-terminating series.
71  *
72  *  @param rel_  expansion variable and point (must hold a relational)
73  *  @param ops_  vector of {coefficient, power} pairs (coefficient must not be zero)
74  *  @return newly constructed pseries */
75 pseries::pseries(const ex &rel_, const epvector &ops_) : basic(TINFO_pseries), seq(ops_)
76 {
77         GINAC_ASSERT(is_a<relational>(rel_));
78         GINAC_ASSERT(is_a<symbol>(rel_.lhs()));
79         point = rel_.rhs();
80         var = rel_.lhs();
81 }
82
83
84 /*
85  *  Archiving
86  */
87
88 pseries::pseries(const archive_node &n, lst &sym_lst) : inherited(n, sym_lst)
89 {
90         for (unsigned int i=0; true; ++i) {
91                 ex rest;
92                 ex coeff;
93                 if (n.find_ex("coeff", rest, sym_lst, i) && n.find_ex("power", coeff, sym_lst, i))
94                         seq.push_back(expair(rest, coeff));
95                 else
96                         break;
97         }
98         n.find_ex("var", var, sym_lst);
99         n.find_ex("point", point, sym_lst);
100 }
101
102 void pseries::archive(archive_node &n) const
103 {
104         inherited::archive(n);
105         epvector::const_iterator i = seq.begin(), iend = seq.end();
106         while (i != iend) {
107                 n.add_ex("coeff", i->rest);
108                 n.add_ex("power", i->coeff);
109                 ++i;
110         }
111         n.add_ex("var", var);
112         n.add_ex("point", point);
113 }
114
115 DEFAULT_UNARCHIVE(pseries)
116
117 //////////
118 // functions overriding virtual functions from base classes
119 //////////
120
121 void pseries::print(const print_context & c, unsigned level) const
122 {
123         if (is_a<print_tree>(c)) {
124
125                 c.s << std::string(level, ' ') << class_name()
126                     << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec
127                     << std::endl;
128                 unsigned delta_indent = static_cast<const print_tree &>(c).delta_indent;
129                 size_t num = seq.size();
130                 for (size_t i=0; i<num; ++i) {
131                         seq[i].rest.print(c, level + delta_indent);
132                         seq[i].coeff.print(c, level + delta_indent);
133                         c.s << std::string(level + delta_indent, ' ') << "-----" << std::endl;
134                 }
135                 var.print(c, level + delta_indent);
136                 point.print(c, level + delta_indent);
137
138         } else if (is_a<print_python_repr>(c)) {
139                 c.s << class_name() << "(relational(";
140                 var.print(c);
141                 c.s << ',';
142                 point.print(c);
143                 c.s << "),[";
144                 size_t num = seq.size();
145                 for (size_t i=0; i<num; ++i) {
146                         if (i)
147                                 c.s << ',';
148                         c.s << '(';
149                         seq[i].rest.print(c);
150                         c.s << ',';
151                         seq[i].coeff.print(c);
152                         c.s << ')';
153                 }
154                 c.s << "])";
155         } else {
156
157                 if (precedence() <= level)
158                         c.s << "(";
159                 
160                 std::string par_open = is_a<print_latex>(c) ? "{(" : "(";
161                 std::string par_close = is_a<print_latex>(c) ? ")}" : ")";
162                 
163                 // objects of type pseries must not have any zero entries, so the
164                 // trivial (zero) pseries needs a special treatment here:
165                 if (seq.empty())
166                         c.s << '0';
167                 epvector::const_iterator i = seq.begin(), end = seq.end();
168                 while (i != end) {
169                         // print a sign, if needed
170                         if (i != seq.begin())
171                                 c.s << '+';
172                         if (!is_order_function(i->rest)) {
173                                 // print 'rest', i.e. the expansion coefficient
174                                 if (i->rest.info(info_flags::numeric) &&
175                                         i->rest.info(info_flags::positive)) {
176                                         i->rest.print(c);
177                                 } else {
178                                         c.s << par_open;
179                                         i->rest.print(c);
180                                         c.s << par_close;
181                                 }
182                                 // print 'coeff', something like (x-1)^42
183                                 if (!i->coeff.is_zero()) {
184                                         if (is_a<print_latex>(c))
185                                                 c.s << ' ';
186                                         else
187                                                 c.s << '*';
188                                         if (!point.is_zero()) {
189                                                 c.s << par_open;
190                                                 (var-point).print(c);
191                                                 c.s << par_close;
192                                         } else
193                                                 var.print(c);
194                                         if (i->coeff.compare(_ex1)) {
195                                                 if (is_a<print_python>(c))
196                                                         c.s << "**";
197                                                 else
198                                                         c.s << '^';
199                                                 if (i->coeff.info(info_flags::negative)) {
200                                                         c.s << par_open;
201                                                         i->coeff.print(c);
202                                                         c.s << par_close;
203                                                 } else {
204                                                         if (is_a<print_latex>(c)) {
205                                                                 c.s << '{';
206                                                                 i->coeff.print(c);
207                                                                 c.s << '}';
208                                                         } else
209                                                                 i->coeff.print(c);
210                                                 }
211                                         }
212                                 }
213                         } else
214                                 Order(power(var-point,i->coeff)).print(c);
215                         ++i;
216                 }
217
218                 if (precedence() <= level)
219                         c.s << ")";
220         }
221 }
222
223 int pseries::compare_same_type(const basic & other) const
224 {
225         GINAC_ASSERT(is_a<pseries>(other));
226         const pseries &o = static_cast<const pseries &>(other);
227         
228         // first compare the lengths of the series...
229         if (seq.size()>o.seq.size())
230                 return 1;
231         if (seq.size()<o.seq.size())
232                 return -1;
233         
234         // ...then the expansion point...
235         int cmpval = var.compare(o.var);
236         if (cmpval)
237                 return cmpval;
238         cmpval = point.compare(o.point);
239         if (cmpval)
240                 return cmpval;
241         
242         // ...and if that failed the individual elements
243         epvector::const_iterator it = seq.begin(), o_it = o.seq.begin();
244         while (it!=seq.end() && o_it!=o.seq.end()) {
245                 cmpval = it->compare(*o_it);
246                 if (cmpval)
247                         return cmpval;
248                 ++it;
249                 ++o_it;
250         }
251
252         // so they are equal.
253         return 0;
254 }
255
256 /** Return the number of operands including a possible order term. */
257 size_t pseries::nops(void) const
258 {
259         return seq.size();
260 }
261
262 /** Return the ith term in the series when represented as a sum. */
263 ex pseries::op(size_t i) const
264 {
265         if (i >= seq.size())
266                 throw (std::out_of_range("op() out of range"));
267
268         return seq[i].rest * power(var - point, seq[i].coeff);
269 }
270
271 /** Return degree of highest power of the series.  This is usually the exponent
272  *  of the Order term.  If s is not the expansion variable of the series, the
273  *  series is examined termwise. */
274 int pseries::degree(const ex &s) const
275 {
276         if (var.is_equal(s)) {
277                 // Return last exponent
278                 if (seq.size())
279                         return ex_to<numeric>((seq.end()-1)->coeff).to_int();
280                 else
281                         return 0;
282         } else {
283                 epvector::const_iterator it = seq.begin(), itend = seq.end();
284                 if (it == itend)
285                         return 0;
286                 int max_pow = INT_MIN;
287                 while (it != itend) {
288                         int pow = it->rest.degree(s);
289                         if (pow > max_pow)
290                                 max_pow = pow;
291                         ++it;
292                 }
293                 return max_pow;
294         }
295 }
296
297 /** Return degree of lowest power of the series.  This is usually the exponent
298  *  of the leading term.  If s is not the expansion variable of the series, the
299  *  series is examined termwise.  If s is the expansion variable but the
300  *  expansion point is not zero the series is not expanded to find the degree.
301  *  I.e.: (1-x) + (1-x)^2 + Order((1-x)^3) has ldegree(x) 1, not 0. */
302 int pseries::ldegree(const ex &s) const
303 {
304         if (var.is_equal(s)) {
305                 // Return first exponent
306                 if (seq.size())
307                         return ex_to<numeric>((seq.begin())->coeff).to_int();
308                 else
309                         return 0;
310         } else {
311                 epvector::const_iterator it = seq.begin(), itend = seq.end();
312                 if (it == itend)
313                         return 0;
314                 int min_pow = INT_MAX;
315                 while (it != itend) {
316                         int pow = it->rest.ldegree(s);
317                         if (pow < min_pow)
318                                 min_pow = pow;
319                         ++it;
320                 }
321                 return min_pow;
322         }
323 }
324
325 /** Return coefficient of degree n in power series if s is the expansion
326  *  variable.  If the expansion point is nonzero, by definition the n=1
327  *  coefficient in s of a+b*(s-z)+c*(s-z)^2+Order((s-z)^3) is b (assuming
328  *  the expansion took place in the s in the first place).
329  *  If s is not the expansion variable, an attempt is made to convert the
330  *  series to a polynomial and return the corresponding coefficient from
331  *  there. */
332 ex pseries::coeff(const ex &s, int n) const
333 {
334         if (var.is_equal(s)) {
335                 if (seq.empty())
336                         return _ex0;
337                 
338                 // Binary search in sequence for given power
339                 numeric looking_for = numeric(n);
340                 int lo = 0, hi = seq.size() - 1;
341                 while (lo <= hi) {
342                         int mid = (lo + hi) / 2;
343                         GINAC_ASSERT(is_exactly_a<numeric>(seq[mid].coeff));
344                         int cmp = ex_to<numeric>(seq[mid].coeff).compare(looking_for);
345                         switch (cmp) {
346                                 case -1:
347                                         lo = mid + 1;
348                                         break;
349                                 case 0:
350                                         return seq[mid].rest;
351                                 case 1:
352                                         hi = mid - 1;
353                                         break;
354                                 default:
355                                         throw(std::logic_error("pseries::coeff: compare() didn't return -1, 0 or 1"));
356                         }
357                 }
358                 return _ex0;
359         } else
360                 return convert_to_poly().coeff(s, n);
361 }
362
363 /** Does nothing. */
364 ex pseries::collect(const ex &s, bool distributed) const
365 {
366         return *this;
367 }
368
369 /** Perform coefficient-wise automatic term rewriting rules in this class. */
370 ex pseries::eval(int level) const
371 {
372         if (level == 1)
373                 return this->hold();
374         
375         if (level == -max_recursion_level)
376                 throw (std::runtime_error("pseries::eval(): recursion limit exceeded"));
377         
378         // Construct a new series with evaluated coefficients
379         epvector new_seq;
380         new_seq.reserve(seq.size());
381         epvector::const_iterator it = seq.begin(), itend = seq.end();
382         while (it != itend) {
383                 new_seq.push_back(expair(it->rest.eval(level-1), it->coeff));
384                 ++it;
385         }
386         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
387 }
388
389 /** Evaluate coefficients numerically. */
390 ex pseries::evalf(int level) const
391 {
392         if (level == 1)
393                 return *this;
394         
395         if (level == -max_recursion_level)
396                 throw (std::runtime_error("pseries::evalf(): recursion limit exceeded"));
397         
398         // Construct a new series with evaluated coefficients
399         epvector new_seq;
400         new_seq.reserve(seq.size());
401         epvector::const_iterator it = seq.begin(), itend = seq.end();
402         while (it != itend) {
403                 new_seq.push_back(expair(it->rest.evalf(level-1), it->coeff));
404                 ++it;
405         }
406         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
407 }
408
409 ex pseries::subs(const lst & ls, const lst & lr, unsigned options) const
410 {
411         // If expansion variable is being substituted, convert the series to a
412         // polynomial and do the substitution there because the result might
413         // no longer be a power series
414         if (ls.has(var))
415                 return convert_to_poly(true).subs(ls, lr, options);
416         
417         // Otherwise construct a new series with substituted coefficients and
418         // expansion point
419         epvector newseq;
420         newseq.reserve(seq.size());
421         epvector::const_iterator it = seq.begin(), itend = seq.end();
422         while (it != itend) {
423                 newseq.push_back(expair(it->rest.subs(ls, lr, options), it->coeff));
424                 ++it;
425         }
426         return (new pseries(relational(var,point.subs(ls, lr, options)), newseq))->setflag(status_flags::dynallocated);
427 }
428
429 /** Implementation of ex::expand() for a power series.  It expands all the
430  *  terms individually and returns the resulting series as a new pseries. */
431 ex pseries::expand(unsigned options) const
432 {
433         epvector newseq;
434         epvector::const_iterator i = seq.begin(), end = seq.end();
435         while (i != end) {
436                 ex restexp = i->rest.expand();
437                 if (!restexp.is_zero())
438                         newseq.push_back(expair(restexp, i->coeff));
439                 ++i;
440         }
441         return (new pseries(relational(var,point), newseq))
442                 ->setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0));
443 }
444
445 /** Implementation of ex::diff() for a power series.
446  *  @see ex::diff */
447 ex pseries::derivative(const symbol & s) const
448 {
449         epvector new_seq;
450         epvector::const_iterator it = seq.begin(), itend = seq.end();
451
452         if (s == var) {
453                 
454                 // FIXME: coeff might depend on var
455                 while (it != itend) {
456                         if (is_order_function(it->rest)) {
457                                 new_seq.push_back(expair(it->rest, it->coeff - 1));
458                         } else {
459                                 ex c = it->rest * it->coeff;
460                                 if (!c.is_zero())
461                                         new_seq.push_back(expair(c, it->coeff - 1));
462                         }
463                         ++it;
464                 }
465
466         } else {
467
468                 while (it != itend) {
469                         if (is_order_function(it->rest)) {
470                                 new_seq.push_back(*it);
471                         } else {
472                                 ex c = it->rest.diff(s);
473                                 if (!c.is_zero())
474                                         new_seq.push_back(expair(c, it->coeff));
475                         }
476                         ++it;
477                 }
478         }
479
480         return pseries(relational(var,point), new_seq);
481 }
482
483 ex pseries::convert_to_poly(bool no_order) const
484 {
485         ex e;
486         epvector::const_iterator it = seq.begin(), itend = seq.end();
487         
488         while (it != itend) {
489                 if (is_order_function(it->rest)) {
490                         if (!no_order)
491                                 e += Order(power(var - point, it->coeff));
492                 } else
493                         e += it->rest * power(var - point, it->coeff);
494                 ++it;
495         }
496         return e;
497 }
498
499 bool pseries::is_terminating(void) const
500 {
501         return seq.empty() || !is_order_function((seq.end()-1)->rest);
502 }
503
504
505 /*
506  *  Implementations of series expansion
507  */
508
509 /** Default implementation of ex::series(). This performs Taylor expansion.
510  *  @see ex::series */
511 ex basic::series(const relational & r, int order, unsigned options) const
512 {
513         epvector seq;
514         numeric fac = 1;
515         ex deriv = *this;
516         ex coeff = deriv.subs(r, subs_options::no_pattern);
517         const symbol &s = ex_to<symbol>(r.lhs());
518         
519         if (!coeff.is_zero())
520                 seq.push_back(expair(coeff, _ex0));
521         
522         int n;
523         for (n=1; n<=order; ++n) {
524                 fac = fac.mul(n);
525                 // We need to test for zero in order to see if the series terminates.
526                 // The problem is that there is no such thing as a perfect test for
527                 // zero.  Expanding the term occasionally helps a little...
528                 deriv = deriv.diff(s).expand();
529                 if (deriv.is_zero())  // Series terminates
530                         return pseries(r, seq);
531
532                 coeff = deriv.subs(r, subs_options::no_pattern);
533                 if (!coeff.is_zero())
534                         seq.push_back(expair(fac.inverse() * coeff, n));
535         }
536         
537         // Higher-order terms, if present
538         int ldeg;
539         try {
540                 ldeg = std::abs(deriv.ldegree(s));
541         }
542         catch (std::runtime_error) {
543                 ldeg = 0;
544         }
545         if (ldeg != 0) {
546                 // pure polynomial
547                 if (!deriv.subs(r, subs_options::no_pattern).is_zero()) {
548                         seq.push_back(expair(Order(_ex1), n));
549                 } else {
550                 seq.push_back(expair(Order(_ex1), n+ldeg-1));
551                 }
552         } else {
553                 // something more complicated -> loop until next coefficient is found
554                 for (;; ++n) {
555                         deriv = deriv.diff(s).expand();
556                         if (deriv.is_zero()) {
557                                 break;
558                         }
559                         if (!deriv.subs(r, subs_options::no_pattern).is_zero()) {
560                                 seq.push_back(expair(Order(_ex1), n));
561                                 break;
562                         }
563                 }
564         }
565         
566         return pseries(r, seq);
567 }
568
569
570 /** Implementation of ex::series() for symbols.
571  *  @see ex::series */
572 ex symbol::series(const relational & r, int order, unsigned options) const
573 {
574         epvector seq;
575         const ex point = r.rhs();
576         GINAC_ASSERT(is_a<symbol>(r.lhs()));
577
578         if (this->is_equal_same_type(ex_to<symbol>(r.lhs()))) {
579                 if (order > 0 && !point.is_zero())
580                         seq.push_back(expair(point, _ex0));
581                 if (order > 1)
582                         seq.push_back(expair(_ex1, _ex1));
583                 else
584                         seq.push_back(expair(Order(_ex1), numeric(order)));
585         } else
586                 seq.push_back(expair(*this, _ex0));
587         return pseries(r, seq);
588 }
589
590
591 /** Add one series object to another, producing a pseries object that
592  *  represents the sum.
593  *
594  *  @param other  pseries object to add with
595  *  @return the sum as a pseries */
596 ex pseries::add_series(const pseries &other) const
597 {
598         // Adding two series with different variables or expansion points
599         // results in an empty (constant) series 
600         if (!is_compatible_to(other)) {
601                 epvector nul;
602                 nul.push_back(expair(Order(_ex1), _ex0));
603                 return pseries(relational(var,point), nul);
604         }
605         
606         // Series addition
607         epvector new_seq;
608         epvector::const_iterator a = seq.begin();
609         epvector::const_iterator b = other.seq.begin();
610         epvector::const_iterator a_end = seq.end();
611         epvector::const_iterator b_end = other.seq.end();
612         int pow_a = INT_MAX, pow_b = INT_MAX;
613         for (;;) {
614                 // If a is empty, fill up with elements from b and stop
615                 if (a == a_end) {
616                         while (b != b_end) {
617                                 new_seq.push_back(*b);
618                                 ++b;
619                         }
620                         break;
621                 } else
622                         pow_a = ex_to<numeric>((*a).coeff).to_int();
623                 
624                 // If b is empty, fill up with elements from a and stop
625                 if (b == b_end) {
626                         while (a != a_end) {
627                                 new_seq.push_back(*a);
628                                 ++a;
629                         }
630                         break;
631                 } else
632                         pow_b = ex_to<numeric>((*b).coeff).to_int();
633                 
634                 // a and b are non-empty, compare powers
635                 if (pow_a < pow_b) {
636                         // a has lesser power, get coefficient from a
637                         new_seq.push_back(*a);
638                         if (is_order_function((*a).rest))
639                                 break;
640                         ++a;
641                 } else if (pow_b < pow_a) {
642                         // b has lesser power, get coefficient from b
643                         new_seq.push_back(*b);
644                         if (is_order_function((*b).rest))
645                                 break;
646                         ++b;
647                 } else {
648                         // Add coefficient of a and b
649                         if (is_order_function((*a).rest) || is_order_function((*b).rest)) {
650                                 new_seq.push_back(expair(Order(_ex1), (*a).coeff));
651                                 break;  // Order term ends the sequence
652                         } else {
653                                 ex sum = (*a).rest + (*b).rest;
654                                 if (!(sum.is_zero()))
655                                         new_seq.push_back(expair(sum, numeric(pow_a)));
656                                 ++a;
657                                 ++b;
658                         }
659                 }
660         }
661         return pseries(relational(var,point), new_seq);
662 }
663
664
665 /** Implementation of ex::series() for sums. This performs series addition when
666  *  adding pseries objects.
667  *  @see ex::series */
668 ex add::series(const relational & r, int order, unsigned options) const
669 {
670         ex acc; // Series accumulator
671         
672         // Get first term from overall_coeff
673         acc = overall_coeff.series(r, order, options);
674         
675         // Add remaining terms
676         epvector::const_iterator it = seq.begin();
677         epvector::const_iterator itend = seq.end();
678         for (; it!=itend; ++it) {
679                 ex op;
680                 if (is_exactly_a<pseries>(it->rest))
681                         op = it->rest;
682                 else
683                         op = it->rest.series(r, order, options);
684                 if (!it->coeff.is_equal(_ex1))
685                         op = ex_to<pseries>(op).mul_const(ex_to<numeric>(it->coeff));
686                 
687                 // Series addition
688                 acc = ex_to<pseries>(acc).add_series(ex_to<pseries>(op));
689         }
690         return acc;
691 }
692
693
694 /** Multiply a pseries object with a numeric constant, producing a pseries
695  *  object that represents the product.
696  *
697  *  @param other  constant to multiply with
698  *  @return the product as a pseries */
699 ex pseries::mul_const(const numeric &other) const
700 {
701         epvector new_seq;
702         new_seq.reserve(seq.size());
703         
704         epvector::const_iterator it = seq.begin(), itend = seq.end();
705         while (it != itend) {
706                 if (!is_order_function(it->rest))
707                         new_seq.push_back(expair(it->rest * other, it->coeff));
708                 else
709                         new_seq.push_back(*it);
710                 ++it;
711         }
712         return pseries(relational(var,point), new_seq);
713 }
714
715
716 /** Multiply one pseries object to another, producing a pseries object that
717  *  represents the product.
718  *
719  *  @param other  pseries object to multiply with
720  *  @return the product as a pseries */
721 ex pseries::mul_series(const pseries &other) const
722 {
723         // Multiplying two series with different variables or expansion points
724         // results in an empty (constant) series 
725         if (!is_compatible_to(other)) {
726                 epvector nul;
727                 nul.push_back(expair(Order(_ex1), _ex0));
728                 return pseries(relational(var,point), nul);
729         }
730         
731         // Series multiplication
732         epvector new_seq;
733         int a_max = degree(var);
734         int b_max = other.degree(var);
735         int a_min = ldegree(var);
736         int b_min = other.ldegree(var);
737         int cdeg_min = a_min + b_min;
738         int cdeg_max = a_max + b_max;
739         
740         int higher_order_a = INT_MAX;
741         int higher_order_b = INT_MAX;
742         if (is_order_function(coeff(var, a_max)))
743                 higher_order_a = a_max + b_min;
744         if (is_order_function(other.coeff(var, b_max)))
745                 higher_order_b = b_max + a_min;
746         int higher_order_c = std::min(higher_order_a, higher_order_b);
747         if (cdeg_max >= higher_order_c)
748                 cdeg_max = higher_order_c - 1;
749         
750         for (int cdeg=cdeg_min; cdeg<=cdeg_max; ++cdeg) {
751                 ex co = _ex0;
752                 // c(i)=a(0)b(i)+...+a(i)b(0)
753                 for (int i=a_min; cdeg-i>=b_min; ++i) {
754                         ex a_coeff = coeff(var, i);
755                         ex b_coeff = other.coeff(var, cdeg-i);
756                         if (!is_order_function(a_coeff) && !is_order_function(b_coeff))
757                                 co += a_coeff * b_coeff;
758                 }
759                 if (!co.is_zero())
760                         new_seq.push_back(expair(co, numeric(cdeg)));
761         }
762         if (higher_order_c < INT_MAX)
763                 new_seq.push_back(expair(Order(_ex1), numeric(higher_order_c)));
764         return pseries(relational(var, point), new_seq);
765 }
766
767
768 /** Implementation of ex::series() for product. This performs series
769  *  multiplication when multiplying series.
770  *  @see ex::series */
771 ex mul::series(const relational & r, int order, unsigned options) const
772 {
773         pseries acc; // Series accumulator
774
775         GINAC_ASSERT(is_a<symbol>(r.lhs()));
776         const ex& sym = r.lhs();
777                 
778         // holds ldegrees of the series of individual factors
779         std::vector<int> ldegrees;
780         // flag if series have to be re-calculated
781         bool negldegree = false;
782
783         // Multiply with remaining terms
784         const epvector::const_iterator itbeg = seq.begin();
785         const epvector::const_iterator itend = seq.end();
786         for (epvector::const_iterator it=itbeg; it!=itend; ++it) {
787                 ex op = recombine_pair_to_ex(*it).series(r, order, options);
788
789                 int ldeg = op.ldegree(sym);
790                 ldegrees.push_back(ldeg);
791                 if (ldeg < 0) {
792                         negldegree = true;
793                 }
794
795                 // Series multiplication
796                 if (it==itbeg)
797                         acc = ex_to<pseries>(op);
798                 else
799                         acc = ex_to<pseries>(acc.mul_series(ex_to<pseries>(op)));
800         }
801
802         if (seq.size() > 1) {
803
804                 // re-calculation of series
805
806                 pseries newacc;
807
808                 const int degsum = std::accumulate(ldegrees.begin(), ldegrees.end(), 0);
809
810                 // Multiply with remaining terms
811                 const epvector::const_reverse_iterator itbeg = seq.rbegin();
812                 const epvector::const_reverse_iterator itend = seq.rend();
813                 std::vector<int>::const_reverse_iterator itd = ldegrees.rbegin();
814                 for (epvector::const_reverse_iterator it=itbeg; it!=itend; ++it, ++itd) {
815
816                         ex op = recombine_pair_to_ex(*it).series(r, order-degsum+(*itd), options);
817
818                         // Series multiplication
819                         if (it==itbeg)
820                                 newacc = ex_to<pseries>(op);
821                         else
822                                 newacc = ex_to<pseries>(newacc.mul_series(ex_to<pseries>(op)));
823                 }
824                 return newacc.mul_const(ex_to<numeric>(overall_coeff));
825         } else {
826                 return acc.mul_const(ex_to<numeric>(overall_coeff));
827         }
828 }
829
830
831 /** Compute the p-th power of a series.
832  *
833  *  @param p  power to compute
834  *  @param deg  truncation order of series calculation */
835 ex pseries::power_const(const numeric &p, int deg) const
836 {
837         // method:
838         // (due to Leonhard Euler)
839         // let A(x) be this series and for the time being let it start with a
840         // constant (later we'll generalize):
841         //     A(x) = a_0 + a_1*x + a_2*x^2 + ...
842         // We want to compute
843         //     C(x) = A(x)^p
844         //     C(x) = c_0 + c_1*x + c_2*x^2 + ...
845         // Taking the derivative on both sides and multiplying with A(x) one
846         // immediately arrives at
847         //     C'(x)*A(x) = p*C(x)*A'(x)
848         // Multiplying this out and comparing coefficients we get the recurrence
849         // formula
850         //     c_i = (i*p*a_i*c_0 + ((i-1)*p-1)*a_{i-1}*c_1 + ...
851         //                    ... + (p-(i-1))*a_1*c_{i-1})/(a_0*i)
852         // which can easily be solved given the starting value c_0 = (a_0)^p.
853         // For the more general case where the leading coefficient of A(x) is not
854         // a constant, just consider A2(x) = A(x)*x^m, with some integer m and
855         // repeat the above derivation.  The leading power of C2(x) = A2(x)^2 is
856         // then of course x^(p*m) but the recurrence formula still holds.
857         
858         if (seq.empty()) {
859                 // as a special case, handle the empty (zero) series honoring the
860                 // usual power laws such as implemented in power::eval()
861                 if (p.real().is_zero())
862                         throw std::domain_error("pseries::power_const(): pow(0,I) is undefined");
863                 else if (p.real().is_negative())
864                         throw pole_error("pseries::power_const(): division by zero",1);
865                 else
866                         return *this;
867         }
868         
869         const int ldeg = ldegree(var);
870         if (!(p*ldeg).is_integer())
871                 throw std::runtime_error("pseries::power_const(): trying to assemble a Puiseux series");
872
873         // adjust number of coefficients
874         deg = deg - p.to_int()*ldeg;
875         
876         // O(x^n)^(-m) is undefined
877         if (seq.size() == 1 && is_order_function(seq[0].rest) && p.real().is_negative())
878                 throw pole_error("pseries::power_const(): division by zero",1);
879         
880         // Compute coefficients of the powered series
881         exvector co;
882         co.reserve(deg);
883         co.push_back(power(coeff(var, ldeg), p));
884         bool all_sums_zero = true;
885         for (int i=1; i<=deg; ++i) {
886                 ex sum = _ex0;
887                 for (int j=1; j<=i; ++j) {
888                         ex c = coeff(var, j + ldeg);
889                         if (is_order_function(c)) {
890                                 co.push_back(Order(_ex1));
891                                 break;
892                         } else
893                                 sum += (p * j - (i - j)) * co[i - j] * c;
894                 }
895                 if (!sum.is_zero())
896                         all_sums_zero = false;
897                 co.push_back(sum / coeff(var, ldeg) / i);
898         }
899         
900         // Construct new series (of non-zero coefficients)
901         epvector new_seq;
902         bool higher_order = false;
903         for (int i=0; i<=deg; ++i) {
904                 if (!co[i].is_zero())
905                         new_seq.push_back(expair(co[i], p * ldeg + i));
906                 if (is_order_function(co[i])) {
907                         higher_order = true;
908                         break;
909                 }
910         }
911         if (!higher_order && !all_sums_zero)
912                 new_seq.push_back(expair(Order(_ex1), p * ldeg + deg + 1));
913
914         return pseries(relational(var,point), new_seq);
915 }
916
917
918 /** Return a new pseries object with the powers shifted by deg. */
919 pseries pseries::shift_exponents(int deg) const
920 {
921         epvector newseq = seq;
922         epvector::iterator i = newseq.begin(), end  = newseq.end();
923         while (i != end) {
924                 i->coeff += deg;
925                 ++i;
926         }
927         return pseries(relational(var, point), newseq);
928 }
929
930
931 /** Implementation of ex::series() for powers. This performs Laurent expansion
932  *  of reciprocals of series at singularities.
933  *  @see ex::series */
934 ex power::series(const relational & r, int order, unsigned options) const
935 {
936         // If basis is already a series, just power it
937         if (is_exactly_a<pseries>(basis))
938                 return ex_to<pseries>(basis).power_const(ex_to<numeric>(exponent), order);
939
940         // Basis is not a series, may there be a singularity?
941         bool must_expand_basis = false;
942         try {
943                 basis.subs(r, subs_options::no_pattern);
944         } catch (pole_error) {
945                 must_expand_basis = true;
946         }
947                 
948         // Is the expression of type something^(-int)?
949         if (!must_expand_basis && !exponent.info(info_flags::negint))
950                 return basic::series(r, order, options);
951
952         // Is the expression of type 0^something?
953         if (!must_expand_basis && !basis.subs(r, subs_options::no_pattern).is_zero())
954                 return basic::series(r, order, options);
955
956         // Singularity encountered, is the basis equal to (var - point)?
957         if (basis.is_equal(r.lhs() - r.rhs())) {
958                 epvector new_seq;
959                 if (ex_to<numeric>(exponent).to_int() < order)
960                         new_seq.push_back(expair(_ex1, exponent));
961                 else
962                         new_seq.push_back(expair(Order(_ex1), exponent));
963                 return pseries(r, new_seq);
964         }
965
966         // No, expand basis into series
967         int intexp = ex_to<numeric>(exponent).to_int();
968         ex e = basis.series(r, order, options);
969         int ldeg = ex_to<pseries>(e).ldegree(r.lhs());
970         if (intexp * ldeg < 0) {
971                 e = basis.series(r, order + ldeg*(1-intexp), options);
972         }
973         return ex_to<pseries>(e).power_const(intexp, order);
974 }
975
976
977 /** Re-expansion of a pseries object. */
978 ex pseries::series(const relational & r, int order, unsigned options) const
979 {
980         const ex p = r.rhs();
981         GINAC_ASSERT(is_a<symbol>(r.lhs()));
982         const symbol &s = ex_to<symbol>(r.lhs());
983         
984         if (var.is_equal(s) && point.is_equal(p)) {
985                 if (order > degree(s))
986                         return *this;
987                 else {
988                         epvector new_seq;
989                         epvector::const_iterator it = seq.begin(), itend = seq.end();
990                         while (it != itend) {
991                                 int o = ex_to<numeric>(it->coeff).to_int();
992                                 if (o >= order) {
993                                         new_seq.push_back(expair(Order(_ex1), o));
994                                         break;
995                                 }
996                                 new_seq.push_back(*it);
997                                 ++it;
998                         }
999                         return pseries(r, new_seq);
1000                 }
1001         } else
1002                 return convert_to_poly().series(r, order, options);
1003 }
1004
1005
1006 /** Compute the truncated series expansion of an expression.
1007  *  This function returns an expression containing an object of class pseries 
1008  *  to represent the series. If the series does not terminate within the given
1009  *  truncation order, the last term of the series will be an order term.
1010  *
1011  *  @param r  expansion relation, lhs holds variable and rhs holds point
1012  *  @param order  truncation order of series calculations
1013  *  @param options  of class series_options
1014  *  @return an expression holding a pseries object */
1015 ex ex::series(const ex & r, int order, unsigned options) const
1016 {
1017         GINAC_ASSERT(bp!=0);
1018         ex e;
1019         relational rel_;
1020         
1021         if (is_a<relational>(r))
1022                 rel_ = ex_to<relational>(r);
1023         else if (is_a<symbol>(r))
1024                 rel_ = relational(r,_ex0);
1025         else
1026                 throw (std::logic_error("ex::series(): expansion point has unknown type"));
1027         
1028         try {
1029                 e = bp->series(rel_, order, options);
1030         } catch (std::exception &x) {
1031                 throw (std::logic_error(std::string("unable to compute series (") + x.what() + ")"));
1032         }
1033         return e;
1034 }
1035
1036 } // namespace GiNaC