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Overview

• The GiNaC Framework

– Objective and Idea

– The Class Hierarchy

• Demonstration: Selected Symbolic Capabilities

– Manipulation of Polynomials

– Power Series Expansion

• Symbolic Computation in C++: Relevant Design Patterns

– Reference Counting

– Anonymous Evaluation

– Delegation vs. the Visitor Pattern

– The Flyweight and the Bridge Patterns

– Potential for Object Depletion
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The GiNaC Framework: Objective and Idea

Why:

• Dissatisfaction with MapleVRn for HEP computations:
◦ Limitations in polynomial representation (fixed in 2000 with Maple6)
◦ Many linguistical problems (weird scope)
◦ Support by manufacturer? Patch releases? What’s that?

• Situation in 1998: Nearly everything was closed-source or under
‘strange’ licenses (Form, Pari, NTL, Singular. . . ) (different now!)

• C++ is lingua franca for us physicists

• Wanted a testbed for symbolic manipulation

• Could not afford frequent changes in language
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Why:

• Dissatisfaction with MapleVRn for HEP computations:
◦ Limitations in polynomial representation (fixed in 2000 with Maple6)
◦ Many linguistical problems (weird scope)
◦ Support by manufacturer? Patch releases? What’s that?

• Situation in 1998: Nearly everything was closed-source or under
‘strange’ licenses (Form, Pari, NTL, Singular. . . ) (different now!)

• C++ is lingua franca for us physicists

• Wanted a testbed for symbolic manipulation

• Could not afford frequent changes in language

GiNaC: (Ch. Bauer, A. Frink, R. Kreckel)

• Absolutely no limits (arithmetic, size of expressions)

• Free license (GPL), open development model (CVS, patches welcome)

• Not yet another language ⇒ program in C++ (ISO/IEC 14882)

• Provides all that is needed for HEP computations:
◦ Arbitrary precision arithmetic (through CLN)
◦ Multivariate polynomial GCDs, though no factorization
◦ Powerful series expansion
◦ Noncommutative objects: SU(2), SU(3), etc. . .
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The GiNaC Framework: The Class Hierarchy
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� Memory management: Reference counting

� Objects are hashed, for fast comparison (Fibonacci hash)

� Class numeric wraps Bruno Haible’s CLN (GPL, ∼100kloc)
C++ library, arbitrary precision arithmetic, type retraction, refcounted

� Algebraic notation through operator overloading ⇒ intuitive syntax



4

Demonstration: Selected Symbolic Capabilities

Special Relativity (Einstein, 1905): mass m is a function of velocity v

m = γm0, γ = 1
/√

1−
(

v
c

)2
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Demonstration: Selected Symbolic Capabilities

Special Relativity (Einstein, 1905): mass m is a function of velocity v

m = γm0, γ = 1
/√

1−
(

v
c

)2

1 #include <iostream>
2 #include <ginac/ginac.h>
3 using namespace std;
4 using namespace GiNaC;
5

6 int main(void)
7 {
8 const symbol v("v"), c("c");
9

10 ex gamma = 1 / sqrt(1 - pow(v/c, 2));
11 ex mass_nonrel = gamma.series(v == 0, 20);
12

13 cout << "the relativistic mass increase with v is\n"
14 << mass_nonrel << endl;
15

16 cout << "the inverse square of this series is\n"
17 << pow(mass_nonrel, -2).series(v == 0, 123) << endl;
18

19 return 0;
20 }
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Symbolic Computation in C++: Relevant Design Patterns

Ad:

What is a Design Pattern?
“Each pattern describes a problem which occurs
over and over again in our environment, and
then describes the core of the solution to that
problem, in such a way that you can use this
solution a million times over, without ever doing
it the same way twice.”

Christopher Alexander et al.
“A Pattern Language” (1977)

Design Patterns capture déjà-vus.
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Relevant Design Patterns: Reference Counting

Euler Numbers En := Taylor coefficient in 1
cosh(x) ≡

∑∞
n=0 En
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mul power

−1

0

cosh−3 12 sinh

x

add

Tree ⇒ DAG
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Relevant Design Patterns: Anonymous Evaluation

Problem: Need canonification of symbolic objects (sort of local CSE)

x-x → 0 an integer
x+x → 2*x a product (or monomial)
x+y → x+y a sum (or polynomial)
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Relevant Design Patterns: Anonymous Evaluation

Problem: Need canonification of symbolic objects (sort of local CSE)

x-x → 0 an integer
x+x → 2*x a product (or monomial)
x+y → x+y a sum (or polynomial)

Solution: Implement method ::eval(int) in each class, call it at the
transition between ex and algebraic classes:

1 class ex {
2 // ...
3 private:
4 basic* bp;
5 };

1 ex::ex(const basic& other)
2 {
3 if (!(other.flags & status_flags::evaluated)) {
4 const ex& tmpex = other.eval(1); // evaluate only one (top) level
5 bp = tmpex.bp;
6 ++bp->refcount;
7 // clear up tmpex, etc...
8 }
9 // copy bp, adjust refcount, etc...

10 }
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Relevant Design Patterns: Delegation vs. the Visitor Pattern

Common algorithms are best
implemented as methods using
‘Delegation’.

Method is added on each class,
wrapper ex uses type dispatch:

1 inline const ex
2 ex::expand(void) const
3 {
4 return bp->expand();
5 }

1 const ex // virtual
2 basic::expand(void) const
3 {
4 // maybe default...
5 }

1 const ex
2 add::expand(void) const
3 {
4 // overwrite...
5 }

etc. . .
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Relevant Design Patterns: Delegation vs. the Visitor Pattern

Common algorithms are best
implemented as methods using
‘Delegation’.

Method is added on each class,
wrapper ex uses type dispatch:

1 inline const ex
2 ex::expand(void) const
3 {
4 return bp->expand();
5 }

1 const ex // virtual
2 basic::expand(void) const
3 {
4 // maybe default...
5 }

1 const ex
2 add::expand(void) const
3 {
4 // overwrite...
5 }

etc. . .

Problem: User-supplied algorithms
would require adding methods,
recompilation, breaking ABI, etc...
Solution: Let ‘Visitor’ object traverse
the expression tree by reference.

1 struct map_rem_quad
2 : public map_function {
3 ex var;
4 map_rem_quad(const ex& var_)
5 : var(var_) {}
6 ex operator()(const ex& e)
7 {
8 if (is_a<add>(e) || is_a<mul>(e))
9 return e.map(*this);

10 else if (is_a<power>(e))
11 /* return zero for even
12 * powers of var_ */
13 else
14 return e;
15 }
16 };
17

18 // ex e constains x...
19 map_rem_quad foo(x);
20 cout << foo(e) << endl;
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Relevant Design Patterns: The Flyweight and the Bridge Patterns

Why Flyweights matter:
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1 ex e1 = 42;
2 ex e2 = e1;
3 ex e3 = 42ULL;

2

e1

e
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42

. . . and later:

1 if (e1 == e2) {
2 // do something
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Relevant Design Patterns: The Flyweight and the Bridge Patterns

Why Flyweights matter:
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1 ex e1 = 42;
2 ex e2 = e1;
3 ex e3 = 42ULL;
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. . . and later:

1 if (e1 == e2) {
2 // do something

c.f. CLN’s class hierarchy:

cl_number

cl_N

cl_R

cl_F

cl_I

cl_RA

cl_LFcl_DFcl_FFcl_SF

C

R

Q

Z

Positive: mathematically correct

Negative: anti-OO
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. . . and later:

1 if (e1 == e2) {
2 // do something

c.f. CLN’s class hierarchy:

cl_number

cl_N
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cl_LFcl_DFcl_FFcl_SF

C
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Positive: mathematically correct

Negative: anti-OO

Solution: implementation must be
completely hidden from people
#include’ing cl I, cl RA, etc.
(“Bridge”)
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Relevant Design Patterns: Potential for Object Depletion

Problem: Equivalent objects are created on the heap, calling for deep tree
traversal whenever comparisons occur (i.e. very frequently!)
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Relevant Design Patterns: Potential for Object Depletion

Problem: Equivalent objects are created on the heap, calling for deep tree
traversal whenever comparisons occur (i.e. very frequently!)

Solution: Do it only once, and later compare pointers only!

1 ex e1 = x+x;
declare e1 to store x+x
(canonifies to 2*x on the heap)

2x
1

e1

2 ex e2 = 3*x-x;
declare e2 to store 3*x-x
(canonifies to 2*x on the heap)

2x
1

2x
1

e2

e1
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Relevant Design Patterns: Potential for Object Depletion

Problem: Equivalent objects are created on the heap, calling for deep tree
traversal whenever comparisons occur (i.e. very frequently!)

Solution: Do it only once, and later compare pointers only!

1 ex e1 = x+x;
declare e1 to store x+x
(canonifies to 2*x on the heap)

2x
1

e1

2 ex e2 = 3*x-x;
declare e2 to store 3*x-x
(canonifies to 2*x on the heap)

2x
1

2x
1

e2

e1

3

4

if (e1 == e2) {

//...

compare e1 with e2, since true, delete
one of them and increase the refcount
of the other one 2x

2

2x
0

e2

e1

Implementation is straightforward inside operator==(ex,ex)!
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Relevant Design Patterns: Potential for Object Depletion

Problem: Equivalent objects are created on the heap, calling for deep tree
traversal whenever comparisons occur (i.e. very frequently!)

Solution: Do it only once, and later compare pointers only!

1 ex e1 = x+x;
declare e1 to store x+x
(canonifies to 2*x on the heap)

2x
1

e1

2 ex e2 = 3*x-x;
declare e2 to store 3*x-x
(canonifies to 2*x on the heap)

2x
1

2x
1

e2

e1

3

4

if (e1 == e2) {

//...

compare e1 with e2, since true, delete
one of them and increase the refcount
of the other one 2x

2

2x
0

e2

e1

Implementation is straightforward inside operator==(ex,ex)!

Prerequisite: Users must not be able to alias to reference-counted objects!
IOW: “Bridge” must be complete.
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Availability, spin-offs and all that. . .

GiNaC 1.0.8 available from http://www.ginac.de/, focus on stability,

distributed with , and
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Availability, spin-offs and all that. . .

GiNaC 1.0.8 available from http://www.ginac.de/, focus on stability,

distributed with , and

gTybalt (Stefan Weinzierl, Roberta Marani) Cint, Root, TeXmacs
http://www.fis.unipr.it/~stefanw/gtybalt.html

pyginac (Pearu Peterson) Python bindings
http://cens.ioc.ee/projects/pyginac/

Symbolic Octave (Ben Sapp) Exposes GiNaC to GNU Octave
http://bsoctave.sourceforge.net/

Purrs (Roberto Bagnara et al.) Automated complexity analysis
http://www.cs.unipr.it/purrs/
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