
What can it be used for
and

what can we learn from it?

Richard B. Kreckel, Johannes Gutenberg University, Mayence

Workshop on Open Source Computer Algebra Systems

Lyon, France, 21 May 2002

1

Overview

• The GiNaC Framework

– Objective and Idea

– The Class Hierarchy

• Demonstration: Selected Symbolic Capabilities

– Manipulation of Polynomials

– Power Series Expansion

• Symbolic Computation in C++: Relevant Design Patterns

– Reference Counting

– Anonymous Evaluation

– Delegation vs. the Visitor Pattern

– The Flyweight and the Bridge Patterns

– Potential for Object Depletion

2

The GiNaC Framework: Objective and Idea

Why:

• Dissatisfaction with MapleVRn for HEP computations:
◦ Limitations in polynomial representation (fixed in 2000 with Maple6)
◦ Many linguistical problems (weird scope)
◦ Support by manufacturer? Patch releases? What’s that?

• Situation in 1998: Nearly everything was closed-source or under
‘strange’ licenses (Form, Pari, NTL, Singular. . .) (different now!)

• C++ is lingua franca for us physicists

• Wanted a testbed for symbolic manipulation

• Could not afford frequent changes in language

2

The GiNaC Framework: Objective and Idea

Why:

• Dissatisfaction with MapleVRn for HEP computations:
◦ Limitations in polynomial representation (fixed in 2000 with Maple6)
◦ Many linguistical problems (weird scope)
◦ Support by manufacturer? Patch releases? What’s that?

• Situation in 1998: Nearly everything was closed-source or under
‘strange’ licenses (Form, Pari, NTL, Singular. . .) (different now!)

• C++ is lingua franca for us physicists

• Wanted a testbed for symbolic manipulation

• Could not afford frequent changes in language

GiNaC: (Ch. Bauer, A. Frink, R. Kreckel)

• Absolutely no limits (arithmetic, size of expressions)

• Free license (GPL), open development model (CVS, patches welcome)

• Not yet another language ⇒ program in C++ (ISO/IEC 14882)

• Provides all that is needed for HEP computations:
◦ Arbitrary precision arithmetic (through CLN)
◦ Multivariate polynomial GCDs, though no factorization
◦ Powerful series expansion
◦ Noncommutative objects: SU(2), SU(3), etc. . .

3

The GiNaC Framework: The Class Hierarchy

e
x
p
a
i
r
s
e
q

ex

a
d
d

m
u
l

p
o
w
e
r

p
s
e
r
i
e
s

f
u
n
c
t
i
o
n

i
n
d
e
x
e
d

c
o
l
o
r

c
l
i
f
f
o
r
d

v
a
r
i
d
x

t
e
n
s
d
e
l
t
a

t
e
n
s
o
r

i
d
x

l
s
t

basic

r
e
l
a
t
i
o
n
a
l

m
a
t
r
i
x

w
i
l
d
c
a
r
d

n
u
m
e
r
i
c

c
o
n
s
t
a
n
t

s
y
m
b
o
l

n
c
m
u
l

f
d
e
r
i
v
a
t
i
v
e

abstract class

container class atomic class

Source code generated by script

B

A

is

from
derived

basic

ex

handles

... ...

e
x
p
r
s
e
q

� Memory management: Reference counting

� Objects are hashed, for fast comparison (Fibonacci hash)

� Class numeric wraps Bruno Haible’s CLN (GPL, ∼100kloc)
C++ library, arbitrary precision arithmetic, type retraction, refcounted

� Algebraic notation through operator overloading ⇒ intuitive syntax

4

Demonstration: Selected Symbolic Capabilities

Special Relativity (Einstein, 1905): mass m is a function of velocity v

m = γm0, γ = 1
/√

1−
(

v
c

)2

4

Demonstration: Selected Symbolic Capabilities

Special Relativity (Einstein, 1905): mass m is a function of velocity v

m = γm0, γ = 1
/√

1−
(

v
c

)2

1 #include <iostream>
2 #include <ginac/ginac.h>
3 using namespace std;
4 using namespace GiNaC;
5

6 int main(void)
7 {
8 const symbol v("v"), c("c");
9

10 ex gamma = 1 / sqrt(1 - pow(v/c, 2));
11 ex mass_nonrel = gamma.series(v == 0, 20);
12

13 cout << "the relativistic mass increase with v is\n"
14 << mass_nonrel << endl;
15

16 cout << "the inverse square of this series is\n"
17 << pow(mass_nonrel, -2).series(v == 0, 123) << endl;
18

19 return 0;
20 }

5

Symbolic Computation in C++: Relevant Design Patterns

Ad:

What is a Design Pattern?
“Each pattern describes a problem which occurs
over and over again in our environment, and
then describes the core of the solution to that
problem, in such a way that you can use this
solution a million times over, without ever doing
it the same way twice.”

Christopher Alexander et al.
“A Pattern Language” (1977)

Design Patterns capture déjà-vus.

5

Symbolic Computation in C++: Relevant Design Patterns

Ad:

What is a Design Pattern?
“Each pattern describes a problem which occurs
over and over again in our environment, and
then describes the core of the solution to that
problem, in such a way that you can use this
solution a million times over, without ever doing
it the same way twice.”

Christopher Alexander et al.
“A Pattern Language” (1977)

Design Patterns capture déjà-vus.

• Reference Counting

• Anonymous Evaluation

• Delegation vs. the Visitor Pattern

• The Flyweight and the Bridge Patterns

• Potential for Object Depletion

6

Relevant Design Patterns: Reference Counting

Euler Numbers En := Taylor coefficient in 1
cosh(x) ≡

∑∞
n=0 En

xn

n! :

 0.1

 1

 10

 100

 1000

 100 1000 10000

M
em

or
y

F
oo

tp
rin

t (
in

 M
B

)

nth Euler number

GiNaC	1.0
Mathematica	4

MapleV	R5
MuPAD	1.3

6

Relevant Design Patterns: Reference Counting

Euler Numbers En := Taylor coefficient in 1
cosh(x) ≡

∑∞
n=0 En

xn

n! :

 0.1

 1

 10

 100

 1000

 100 1000 10000

M
em

or
y

F
oo

tp
rin

t (
in

 M
B

)

nth Euler number

GiNaC	1.0
Mathematica	4

MapleV	R5
MuPAD	1.3

GiNaC’s representation tree for

d2

dx2

1

cosh(x)
= 2

sinh(x)2

cosh(x)3
−

1

cosh(x)
as it appears in E2 looks like this:

mul power

−1

0

cosh−3 12 sinh

x

add

6

Relevant Design Patterns: Reference Counting

Euler Numbers En := Taylor coefficient in 1
cosh(x) ≡

∑∞
n=0 En

xn

n! :

 0.1

 1

 10

 100

 1000

 100 1000 10000

M
em

or
y

F
oo

tp
rin

t (
in

 M
B

)

nth Euler number

GiNaC	1.0
Mathematica	4

MapleV	R5
MuPAD	1.3

GiNaC’s representation tree for

d2

dx2

1

cosh(x)
= 2

sinh(x)2

cosh(x)3
−

1

cosh(x)
as it appears in E2 looks like this:

mul power

−1

0

cosh−3 12 sinh

x

add

Tree ⇒ DAG

7

Relevant Design Patterns: Anonymous Evaluation

Problem: Need canonification of symbolic objects (sort of local CSE)

x-x → 0 an integer
x+x → 2*x a product (or monomial)
x+y → x+y a sum (or polynomial)

7

Relevant Design Patterns: Anonymous Evaluation

Problem: Need canonification of symbolic objects (sort of local CSE)

x-x → 0 an integer
x+x → 2*x a product (or monomial)
x+y → x+y a sum (or polynomial)

Solution: Implement method ::eval(int) in each class, call it at the
transition between ex and algebraic classes:

1 class ex {
2 // ...
3 private:
4 basic* bp;
5 };

1 ex::ex(const basic& other)
2 {
3 if (!(other.flags & status_flags::evaluated)) {
4 const ex& tmpex = other.eval(1); // evaluate only one (top) level
5 bp = tmpex.bp;
6 ++bp->refcount;
7 // clear up tmpex, etc...
8 }
9 // copy bp, adjust refcount, etc...

10 }

8

Relevant Design Patterns: Delegation vs. the Visitor Pattern

Common algorithms are best
implemented as methods using
‘Delegation’.

Method is added on each class,
wrapper ex uses type dispatch:

1 inline const ex
2 ex::expand(void) const
3 {
4 return bp->expand();
5 }

1 const ex // virtual
2 basic::expand(void) const
3 {
4 // maybe default...
5 }

1 const ex
2 add::expand(void) const
3 {
4 // overwrite...
5 }

etc. . .

8

Relevant Design Patterns: Delegation vs. the Visitor Pattern

Common algorithms are best
implemented as methods using
‘Delegation’.

Method is added on each class,
wrapper ex uses type dispatch:

1 inline const ex
2 ex::expand(void) const
3 {
4 return bp->expand();
5 }

1 const ex // virtual
2 basic::expand(void) const
3 {
4 // maybe default...
5 }

1 const ex
2 add::expand(void) const
3 {
4 // overwrite...
5 }

etc. . .

Problem: User-supplied algorithms
would require adding methods,
recompilation, breaking ABI, etc...
Solution: Let ‘Visitor’ object traverse
the expression tree by reference.

1 struct map_rem_quad
2 : public map_function {
3 ex var;
4 map_rem_quad(const ex& var_)
5 : var(var_) {}
6 ex operator()(const ex& e)
7 {
8 if (is_a<add>(e) || is_a<mul>(e))
9 return e.map(*this);

10 else if (is_a<power>(e))
11 /* return zero for even
12 * powers of var_ */
13 else
14 return e;
15 }
16 };
17

18 // ex e constains x...
19 map_rem_quad foo(x);
20 cout << foo(e) << endl;

9

Relevant Design Patterns: The Flyweight and the Bridge Patterns

Why Flyweights matter:

e
x
p
a
i
r
s
e
q

ex

a
d
d

m
u
l

p
o
w
e
r

p
s
e
r
i
e
s

f
u
n
c
t
i
o
n

i
n
d
e
x
e
d

c
o
l
o
r

c
l
i
f
f
o
r
d

v
a
r
i
d
x

t
e
n
s
d
e
l
t
a

t
e
n
s
o
r

i
d
x

l
s
t

basic

r
e
l
a
t
i
o
n
a
l

m
a
t
r
i
x

w
i
l
d
c
a
r
d

n
u
m
e
r
i
c

c
o
n
s
t
a
n
t

s
y
m
b
o
l

n
c
m
u
l

f
d
e
r
i
v
a
t
i
v
e

abstract class

container class atomic class

Source code generated by script

B

A

is

from
derived

basic

ex

handles

... ...

e
x
p
r
s
e
q

1 ex e1 = 42;
2 ex e2 = e1;
3 ex e3 = 42ULL;

2

e1

e

e3

3
42

. . . and later:

1 if (e1 == e2) {
2 // do something

9

Relevant Design Patterns: The Flyweight and the Bridge Patterns

Why Flyweights matter:

e
x
p
a
i
r
s
e
q

ex

a
d
d

m
u
l

p
o
w
e
r

p
s
e
r
i
e
s

f
u
n
c
t
i
o
n

i
n
d
e
x
e
d

c
o
l
o
r

c
l
i
f
f
o
r
d

v
a
r
i
d
x

t
e
n
s
d
e
l
t
a

t
e
n
s
o
r

i
d
x

l
s
t

basic

r
e
l
a
t
i
o
n
a
l

m
a
t
r
i
x

w
i
l
d
c
a
r
d

n
u
m
e
r
i
c

c
o
n
s
t
a
n
t

s
y
m
b
o
l

n
c
m
u
l

f
d
e
r
i
v
a
t
i
v
e

abstract class

container class atomic class

Source code generated by script

B

A

is

from
derived

basic

ex

handles

... ...

e
x
p
r
s
e
q

1 ex e1 = 42;
2 ex e2 = e1;
3 ex e3 = 42ULL;

2

e1

e

e3

3
42

. . . and later:

1 if (e1 == e2) {
2 // do something

c.f. CLN’s class hierarchy:

cl_number

cl_N

cl_R

cl_F

cl_I

cl_RA

cl_LFcl_DFcl_FFcl_SF

C

R

Q

Z

Positive: mathematically correct

Negative: anti-OO

9

Relevant Design Patterns: The Flyweight and the Bridge Patterns

Why Flyweights matter:

e
x
p
a
i
r
s
e
q

ex

a
d
d

m
u
l

p
o
w
e
r

p
s
e
r
i
e
s

f
u
n
c
t
i
o
n

i
n
d
e
x
e
d

c
o
l
o
r

c
l
i
f
f
o
r
d

v
a
r
i
d
x

t
e
n
s
d
e
l
t
a

t
e
n
s
o
r

i
d
x

l
s
t

basic

r
e
l
a
t
i
o
n
a
l

m
a
t
r
i
x

w
i
l
d
c
a
r
d

n
u
m
e
r
i
c

c
o
n
s
t
a
n
t

s
y
m
b
o
l

n
c
m
u
l

f
d
e
r
i
v
a
t
i
v
e

abstract class

container class atomic class

Source code generated by script

B

A

is

from
derived

basic

ex

handles

... ...

e
x
p
r
s
e
q

1 ex e1 = 42;
2 ex e2 = e1;
3 ex e3 = 42ULL;

2

e1

e

e3

3
42

. . . and later:

1 if (e1 == e2) {
2 // do something

c.f. CLN’s class hierarchy:

cl_number

cl_N

cl_R

cl_F

cl_I

cl_RA

cl_LFcl_DFcl_FFcl_SF

C

R

Q

Z

Positive: mathematically correct

Negative: anti-OO

Solution: implementation must be
completely hidden from people
#include’ing cl I, cl RA, etc.
(“Bridge”)

10

Relevant Design Patterns: Potential for Object Depletion

Problem: Equivalent objects are created on the heap, calling for deep tree
traversal whenever comparisons occur (i.e. very frequently!)

10

Relevant Design Patterns: Potential for Object Depletion

Problem: Equivalent objects are created on the heap, calling for deep tree
traversal whenever comparisons occur (i.e. very frequently!)

Solution: Do it only once, and later compare pointers only!

1 ex e1 = x+x;
declare e1 to store x+x
(canonifies to 2*x on the heap)

2x
1

e1

2 ex e2 = 3*x-x;
declare e2 to store 3*x-x
(canonifies to 2*x on the heap)

2x
1

2x
1

e2

e1

10

Relevant Design Patterns: Potential for Object Depletion

Problem: Equivalent objects are created on the heap, calling for deep tree
traversal whenever comparisons occur (i.e. very frequently!)

Solution: Do it only once, and later compare pointers only!

1 ex e1 = x+x;
declare e1 to store x+x
(canonifies to 2*x on the heap)

2x
1

e1

2 ex e2 = 3*x-x;
declare e2 to store 3*x-x
(canonifies to 2*x on the heap)

2x
1

2x
1

e2

e1

3

4

if (e1 == e2) {

//...

compare e1 with e2, since true, delete
one of them and increase the refcount
of the other one 2x

2

2x
0

e2

e1

Implementation is straightforward inside operator==(ex,ex)!

10

Relevant Design Patterns: Potential for Object Depletion

Problem: Equivalent objects are created on the heap, calling for deep tree
traversal whenever comparisons occur (i.e. very frequently!)

Solution: Do it only once, and later compare pointers only!

1 ex e1 = x+x;
declare e1 to store x+x
(canonifies to 2*x on the heap)

2x
1

e1

2 ex e2 = 3*x-x;
declare e2 to store 3*x-x
(canonifies to 2*x on the heap)

2x
1

2x
1

e2

e1

3

4

if (e1 == e2) {

//...

compare e1 with e2, since true, delete
one of them and increase the refcount
of the other one 2x

2

2x
0

e2

e1

Implementation is straightforward inside operator==(ex,ex)!

Prerequisite: Users must not be able to alias to reference-counted objects!
IOW: “Bridge” must be complete.

11

Availability, spin-offs and all that. . .

GiNaC 1.0.8 available from http://www.ginac.de/, focus on stability,

distributed with , and

11

Availability, spin-offs and all that. . .

GiNaC 1.0.8 available from http://www.ginac.de/, focus on stability,

distributed with , and

gTybalt (Stefan Weinzierl, Roberta Marani) Cint, Root, TeXmacs
http://www.fis.unipr.it/~stefanw/gtybalt.html

pyginac (Pearu Peterson) Python bindings
http://cens.ioc.ee/projects/pyginac/

Symbolic Octave (Ben Sapp) Exposes GiNaC to GNU Octave
http://bsoctave.sourceforge.net/

Purrs (Roberto Bagnara et al.) Automated complexity analysis
http://www.cs.unipr.it/purrs/

11

Availability, spin-offs and all that. . .

GiNaC 1.0.8 available from http://www.ginac.de/, focus on stability,

distributed with , and

gTybalt (Stefan Weinzierl, Roberta Marani) Cint, Root, TeXmacs
http://www.fis.unipr.it/~stefanw/gtybalt.html

pyginac (Pearu Peterson) Python bindings
http://cens.ioc.ee/projects/pyginac/

Symbolic Octave (Ben Sapp) Exposes GiNaC to GNU Octave
http://bsoctave.sourceforge.net/

Purrs (Roberto Bagnara et al.) Automated complexity analysis
http://www.cs.unipr.it/purrs/

