using namespace. cln;

CLN: A Class' Library for Numbers

Richard B! Kreckel
Castro 'Urdiales, September 12006

Overview

History of the library
Feature Overview

The Type System
bringing mathematical types and OO together

Selected Implementation Aspects

— Implementing class c1_I : public cl_RA ...

— Fixnums and Bignums

Small Example
printing the largest known perfect number

Finally. . .
Applications

CLN History

late 1980s-1995: arbitrary precision types within CLisp (Bruno Haible et al.)
http://clisp.cons.org/ (1987-today)
implementation languages: C and Assembler

1995: spin-off from CLisp

implementation languages: C++ and Assembler

purpose: make the arbitrary precision numbers of CLisp available to a broader
public

1996: option to base low-level routines on more efficient GMP routines
http://wuw.swox.com/gmp/ (MPN level only)
computation of 1000000 decimal digits of {(3)

1999-01-12: release of CLN version 1.0

2000: maintainer change, since Bruno Haible was busy doing CLisp, Linux
118N, Unicode Support (libiconv), GLibC and several other free software
projects

CLN History

late 1980s-1995: arbitrary precision types within CLisp (Bruno Haible et al.)
http://clisp.cons.org/ (1987-today)
implementation languages: C and Assembler

1995: spin-off from CLisp

implementation languages: C++ and Assembler

purpose: make the arbitrary precision numbers of CLisp available to a broader
public

1996: option to base low-level routines on more efficient GMP routines

http://wuw.swox.com/gmp/ (MPN level only)
computation of 1000000 decimal digits of {(3)

1999-01-12: release of CLN version 1.0

2000: maintainer change, since Bruno Haible was busy doing CLisp, Linux
118N, Unicode Support (libiconv), GLibC and several other free software
projects

2006/2007: release of CLN 1.2 with support for huge numbers (>4GB each)

CLN Features

rich set of number classes with unlimited precision
integers, rational numbers, floats, complex numbers, modular integers,

even univariate polynomials

natural mathematical syntax / type system
algebraic syntax through operator overloading (z=x+y instead of add(x,y,&z))
natural injections like Z — Q modeled with types

speed efficiency

C++4 compiles to good machine code, usage of assembler for critical parts and common
CPUs ('i386', 'x86_64", "alpha’, . . .), asymptotically ideal algorithms (Schonhage-Strassen
multiplication, binary splitting, etc.)

memory efficiency

representation of small numbers as immediate values instead of as pointers to heap
allocated storage

object sharing: x40 returns o without copying it, etc.

CLN Type System

Natural injections in an OO environment: Z — Q, Q — R, R — C, etc.
CLN types for those fields:

Integers Z: c1_1

Rationals Q: c1_RA

Reals R: c1_R

Complex numbers C: c1_N

CLN Type System

Natural injections in an OO environment: Z — Q, Q — R, R — C, etc.

CLN types for those fields:

cl _nunber

Integers Z: c1_I 4
Rationals Q: c1_RA

f
Reals R: c1_R A

Complex numbers C: c1_N T I F

cl N

cl | cl _SF I cl _FF I cl_DF I cl LF I

CLN Type System

Natural injections in an OO environment: Z — Q, Q — R, R — C, etc.

CLN types for those fields:

cl _nunber

Integers Z: c1_I {
Rationals Q: c1_RA

f
Reals R: c1_R A
Complex numbers C: c1_N o o F
? e

cl | cl _SF I cl _FF I cl_DF I cl LF I

cl N

Short-Floats c1_SF: sign, 17 mantissa bits, 8 exponent bits

Single-Floats c1_FF: sign, 24 mantissa bits, 8 exponent bits
(IEEE 754 single-precision floating point number type)

Double-Floats c1_DF: sign, 53 mantissa bits, 11 exponent bits
(IEEE 754 double-precision floating point number type)

Long-Floats: c1_LF sign, arbitrary number of mantissa bits, 32 (or 64)
exponent bits

Implementation Aspects: Implementing class cl1_I : public cl_RA

Problem: Mathematically, c1_I
must be a specialization of c1_RA. l?N
But doesn’t a rational number carry T_
more data than an integer? ol R
Isn't this anti-O0?
cl _RA I cl F
!]
cl I I | cl _SF | cl _FF | cl _DF | cl _LF

Implementation Aspects: Implementing class cl1_I : public cl_RA

Problem: Mathematically, c1_I
must be a specialization of c1_RA. Cl?N
But doesn't a rational number carry T_
more data than an integer? ol R
Isn't this anti-O0?
cl _RA I cl F
!]
cl | I | cl _SF | cl _FF | cl DF | cl LF

Solution: implementation follows the , bridge” design pattern:

1 class cl_number {

2 void* pointer_to_hidden_implementation;
3 // no other data fields

4}

5 ..

6 class cl_RA : public cl_R {

7 // no new data fields...

8 };

9 class cl_I : public cl_RA {

10 // no new data fields...

11}

Implementation Aspects: Implementing class cl1_I : public cl_RA

Problem: Mathematically, c1_I
must be a specialization of c1_RA. Cl?N
But doesn't a rational number carry T_
more data than an integer? ol R
Isn't this anti-O0?
o~ |
!]
cl | I | cl _SF | cl _FF | cl DF | cl LF

Solution: implementation follows the , bridge” design pattern:

1 class cl_number {

2 void* pointer_to_hidden_implementation;
3 // no other data fields
4}

5 ..

6 class cl_RA : public cl_R {
7 // no new data fields...
8 };

9 class cl_I : public cl_RA {
10 // no new data fields...
11}

Consequence: sizeof (cl_number) = --- = sizeof (c1_I) = 4 (or 8)

Implementation Aspects: Opportunities of the Bridge Design Pattern

So, a user-accessible object is really just a pointer disguised as a type.

e Intrusive reference counting of heap-allocated memory:
efficient, non-interruptive garbage collection

e Declare x, y, z of type c1_RA (i.e. € Q)
let x =3/2, y=1/2, and z = x+y
integrality test can be implemented efficiently. User code:
if (instanceof(z, cl_I_ring)) {
// will be true, even though typeof(z) is cl_RA!

e Object sharing: x+0 returns = without copying it, etc.

e Small integers and short floats are immediate, not heap allocated

Implementation Aspects: Fixnums and Bignums

Implementation Aspects: Fixnums and Bignums

Chunks of memory on the free store are always aligned.
Return values of malloc(3) and friends are multiples of 4 (or 8).
On a typical 32-bit system, such an address is:

b00b01b02b03b04b05b06b07 b08b09b10b11b12b13b14b15 b16b17b18b19b20b21b22b23 b24b25b26b27b28b290 0

Implementation Aspects: Fixnums and Bignums

Chunks of memory on the free store are always aligned.

Return values of malloc(3) and friends are multiples of 4 (or 8).

On a typical 32-bit system, such an address is:

b00b01b02b03b04b05b06b07 b08b09b10b11b12b13b14b15 b16b17b18b19b20b21b22b23 b24b25b26b27b28b290 0
That leaves 2 (or 3) unused bits which are always zero.

If any of these bits is non-zero, let's interpret the 2 (or 3) bits as a

. type-tag” and the remaining bits 4, -b,, as immediate data.

Implementation Aspects: Fixnums and Bignums

Chunks of memory on the free store are always aligned.

Return values of malloc(3) and friends are multiples of 4 (or 8).

On a typical 32-bit system, such an address is:

b00b01b02b03b04b05b06b07 b08b09b10b11b12b13b14b15 b16b17b18b19b20b21b22b23 b24b25b26b27b28b290 0
That leaves 2 (or 3) unused bits which are always zero.

If any of these bits is non-zero, let's interpret the 2 (or 3) bits as a

. type-tag” and the remaining bits 4, -b,, as immediate data.

Two examples:

® b,-..by, represent a signed integer in two's complement notation

9
and constant tags b, = 0, b,, = 1 (immediate integers) 229—1)

® b, represents a sign, b, ...0b, an exponent, b, ...b,, a mantissa,
and constant tags b, = 1, b,, = 0 (immediate short float type c1_SF)

Implementation Aspects: Fixnums and Bignums

Chunks of memory on the free store are always aligned.

Return values of malloc(3) and friends are multiples of 4 (or 8).

On a typical 32-bit system, such an address is:

b00b01b02b03b04b05b06b07 b08b09b10b11b12b13b14b15 b16b17b18b19b20b21b22b23 b24b25b26b27b28b290 0
That leaves 2 (or 3) unused bits which are always zero.

If any of these bits is non-zero, let's interpret the 2 (or 3) bits as a

. type-tag” and the remaining bits 4, -b,, as immediate data.

Two examples:

® b,-..by, represent a signed integer in two's complement notation

9
and constant tags b, = 0, b,, = 1 (immediate integers) 229—1)

® b, represents a sign, b, ...0b, an exponent, b, ...b,, a mantissa,
and constant tags b, = 1, b,, = 0 (immediate short float type c1_SF)

= no heap allocation for small values = efficiency
all this is completely transparent for the user of the library

Implementation Aspects: Fixnums and Bignums

Chunks of memory on the free store are always aligned.

Return values of malloc(3) and friends are multiples of 4 (or 8).

On a typical 32-bit system, such an address is:

b00b01b02b03b04b05b06b07 b08b09b10b11b12b13b14b15 b16b17b18b19b20b21b22b23 b24b25b26b27b28b290 0
That leaves 2 (or 3) unused bits which are always zero.

If any of these bits is non-zero, let's interpret the 2 (or 3) bits as a

. type-tag” and the remaining bits 4, -b,, as immediate data.

Two examples:

® b,-..by, represent a signed integer in two's complement notation

9
and constant tags b, = 0, b,, = 1 (immediate integers) 229—1)

® b, represents a sign, b, ...0b, an exponent, b, ...b,, a mantissa,
and constant tags b, = 1, b,, = 0 (immediate short float type c1_SF)

= no heap allocation for small values = efficiency
all this is completely transparent for the user of the library

Small CLN Example

For the largest known Mersenne prime p, compute (2P —1)2P~ 1,
This is the largest known perfect number:

#include <iostream>
#include <cln/cln.h>
using namespace std;
using namespace cln;

int main()

{
int p = 30402457;
cl I x = ((cl_I(1) << p) - 1) << (p-1);
cout << x << endl;

© 00 N O Ot = W NN -

—
o

H
=
—

= printing 18304103 decimal digits takes ca. 1 minute

Finally. . .

CLN has been around and stable for a very long time
licensed under GPL and available from http://www.ginac.de/CLN/

pre-packaged in @d@blan (ref and FESEBSD §
current focus is stability and evolution in small steps
Some projects using it:

e GiNaC http://www.ginac.de/
symbolic system in C++ for use within C++

e Qalculate! http://qgalculate.sourceforge.net/
GUI desktop calculator on steroids

e RPN-Calculator-Py http://sourceforge.net/projects/calcrpnpy/
reverse polish notation interpreter for use as an interactive calculator in conjunction with

the Python interactive interpreter

e glybalt http://wwwthep.physik.uni-mainz.de/"stefanw/gtybalt/
combination of several C++ packages (CLN, GiNaC, NTL) under CERN's Root

framework

