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CLN History

late 1980s-1995: arbitrary precision types within CLisp (Bruno Haible et al.)
http://clisp.cons.org/ (1987-today)
implementation languages: C and Assembler

1995: spin-off from CLisp

implementation languages: C++ and Assembler

purpose: make the arbitrary precision numbers of CLisp available to a broader
public

1996: option to base low-level routines on more efficient GMP routines
http://wuw.swox.com/gmp/ (MPN level only)
computation of 1000000 decimal digits of {(3)

1999-01-12: release of CLN version 1.0

2000: maintainer change, since Bruno Haible was busy doing CLisp, Linux
118N, Unicode Support (libiconv), GLibC and several other free software
projects
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public

1996: option to base low-level routines on more efficient GMP routines
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computation of 1000000 decimal digits of {(3)

1999-01-12: release of CLN version 1.0

2000: maintainer change, since Bruno Haible was busy doing CLisp, Linux
118N, Unicode Support (libiconv), GLibC and several other free software
projects

2006/2007: release of CLN 1.2 with support for huge numbers (>4GB each)



CLN Features

rich set of number classes with unlimited precision
integers, rational numbers, floats, complex numbers, modular integers,

even univariate polynomials

natural mathematical syntax / type system
algebraic syntax through operator overloading (z=x+y instead of add(x,y,&z))
natural injections like Z — Q modeled with types

speed efficiency

C++4 compiles to good machine code, usage of assembler for critical parts and common
CPUs ('i386', 'x86_64", "alpha’, . . . ), asymptotically ideal algorithms (Schonhage-Strassen
multiplication, binary splitting, etc.)

memory efficiency

representation of small numbers as immediate values instead of as pointers to heap
allocated storage

object sharing: x40 returns o without copying it, etc.



CLN Type System

Natural injections in an OO environment: Z — Q, Q — R, R — C, etc.
CLN types for those fields:

Integers Z: c1_1

Rationals Q: c1_RA

Reals R: c1_R

Complex numbers C: c1_N
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Short-Floats c1_SF: sign, 17 mantissa bits, 8 exponent bits

Single-Floats c1_FF: sign, 24 mantissa bits, 8 exponent bits
(IEEE 754 single-precision floating point number type)

Double-Floats c1_DF: sign, 53 mantissa bits, 11 exponent bits
(IEEE 754 double-precision floating point number type)

Long-Floats: c1_LF sign, arbitrary number of mantissa bits, 32 (or 64)
exponent bits



Implementation Aspects: Implementing class cl1_I : public cl_RA

Problem: Mathematically, c1_I
must be a specialization of c1_RA. l?N
But doesn’t a rational number carry T_
more data than an integer? ol R
Isn't this anti-O0?
cl _RA I cl F
! ]
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Solution: implementation follows the , bridge” design pattern:

1 class cl_number {

2 void* pointer_to_hidden_implementation;
3 // no other data fields

4}

5 ..

6 class cl_RA : public cl_R {

7 // no new data fields...

8 };

9 class cl_I : public cl_RA {

10 // no new data fields...

11}
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Consequence: sizeof (cl_number) = --- = sizeof (c1_I) = 4 (or 8)



Implementation Aspects: Opportunities of the Bridge Design Pattern

So, a user-accessible object is really just a pointer disguised as a type.

e Intrusive reference counting of heap-allocated memory:
efficient, non-interruptive garbage collection

e Declare x, y, z of type c1_RA (i.e. € Q)
let x =3/2, y=1/2, and z = x+y
integrality test can be implemented efficiently. User code:
if (instanceof(z, cl_I_ring)) {
// will be true, even though typeof(z) is cl_RA!

e Object sharing: x+0 returns = without copying it, etc.

e Small integers and short floats are immediate, not heap allocated
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Chunks of memory on the free store are always aligned.
Return values of malloc(3) and friends are multiples of 4 (or 8).
On a typical 32-bit system, such an address is:
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Small CLN Example

For the largest known Mersenne prime p, compute (2P —1)2P~ 1,
This is the largest known perfect number:

#include <iostream>
#include <cln/cln.h>
using namespace std;
using namespace cln;

int main()

{
int p = 30402457;
cl I x = ((cl_I(1) << p) - 1) << (p-1);
cout << x << endl;
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= printing 18304103 decimal digits takes ca. 1 minute



Finally. . .

CLN has been around and stable for a very long time
licensed under GPL and available from http://www.ginac.de/CLN/

pre-packaged in @d@blan (ref and FESEBSD §
current focus is stability and evolution in small steps
Some projects using it:

e GiNaC http://www.ginac.de/
symbolic system in C++ for use within C++

e Qalculate! http://qgalculate.sourceforge.net/
GUI desktop calculator on steroids

e RPN-Calculator-Py http://sourceforge.net/projects/calcrpnpy/
reverse polish notation interpreter for use as an interactive calculator in conjunction with

the Python interactive interpreter

e glybalt http://wwwthep.physik.uni-mainz.de/"stefanw/gtybalt/
combination of several C++ packages (CLN, GiNaC, NTL) under CERN's Root

framework



