From: Richard Kreckel Date: Fri, 31 Mar 2000 00:30:20 +0000 (+0000) Subject: - Documentation adjusted to new tgamma-lgamma-Euler-convention. X-Git-Tag: release_0-6-0~39 X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=commitdiff_plain;h=ada31d7da653cfb6a7571b367d7b939f7d29db40 - Documentation adjusted to new tgamma-lgamma-Euler-convention. --- diff --git a/doc/tutorial/ginac.texi b/doc/tutorial/ginac.texi index d8970b5b..e284e03e 100644 --- a/doc/tutorial/ginac.texi +++ b/doc/tutorial/ginac.texi @@ -388,15 +388,15 @@ tan(x)^2+1 x-1/6*x^3+Order(x^4) > series(1/tan(x),x==0,4); x^(-1)-1/3*x+Order(x^2) -> series(Gamma(x),x==0,3); -x^(-1)-gamma+(1/12*Pi^2+1/2*gamma^2)*x+ -(-1/3*zeta(3)-1/12*Pi^2*gamma-1/6*gamma^3)*x^2+Order(x^3) +> series(tgamma(x),x==0,3); +x^(-1)-Euler+(1/12*Pi^2+1/2*Euler^2)*x+ +(-1/3*zeta(3)-1/12*Pi^2*Euler-1/6*Euler^3)*x^2+Order(x^3) > evalf("); x^(-1)-0.5772156649015328606+(0.9890559953279725555)*x -(0.90747907608088628905)*x^2+Order(x^3) -> series(Gamma(2*sin(x)-2),x==Pi/2,6); --(x-1/2*Pi)^(-2)+(-1/12*Pi^2-1/2*gamma^2-1/240)*(x-1/2*Pi)^2 --gamma-1/12+Order((x-1/2*Pi)^3) +> series(tgamma(2*sin(x)-2),x==Pi/2,6); +-(x-1/2*Pi)^(-2)+(-1/12*Pi^2-1/2*Euler^2-1/240)*(x-1/2*Pi)^2 +-Euler-1/12+Order((x-1/2*Pi)^3) @end example Here we have made use of the @command{ginsh}-command @code{"} to pop the @@ -1017,7 +1017,7 @@ following table. @cindex @code{Pi} @cindex @code{Catalan} -@cindex @code{gamma} +@cindex @code{Euler} @cindex @code{evalf()} Constants behave pretty much like symbols except that they return some specific number when the method @code{.evalf()} is called. @@ -1033,7 +1033,7 @@ The predefined known constants are: @item @code{Catalan} @tab Catalan's constant @tab 0.91596559417721901505460351493238411 -@item @code{gamma} +@item @code{Euler} @tab Euler's (or Euler-Mascheroni) constant @tab 0.57721566490153286060651209008240243 @end multitable @@ -1150,11 +1150,11 @@ int main() symbol x("x"), y("y"); ex foo = x+y/2; - cout << "Gamma(" << foo << ") -> " << Gamma(foo) << endl; + cout << "tgamma(" << foo << ") -> " << tgamma(foo) << endl; ex bar = foo.subs(y==1); - cout << "Gamma(" << bar << ") -> " << Gamma(bar) << endl; + cout << "tgamma(" << bar << ") -> " << tgamma(bar) << endl; ex foobar = bar.subs(x==7); - cout << "Gamma(" << foobar << ") -> " << Gamma(foobar) << endl; + cout << "tgamma(" << foobar << ") -> " << tgamma(foobar) << endl; // ... @} @end example @@ -1163,9 +1163,9 @@ This program shows how the function returns itself twice and finally an expression that may be really useful: @example -Gamma(x+(1/2)*y) -> Gamma(x+(1/2)*y) -Gamma(x+1/2) -> Gamma(x+1/2) -Gamma(15/2) -> (135135/128)*Pi^(1/2) +tgamma(x+(1/2)*y) -> tgamma(x+(1/2)*y) +tgamma(x+1/2) -> tgamma(x+1/2) +tgamma(15/2) -> (135135/128)*Pi^(1/2) @end example @cindex branch cut @@ -1817,11 +1817,11 @@ expansion method is given, GiNaC defaults to simple Taylor expansion, which is correct if there are no poles involved as is the case for the @code{cos} function. The way GiNaC handles poles in case there are any is best understood by studying one of the examples, like the Gamma -function for instance. (In essence the function first checks if there -is a pole at the evaluation point and falls back to Taylor expansion if -there isn't. Then, the pole is regularized by some suitable -transformation.) Also, the new function needs to be declared somewhere. -This may also be done by a convenient preprocessor macro: +(@code{tgamma}) function for instance. (In essence the function first +checks if there is a pole at the evaluation point and falls back to +Taylor expansion if there isn't. Then, the pole is regularized by some +suitable transformation.) Also, the new function needs to be declared +somewhere. This may also be done by a convenient preprocessor macro: @example DECLARE_FUNCTION_1P(cos)