author Richard Kreckel Wed, 2 Mar 2005 00:40:51 +0000 (00:40 +0000) committer Richard Kreckel Wed, 2 Mar 2005 00:40:51 +0000 (00:40 +0000)

index 0080a9b4cc52e4dfeaf1d2e343289edd3f43ba32..e0ae80b119531b8e14d9a7a397f958c348bcb1f5 100644 (file)
@@ -2164,7 +2164,7 @@ one or more indices.

@end itemize

@end itemize

-@strong{Note:} when printing expressions, covariant indices and indices
+@strong{Please notice:} when printing expressions, covariant indices and indices
without variance are denoted @samp{.i} while contravariant indices are
denoted @samp{~i}. Dotted indices have a @samp{*} in front of the index
value. In the following, we are going to use that notation in the text so
without variance are denoted @samp{.i} while contravariant indices are
denoted @samp{~i}. Dotted indices have a @samp{*} in front of the index
value. In the following, we are going to use that notation in the text so
@@ -3014,7 +3014,7 @@ The unity element of a Clifford algebra is constructed by
ex dirac_ONE(unsigned char rl = 0);
@end example

ex dirac_ONE(unsigned char rl = 0);
@end example

-@strong{Note:} You must always use @code{dirac_ONE()} when referring to
+@strong{Please notice:} You must always use @code{dirac_ONE()} when referring to
multiples of the unity element, even though it's customary to omit it.
E.g. instead of @code{dirac_gamma(mu)*(dirac_slash(q,4)+m)} you have to
write @code{dirac_gamma(mu)*(dirac_slash(q,4)+m*dirac_ONE())}. Otherwise,
multiples of the unity element, even though it's customary to omit it.
E.g. instead of @code{dirac_gamma(mu)*(dirac_slash(q,4)+m)} you have to
write @code{dirac_gamma(mu)*(dirac_slash(q,4)+m*dirac_ONE())}. Otherwise,
@@ -3380,7 +3380,7 @@ The unity element of a color algebra is constructed by
ex color_ONE(unsigned char rl = 0);
@end example

ex color_ONE(unsigned char rl = 0);
@end example

-@strong{Note:} You must always use @code{color_ONE()} when referring to
+@strong{Please notice:} You must always use @code{color_ONE()} when referring to
multiples of the unity element, even though it's customary to omit it.
E.g. instead of @code{color_T(a)*(color_T(b)*indexed(X,b)+1)} you have to
write @code{color_T(a)*(color_T(b)*indexed(X,b)+color_ONE())}. Otherwise,
multiples of the unity element, even though it's customary to omit it.
E.g. instead of @code{color_T(a)*(color_T(b)*indexed(X,b)+1)} you have to
write @code{color_T(a)*(color_T(b)*indexed(X,b)+color_ONE())}. Otherwise,
@@ -7474,7 +7474,7 @@ constructor.
by GiNaC to establish a canonical sort order for terms. It returns 0, +1 or
-1, depending on the relative order of this object and the @code{other}
object. If it returns 0, the objects are considered equal.
by GiNaC to establish a canonical sort order for terms. It returns 0, +1 or
-1, depending on the relative order of this object and the @code{other}
object. If it returns 0, the objects are considered equal.
-@strong{Note:} This has nothing to do with the (numeric) ordering
+@strong{Please notice:} This has nothing to do with the (numeric) ordering
relationship expressed by @code{<}, @code{>=} etc (which cannot be defined
for non-numeric classes). For example, @code{numeric(1).compare_same_type(numeric(2))}
may return +1 even though 1 is clearly smaller than 2. Every GiNaC class
relationship expressed by @code{<}, @code{>=} etc (which cannot be defined
for non-numeric classes). For example, @code{numeric(1).compare_same_type(numeric(2))}
may return +1 even though 1 is clearly smaller than 2. Every GiNaC class