Bug fix related to the usage of int instead of cl_I.
authorJens Vollinga <jensv@nikhef.nl>
Tue, 9 Sep 2008 20:41:39 +0000 (22:41 +0200)
committerJens Vollinga <jensv@nikhef.nl>
Tue, 9 Sep 2008 20:41:39 +0000 (22:41 +0200)
check/exam_factor.cpp
ginac/factor.cpp

index fa895c6..e3552bf 100644 (file)
@@ -101,6 +101,29 @@ static unsigned exam_factor1()
        e = ex("(1+4*x)*x^2*(1-4*x+16*x^2)*(3+5*x+92*x^3)", syms);
        result += check_factor(e);
 
+       e = ex("(77+11*x^3+25*x^2+27*x+102*x^4)*(85+57*x^3+92*x^2+29*x+66*x^4)", syms);
+       result += check_factor(e);
+
+       return result;
+}
+
+static unsigned exam_factor2()
+{
+       unsigned result = 0;
+       ex e, d;
+       symbol x("x"), y("y"), z("z");
+       lst syms;
+       syms = x, y, z;
+       
+       e = ex("x+y", syms);
+       result += check_factor(e);
+
+       e = ex("x+y", syms);
+       result += check_factor(e);
+
+       e = ex("-2*(x+y)*(x-y)", syms);
+       result += check_factor(e);
+
        return result;
 }
 
@@ -111,6 +134,7 @@ unsigned exam_factor()
        cout << "examining polynomial factorization" << flush;
 
        result += exam_factor1(); cout << '.' << flush;
+       result += exam_factor2(); cout << '.' << flush;
 
        return result;
 }
index 886819a..73e7d6c 100644 (file)
@@ -124,8 +124,8 @@ struct UniPoly
                // assert: poly is in Z[x]
                Term t;
                for ( int i=poly.degree(x); i>=poly.ldegree(x); --i ) {
-                       int coeff = ex_to<numeric>(poly.coeff(x,i)).to_int();
-                       if ( coeff ) {
+                       cl_I coeff = the<cl_I>(ex_to<numeric>(poly.coeff(x,i)).to_cl_N());
+                       if ( !zerop(coeff) ) {
                                t.c = R->canonhom(coeff);
                                if ( !zerop(t.c) ) {
                                        t.exp = i;
@@ -1057,7 +1057,7 @@ static ex hensel_univar(const ex& a_, const ex& x, unsigned int p, const UniPoly
        if ( gamma == 0 ) {
                gamma = alpha;
        }
-       unsigned int gamma_ui = ex_to<numeric>(abs(gamma)).to_int();
+       numeric gamma_ui = ex_to<numeric>(abs(gamma));
        a = a * gamma;
        UniPoly nu1 = u1_;
        nu1.unit_normal();
@@ -1078,7 +1078,7 @@ static ex hensel_univar(const ex& a_, const ex& x, unsigned int p, const UniPoly
        ex w = replace_lc(w1.to_ex(x), x, alpha);
        ex e = expand(a - u * w);
        numeric modulus = p;
-       const numeric maxmodulus(2*B*gamma_ui);
+       const numeric maxmodulus = 2*numeric(B)*gamma_ui;
 
        // step 4
        while ( !e.is_zero() && modulus < maxmodulus ) {
@@ -1966,7 +1966,8 @@ static ex factor_multivariate(const ex& poly, const exset& syms)
 
        /* factor leading coefficient */
        pp = pp.collect(x);
-       ex vn = p.lcoeff(x);
+       ex vn = pp.lcoeff(x);
+       pp = pp.expand();
        ex vnlst;
        if ( is_a<numeric>(vn) ) {
                vnlst = lst(vn);
@@ -2152,9 +2153,15 @@ static ex factor_multivariate(const ex& poly, const exset& syms)
                                maxdegree = uvec[i].degree();
                        }
                }
-               unsigned int B = cl_I_to_uint(normmc * expt_pos(cl_I(2), maxdegree));
+               cl_I B = normmc * expt_pos(cl_I(2), maxdegree);
+               cl_I l = 1;
+               cl_I pl = prime;
+               while ( pl < B ) {
+                       l += 1;
+                       pl = pl * prime;
+               }
 
-               ex res = hensel_multivar(poly, x, epv, prime, B, uvec, C);
+               ex res = hensel_multivar(pp, x, epv, prime, l, uvec, C);
                if ( res != lst() ) {
                        ex result = cont;
                        for ( size_t i=0; i<res.nops(); ++i ) {