author Alexei Sheplyakov Mon, 25 Aug 2008 12:56:04 +0000 (16:56 +0400) committer Jens Vollinga Wed, 27 Aug 2008 14:22:59 +0000 (16:22 +0200)
gcd_pf_pow_pow handles the case when both arguments of gcd() are powers.

N.B. the actual code moved from gcd_pf_pow, no functional changes.

 ginac/normal.cpp patch | blob | history

index e97a7ce..d5319b9 100644 (file)
@@ -1639,56 +1639,64 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio
return g;
}

+// gcd helper to handle partially factored polynomials (to avoid expanding
+// large expressions). Both arguments should be powers.
+static ex gcd_pf_pow_pow(const ex& a, const ex& b, ex* ca, ex* cb)
+{
+       ex p = a.op(0);
+       const ex& exp_a = a.op(1);
+       ex pb = b.op(0);
+       const ex& exp_b = b.op(1);
+       if (p.is_equal(pb)) {
+               // a = p^n, b = p^m, gcd = p^min(n, m)
+               if (exp_a < exp_b) {
+                       if (ca)
+                               *ca = _ex1;
+                       if (cb)
+                               *cb = power(p, exp_b - exp_a);
+                       return power(p, exp_a);
+               } else {
+                       if (ca)
+                               *ca = power(p, exp_a - exp_b);
+                       if (cb)
+                               *cb = _ex1;
+                       return power(p, exp_b);
+               }
+       } else {
+               ex p_co, pb_co;
+               ex p_gcd = gcd(p, pb, &p_co, &pb_co, false);
+               if (p_gcd.is_equal(_ex1)) {
+                       // a(x) = p(x)^n, b(x) = p_b(x)^m, gcd (p, p_b) = 1 ==>
+                       // gcd(a,b) = 1
+                       if (ca)
+                               *ca = a;
+                       if (cb)
+                               *cb = b;
+                       return _ex1;
+                       // XXX: do I need to check for p_gcd = -1?
+               } else {
+                       // there are common factors:
+                       // a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==>
+                       // gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m
+                       if (exp_a < exp_b) {
+                               return power(p_gcd, exp_a)*
+                                       gcd(power(p_co, exp_a), power(p_gcd, exp_b-exp_a)*power(pb_co, exp_b), ca, cb, false);
+                       } else {
+                               return power(p_gcd, exp_b)*
+                                       gcd(power(p_gcd, exp_a - exp_b)*power(p_co, exp_a), power(pb_co, exp_b), ca, cb, false);
+                       }
+               } // p_gcd.is_equal(_ex1)
+       } // p.is_equal(pb)
+}
+
static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb)
{
if (is_exactly_a<power>(a)) {
ex p = a.op(0);
const ex& exp_a = a.op(1);
-               if (is_exactly_a<power>(b)) {
-                       ex pb = b.op(0);
-                       const ex& exp_b = b.op(1);
-                       if (p.is_equal(pb)) {
-                               // a = p^n, b = p^m, gcd = p^min(n, m)
-                               if (exp_a < exp_b) {
-                                       if (ca)
-                                               *ca = _ex1;
-                                       if (cb)
-                                               *cb = power(p, exp_b - exp_a);
-                                       return power(p, exp_a);
-                               } else {
-                                       if (ca)
-                                               *ca = power(p, exp_a - exp_b);
-                                       if (cb)
-                                               *cb = _ex1;
-                                       return power(p, exp_b);
-                               }
-                       } else {
-                               ex p_co, pb_co;
-                               ex p_gcd = gcd(p, pb, &p_co, &pb_co, false);
-                               if (p_gcd.is_equal(_ex1)) {
-                                       // a(x) = p(x)^n, b(x) = p_b(x)^m, gcd (p, p_b) = 1 ==>
-                                       // gcd(a,b) = 1
-                                       if (ca)
-                                               *ca = a;
-                                       if (cb)
-                                               *cb = b;
-                                       return _ex1;
-                                       // XXX: do I need to check for p_gcd = -1?
-                               } else {
-                                       // there are common factors:
-                                       // a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==>
-                                       // gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m
-                                       if (exp_a < exp_b) {
-                                               return power(p_gcd, exp_a)*
-                                                       gcd(power(p_co, exp_a), power(p_gcd, exp_b-exp_a)*power(pb_co, exp_b), ca, cb, false);
-                                       } else {
-                                               return power(p_gcd, exp_b)*
-                                                       gcd(power(p_gcd, exp_a - exp_b)*power(p_co, exp_a), power(pb_co, exp_b), ca, cb, false);
-                                       }
-                               } // p_gcd.is_equal(_ex1)
-                       } // p.is_equal(pb)
-
-               } else {
+               if (is_exactly_a<power>(b))
+                       return gcd_pf_pow_pow(a, b, ca, cb);
+               else {
if (p.is_equal(b)) {
// a = p^n, b = p, gcd = p
if (ca)