X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fpseries.cpp;h=e08921e8ccd8cf6cbfd57a1e982ecff49340506e;hp=9ed6aab3cc71e901e69f972100193bd2ca81cdba;hb=bf82f5b1d41738936afe763e1fa6aa347c81ba2c;hpb=3c47d2bc7b421bd504404a8a664349252dddda3a diff --git a/ginac/pseries.cpp b/ginac/pseries.cpp index 9ed6aab3..e08921e8 100644 --- a/ginac/pseries.cpp +++ b/ginac/pseries.cpp @@ -4,7 +4,7 @@ * methods for series expansion. */ /* - * GiNaC Copyright (C) 1999-2000 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -21,93 +21,62 @@ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ +#include #include #include "pseries.h" #include "add.h" -#include "inifcns.h" +#include "inifcns.h" // for Order function #include "lst.h" #include "mul.h" #include "power.h" #include "relational.h" #include "symbol.h" +#include "print.h" #include "archive.h" #include "utils.h" -#include "debugmsg.h" -#ifndef NO_NAMESPACE_GINAC namespace GiNaC { -#endif // ndef NO_NAMESPACE_GINAC GINAC_IMPLEMENT_REGISTERED_CLASS(pseries, basic) + /* - * Default constructor, destructor, copy constructor, assignment operator and helpers + * Default ctor, dtor, copy ctor, assignment operator and helpers */ -pseries::pseries() : basic(TINFO_pseries) -{ - debugmsg("pseries default constructor", LOGLEVEL_CONSTRUCT); -} - -pseries::~pseries() -{ - debugmsg("pseries destructor", LOGLEVEL_DESTRUCT); - destroy(false); -} - -pseries::pseries(const pseries &other) -{ - debugmsg("pseries copy constructor", LOGLEVEL_CONSTRUCT); - copy(other); -} - -const pseries &pseries::operator=(const pseries & other) -{ - debugmsg("pseries operator=", LOGLEVEL_ASSIGNMENT); - if (this != &other) { - destroy(true); - copy(other); - } - return *this; -} +pseries::pseries() : inherited(TINFO_pseries) { } void pseries::copy(const pseries &other) { - inherited::copy(other); - seq = other.seq; - var = other.var; - point = other.point; + inherited::copy(other); + seq = other.seq; + var = other.var; + point = other.point; } -void pseries::destroy(bool call_parent) -{ - if (call_parent) - inherited::destroy(call_parent); -} +DEFAULT_DESTROY(pseries) /* - * Other constructors + * Other ctors */ /** Construct pseries from a vector of coefficients and powers. * expair.rest holds the coefficient, expair.coeff holds the power. * The powers must be integers (positive or negative) and in ascending order; - * the last coefficient can be Order(_ex1()) to represent a truncated, + * the last coefficient can be Order(_ex1) to represent a truncated, * non-terminating series. * - * @param rel__ expansion variable and point (must hold a relational) + * @param rel_ expansion variable and point (must hold a relational) * @param ops_ vector of {coefficient, power} pairs (coefficient must not be zero) * @return newly constructed pseries */ -pseries::pseries(const ex &rel_, const epvector &ops_) - : basic(TINFO_pseries), seq(ops_) +pseries::pseries(const ex &rel_, const epvector &ops_) : basic(TINFO_pseries), seq(ops_) { - debugmsg("pseries constructor from rel,epvector", LOGLEVEL_CONSTRUCT); - GINAC_ASSERT(is_ex_exactly_of_type(rel_, relational)); - GINAC_ASSERT(is_ex_exactly_of_type(rel_.lhs(),symbol)); - point = rel_.rhs(); - var = *static_cast(rel_.lhs().bp); + GINAC_ASSERT(is_a(rel_)); + GINAC_ASSERT(is_a(rel_.lhs())); + point = rel_.rhs(); + var = rel_.lhs(); } @@ -115,381 +84,485 @@ pseries::pseries(const ex &rel_, const epvector &ops_) * Archiving */ -/** Construct object from archive_node. */ pseries::pseries(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) { - debugmsg("pseries constructor from archive_node", LOGLEVEL_CONSTRUCT); - for (unsigned int i=0; true; i++) { - ex rest; - ex coeff; - if (n.find_ex("coeff", rest, sym_lst, i) && n.find_ex("power", coeff, sym_lst, i)) - seq.push_back(expair(rest, coeff)); - else - break; - } - n.find_ex("var", var, sym_lst); - n.find_ex("point", point, sym_lst); + for (unsigned int i=0; true; ++i) { + ex rest; + ex coeff; + if (n.find_ex("coeff", rest, sym_lst, i) && n.find_ex("power", coeff, sym_lst, i)) + seq.push_back(expair(rest, coeff)); + else + break; + } + n.find_ex("var", var, sym_lst); + n.find_ex("point", point, sym_lst); } -/** Unarchive the object. */ -ex pseries::unarchive(const archive_node &n, const lst &sym_lst) -{ - return (new pseries(n, sym_lst))->setflag(status_flags::dynallocated); -} - -/** Archive the object. */ void pseries::archive(archive_node &n) const { - inherited::archive(n); - epvector::const_iterator i = seq.begin(), iend = seq.end(); - while (i != iend) { - n.add_ex("coeff", i->rest); - n.add_ex("power", i->coeff); - i++; - } - n.add_ex("var", var); - n.add_ex("point", point); + inherited::archive(n); + epvector::const_iterator i = seq.begin(), iend = seq.end(); + while (i != iend) { + n.add_ex("coeff", i->rest); + n.add_ex("power", i->coeff); + ++i; + } + n.add_ex("var", var); + n.add_ex("point", point); } +DEFAULT_UNARCHIVE(pseries) + ////////// -// functions overriding virtual functions from bases classes +// functions overriding virtual functions from base classes ////////// -basic *pseries::duplicate() const -{ - debugmsg("pseries duplicate", LOGLEVEL_DUPLICATE); - return new pseries(*this); -} - -void pseries::print(ostream &os, unsigned upper_precedence) const -{ - debugmsg("pseries print", LOGLEVEL_PRINT); - for (epvector::const_iterator i=seq.begin(); i!=seq.end(); i++) { - // print a sign, if needed - if (i!=seq.begin()) - os << '+'; - if (!is_order_function(i->rest)) { - // print 'rest', i.e. the expansion coefficient - if (i->rest.info(info_flags::numeric) && - i->rest.info(info_flags::positive)) { - os << i->rest; - } else - os << "(" << i->rest << ')'; - // print 'coeff', something like (x-1)^42 - if (!i->coeff.is_zero()) { - os << '*'; - if (!point.is_zero()) - os << '(' << var-point << ')'; - else - os << var; - if (i->coeff.compare(_ex1())) { - os << '^'; - if (i->coeff.info(info_flags::negative)) - os << '(' << i->coeff << ')'; - else - os << i->coeff; - } - } - } else { - os << Order(power(var-point,i->coeff)); - } - } -} - -void pseries::printraw(ostream &os) const -{ - debugmsg("pseries printraw", LOGLEVEL_PRINT); - os << "pseries(" << var << ";" << point << ";"; - for (epvector::const_iterator i=seq.begin(); i!=seq.end(); i++) { - os << "(" << (*i).rest << "," << (*i).coeff << "),"; - } - os << ")"; -} - -void pseries::printtree(ostream & os, unsigned indent) const -{ - debugmsg("pseries printtree",LOGLEVEL_PRINT); - os << string(indent,' ') << "pseries " - << ", hash=" << hashvalue << " (0x" << hex << hashvalue << dec << ")" - << ", flags=" << flags << endl; - for (unsigned i=0; i(c)) { + + c.s << std::string(level, ' ') << class_name() + << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec + << std::endl; + unsigned delta_indent = static_cast(c).delta_indent; + unsigned num = seq.size(); + for (unsigned i=0; i(c)) { + c.s << class_name() << "(relational("; + var.print(c); + c.s << ','; + point.print(c); + c.s << "),["; + unsigned num = seq.size(); + for (unsigned i=0; i(c) ? "{(" : "("; + std::string par_close = is_a(c) ? ")}" : ")"; + + // objects of type pseries must not have any zero entries, so the + // trivial (zero) pseries needs a special treatment here: + if (seq.empty()) + c.s << '0'; + epvector::const_iterator i = seq.begin(), end = seq.end(); + while (i != end) { + // print a sign, if needed + if (i != seq.begin()) + c.s << '+'; + if (!is_order_function(i->rest)) { + // print 'rest', i.e. the expansion coefficient + if (i->rest.info(info_flags::numeric) && + i->rest.info(info_flags::positive)) { + i->rest.print(c); + } else { + c.s << par_open; + i->rest.print(c); + c.s << par_close; + } + // print 'coeff', something like (x-1)^42 + if (!i->coeff.is_zero()) { + if (is_a(c)) + c.s << ' '; + else + c.s << '*'; + if (!point.is_zero()) { + c.s << par_open; + (var-point).print(c); + c.s << par_close; + } else + var.print(c); + if (i->coeff.compare(_ex1)) { + if (is_a(c)) + c.s << "**"; + else + c.s << '^'; + if (i->coeff.info(info_flags::negative)) { + c.s << par_open; + i->coeff.print(c); + c.s << par_close; + } else { + if (is_a(c)) { + c.s << '{'; + i->coeff.print(c); + c.s << '}'; + } else + i->coeff.print(c); + } + } + } + } else + Order(power(var-point,i->coeff)).print(c); + ++i; + } + + if (precedence() <= level) + c.s << ")"; + } +} + +int pseries::compare_same_type(const basic & other) const +{ + GINAC_ASSERT(is_a(other)); + const pseries &o = static_cast(other); + + // first compare the lengths of the series... + if (seq.size()>o.seq.size()) + return 1; + if (seq.size()compare(*o_it); + if (cmpval) + return cmpval; + ++it; + ++o_it; + } + + // so they are equal. + return 0; +} + +/** Return the number of operands including a possible order term. */ unsigned pseries::nops(void) const { - return seq.size(); + return seq.size(); } +/** Return the ith term in the series when represented as a sum. */ ex pseries::op(int i) const { - if (i < 0 || unsigned(i) >= seq.size()) - throw (std::out_of_range("op() out of range")); - return seq[i].rest * power(var - point, seq[i].coeff); + if (i < 0 || unsigned(i) >= seq.size()) + throw (std::out_of_range("op() out of range")); + return seq[i].rest * power(var - point, seq[i].coeff); } ex &pseries::let_op(int i) { - throw (std::logic_error("let_op not defined for pseries")); -} - -int pseries::degree(const symbol &s) const -{ - if (var.is_equal(s)) { - // Return last exponent - if (seq.size()) - return ex_to_numeric((*(seq.end() - 1)).coeff).to_int(); - else - return 0; - } else { - epvector::const_iterator it = seq.begin(), itend = seq.end(); - if (it == itend) - return 0; - int max_pow = INT_MIN; - while (it != itend) { - int pow = it->rest.degree(s); - if (pow > max_pow) - max_pow = pow; - it++; - } - return max_pow; - } -} - -int pseries::ldegree(const symbol &s) const -{ - if (var.is_equal(s)) { - // Return first exponent - if (seq.size()) - return ex_to_numeric((*(seq.begin())).coeff).to_int(); - else - return 0; - } else { - epvector::const_iterator it = seq.begin(), itend = seq.end(); - if (it == itend) - return 0; - int min_pow = INT_MAX; - while (it != itend) { - int pow = it->rest.ldegree(s); - if (pow < min_pow) - min_pow = pow; - it++; - } - return min_pow; - } -} - -ex pseries::coeff(const symbol &s, int n) const -{ - if (var.is_equal(s)) { - if (seq.size() == 0) - return _ex0(); - - // Binary search in sequence for given power - numeric looking_for = numeric(n); - int lo = 0, hi = seq.size() - 1; - while (lo <= hi) { - int mid = (lo + hi) / 2; - GINAC_ASSERT(is_ex_exactly_of_type(seq[mid].coeff, numeric)); - int cmp = ex_to_numeric(seq[mid].coeff).compare(looking_for); - switch (cmp) { - case -1: - lo = mid + 1; - break; - case 0: - return seq[mid].rest; - case 1: - hi = mid - 1; - break; - default: - throw(std::logic_error("pseries::coeff: compare() didn't return -1, 0 or 1")); - } - } - return _ex0(); - } else - return convert_to_poly().coeff(s, n); -} - -ex pseries::collect(const symbol &s) const -{ - return *this; -} - -/** Evaluate coefficients. */ + throw (std::logic_error("let_op not defined for pseries")); +} + +/** Return degree of highest power of the series. This is usually the exponent + * of the Order term. If s is not the expansion variable of the series, the + * series is examined termwise. */ +int pseries::degree(const ex &s) const +{ + if (var.is_equal(s)) { + // Return last exponent + if (seq.size()) + return ex_to((seq.end()-1)->coeff).to_int(); + else + return 0; + } else { + epvector::const_iterator it = seq.begin(), itend = seq.end(); + if (it == itend) + return 0; + int max_pow = INT_MIN; + while (it != itend) { + int pow = it->rest.degree(s); + if (pow > max_pow) + max_pow = pow; + ++it; + } + return max_pow; + } +} + +/** Return degree of lowest power of the series. This is usually the exponent + * of the leading term. If s is not the expansion variable of the series, the + * series is examined termwise. If s is the expansion variable but the + * expansion point is not zero the series is not expanded to find the degree. + * I.e.: (1-x) + (1-x)^2 + Order((1-x)^3) has ldegree(x) 1, not 0. */ +int pseries::ldegree(const ex &s) const +{ + if (var.is_equal(s)) { + // Return first exponent + if (seq.size()) + return ex_to((seq.begin())->coeff).to_int(); + else + return 0; + } else { + epvector::const_iterator it = seq.begin(), itend = seq.end(); + if (it == itend) + return 0; + int min_pow = INT_MAX; + while (it != itend) { + int pow = it->rest.ldegree(s); + if (pow < min_pow) + min_pow = pow; + ++it; + } + return min_pow; + } +} + +/** Return coefficient of degree n in power series if s is the expansion + * variable. If the expansion point is nonzero, by definition the n=1 + * coefficient in s of a+b*(s-z)+c*(s-z)^2+Order((s-z)^3) is b (assuming + * the expansion took place in the s in the first place). + * If s is not the expansion variable, an attempt is made to convert the + * series to a polynomial and return the corresponding coefficient from + * there. */ +ex pseries::coeff(const ex &s, int n) const +{ + if (var.is_equal(s)) { + if (seq.empty()) + return _ex0; + + // Binary search in sequence for given power + numeric looking_for = numeric(n); + int lo = 0, hi = seq.size() - 1; + while (lo <= hi) { + int mid = (lo + hi) / 2; + GINAC_ASSERT(is_exactly_a(seq[mid].coeff)); + int cmp = ex_to(seq[mid].coeff).compare(looking_for); + switch (cmp) { + case -1: + lo = mid + 1; + break; + case 0: + return seq[mid].rest; + case 1: + hi = mid - 1; + break; + default: + throw(std::logic_error("pseries::coeff: compare() didn't return -1, 0 or 1")); + } + } + return _ex0; + } else + return convert_to_poly().coeff(s, n); +} + +/** Does nothing. */ +ex pseries::collect(const ex &s, bool distributed) const +{ + return *this; +} + +/** Perform coefficient-wise automatic term rewriting rules in this class. */ ex pseries::eval(int level) const { - if (level == 1) - return this->hold(); - - if (level == -max_recursion_level) - throw (std::runtime_error("pseries::eval(): recursion limit exceeded")); - - // Construct a new series with evaluated coefficients - epvector new_seq; - new_seq.reserve(seq.size()); - epvector::const_iterator it = seq.begin(), itend = seq.end(); - while (it != itend) { - new_seq.push_back(expair(it->rest.eval(level-1), it->coeff)); - it++; - } - return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated); + if (level == 1) + return this->hold(); + + if (level == -max_recursion_level) + throw (std::runtime_error("pseries::eval(): recursion limit exceeded")); + + // Construct a new series with evaluated coefficients + epvector new_seq; + new_seq.reserve(seq.size()); + epvector::const_iterator it = seq.begin(), itend = seq.end(); + while (it != itend) { + new_seq.push_back(expair(it->rest.eval(level-1), it->coeff)); + ++it; + } + return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated); } /** Evaluate coefficients numerically. */ ex pseries::evalf(int level) const { - if (level == 1) - return *this; - - if (level == -max_recursion_level) - throw (std::runtime_error("pseries::evalf(): recursion limit exceeded")); - - // Construct a new series with evaluated coefficients - epvector new_seq; - new_seq.reserve(seq.size()); - epvector::const_iterator it = seq.begin(), itend = seq.end(); - while (it != itend) { - new_seq.push_back(expair(it->rest.evalf(level-1), it->coeff)); - it++; - } - return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated); -} - -ex pseries::subs(const lst & ls, const lst & lr) const -{ - // If expansion variable is being substituted, convert the series to a - // polynomial and do the substitution there because the result might - // no longer be a power series - if (ls.has(var)) - return convert_to_poly(true).subs(ls, lr); - - // Otherwise construct a new series with substituted coefficients and - // expansion point - epvector new_seq; - new_seq.reserve(seq.size()); - epvector::const_iterator it = seq.begin(), itend = seq.end(); - while (it != itend) { - new_seq.push_back(expair(it->rest.subs(ls, lr), it->coeff)); - it++; - } - return (new pseries(relational(var,point.subs(ls, lr)), new_seq))->setflag(status_flags::dynallocated); -} - -/** Implementation of ex::diff() for a power series. It treats the series as a - * polynomial. + if (level == 1) + return *this; + + if (level == -max_recursion_level) + throw (std::runtime_error("pseries::evalf(): recursion limit exceeded")); + + // Construct a new series with evaluated coefficients + epvector new_seq; + new_seq.reserve(seq.size()); + epvector::const_iterator it = seq.begin(), itend = seq.end(); + while (it != itend) { + new_seq.push_back(expair(it->rest.evalf(level-1), it->coeff)); + ++it; + } + return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated); +} + +ex pseries::subs(const lst & ls, const lst & lr, bool no_pattern) const +{ + // If expansion variable is being substituted, convert the series to a + // polynomial and do the substitution there because the result might + // no longer be a power series + if (ls.has(var)) + return convert_to_poly(true).subs(ls, lr, no_pattern); + + // Otherwise construct a new series with substituted coefficients and + // expansion point + epvector newseq; + newseq.reserve(seq.size()); + epvector::const_iterator it = seq.begin(), itend = seq.end(); + while (it != itend) { + newseq.push_back(expair(it->rest.subs(ls, lr, no_pattern), it->coeff)); + ++it; + } + return (new pseries(relational(var,point.subs(ls, lr, no_pattern)), newseq))->setflag(status_flags::dynallocated); +} + +/** Implementation of ex::expand() for a power series. It expands all the + * terms individually and returns the resulting series as a new pseries. */ +ex pseries::expand(unsigned options) const +{ + epvector newseq; + epvector::const_iterator i = seq.begin(), end = seq.end(); + while (i != end) { + ex restexp = i->rest.expand(); + if (!restexp.is_zero()) + newseq.push_back(expair(restexp, i->coeff)); + ++i; + } + return (new pseries(relational(var,point), newseq)) + ->setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0)); +} + +/** Implementation of ex::diff() for a power series. * @see ex::diff */ ex pseries::derivative(const symbol & s) const { - if (s == var) { - epvector new_seq; - epvector::const_iterator it = seq.begin(), itend = seq.end(); - - // FIXME: coeff might depend on var - while (it != itend) { - if (is_order_function(it->rest)) { - new_seq.push_back(expair(it->rest, it->coeff - 1)); - } else { - ex c = it->rest * it->coeff; - if (!c.is_zero()) - new_seq.push_back(expair(c, it->coeff - 1)); - } - it++; - } - return pseries(relational(var,point), new_seq); - } else { - return *this; - } + epvector new_seq; + epvector::const_iterator it = seq.begin(), itend = seq.end(); + + if (s == var) { + + // FIXME: coeff might depend on var + while (it != itend) { + if (is_order_function(it->rest)) { + new_seq.push_back(expair(it->rest, it->coeff - 1)); + } else { + ex c = it->rest * it->coeff; + if (!c.is_zero()) + new_seq.push_back(expair(c, it->coeff - 1)); + } + ++it; + } + + } else { + + while (it != itend) { + if (is_order_function(it->rest)) { + new_seq.push_back(*it); + } else { + ex c = it->rest.diff(s); + if (!c.is_zero()) + new_seq.push_back(expair(c, it->coeff)); + } + ++it; + } + } + + return pseries(relational(var,point), new_seq); } - -/* - * Construct ordinary polynomial out of series - */ - -/** Convert a pseries object to an ordinary polynomial. - * - * @param no_order flag: discard higher order terms */ ex pseries::convert_to_poly(bool no_order) const { - ex e; - epvector::const_iterator it = seq.begin(), itend = seq.end(); - - while (it != itend) { - if (is_order_function(it->rest)) { - if (!no_order) - e += Order(power(var - point, it->coeff)); - } else - e += it->rest * power(var - point, it->coeff); - it++; - } - return e; + ex e; + epvector::const_iterator it = seq.begin(), itend = seq.end(); + + while (it != itend) { + if (is_order_function(it->rest)) { + if (!no_order) + e += Order(power(var - point, it->coeff)); + } else + e += it->rest * power(var - point, it->coeff); + ++it; + } + return e; +} + +bool pseries::is_terminating(void) const +{ + return seq.empty() || !is_order_function((seq.end()-1)->rest); } /* - * Implementation of series expansion + * Implementations of series expansion */ /** Default implementation of ex::series(). This performs Taylor expansion. * @see ex::series */ -ex basic::series(const relational & r, int order) const -{ - epvector seq; - numeric fac(1); - ex deriv = *this; - ex coeff = deriv.subs(r); - const symbol *s = static_cast(r.lhs().bp); - - if (!coeff.is_zero()) - seq.push_back(expair(coeff, numeric(0))); - - int n; - for (n=1; n(r.lhs()); + + if (!coeff.is_zero()) + seq.push_back(expair(coeff, _ex0)); + + int n; + for (n=1; n(r.lhs().bp); - - if (this->is_equal(*s)) { - if (order > 0 && !point.is_zero()) - seq.push_back(expair(point, _ex0())); - if (order > 1) - seq.push_back(expair(_ex1(), _ex1())); - else - seq.push_back(expair(Order(_ex1()), numeric(order))); - } else - seq.push_back(expair(*this, _ex0())); - return pseries(r, seq); +ex symbol::series(const relational & r, int order, unsigned options) const +{ + epvector seq; + const ex point = r.rhs(); + GINAC_ASSERT(is_a(r.lhs())); + + if (this->is_equal_same_type(ex_to(r.lhs()))) { + if (order > 0 && !point.is_zero()) + seq.push_back(expair(point, _ex0)); + if (order > 1) + seq.push_back(expair(_ex1, _ex1)); + else + seq.push_back(expair(Order(_ex1), numeric(order))); + } else + seq.push_back(expair(*this, _ex0)); + return pseries(r, seq); } @@ -500,99 +573,99 @@ ex symbol::series(const relational & r, int order) const * @return the sum as a pseries */ ex pseries::add_series(const pseries &other) const { - // Adding two series with different variables or expansion points - // results in an empty (constant) series - if (!is_compatible_to(other)) { - epvector nul; - nul.push_back(expair(Order(_ex1()), _ex0())); - return pseries(relational(var,point), nul); - } - - // Series addition - epvector new_seq; - epvector::const_iterator a = seq.begin(); - epvector::const_iterator b = other.seq.begin(); - epvector::const_iterator a_end = seq.end(); - epvector::const_iterator b_end = other.seq.end(); - int pow_a = INT_MAX, pow_b = INT_MAX; - for (;;) { - // If a is empty, fill up with elements from b and stop - if (a == a_end) { - while (b != b_end) { - new_seq.push_back(*b); - b++; - } - break; - } else - pow_a = ex_to_numeric((*a).coeff).to_int(); - - // If b is empty, fill up with elements from a and stop - if (b == b_end) { - while (a != a_end) { - new_seq.push_back(*a); - a++; - } - break; - } else - pow_b = ex_to_numeric((*b).coeff).to_int(); - - // a and b are non-empty, compare powers - if (pow_a < pow_b) { - // a has lesser power, get coefficient from a - new_seq.push_back(*a); - if (is_order_function((*a).rest)) - break; - a++; - } else if (pow_b < pow_a) { - // b has lesser power, get coefficient from b - new_seq.push_back(*b); - if (is_order_function((*b).rest)) - break; - b++; - } else { - // Add coefficient of a and b - if (is_order_function((*a).rest) || is_order_function((*b).rest)) { - new_seq.push_back(expair(Order(_ex1()), (*a).coeff)); - break; // Order term ends the sequence - } else { - ex sum = (*a).rest + (*b).rest; - if (!(sum.is_zero())) - new_seq.push_back(expair(sum, numeric(pow_a))); - a++; - b++; - } - } - } - return pseries(relational(var,point), new_seq); + // Adding two series with different variables or expansion points + // results in an empty (constant) series + if (!is_compatible_to(other)) { + epvector nul; + nul.push_back(expair(Order(_ex1), _ex0)); + return pseries(relational(var,point), nul); + } + + // Series addition + epvector new_seq; + epvector::const_iterator a = seq.begin(); + epvector::const_iterator b = other.seq.begin(); + epvector::const_iterator a_end = seq.end(); + epvector::const_iterator b_end = other.seq.end(); + int pow_a = INT_MAX, pow_b = INT_MAX; + for (;;) { + // If a is empty, fill up with elements from b and stop + if (a == a_end) { + while (b != b_end) { + new_seq.push_back(*b); + ++b; + } + break; + } else + pow_a = ex_to((*a).coeff).to_int(); + + // If b is empty, fill up with elements from a and stop + if (b == b_end) { + while (a != a_end) { + new_seq.push_back(*a); + ++a; + } + break; + } else + pow_b = ex_to((*b).coeff).to_int(); + + // a and b are non-empty, compare powers + if (pow_a < pow_b) { + // a has lesser power, get coefficient from a + new_seq.push_back(*a); + if (is_order_function((*a).rest)) + break; + ++a; + } else if (pow_b < pow_a) { + // b has lesser power, get coefficient from b + new_seq.push_back(*b); + if (is_order_function((*b).rest)) + break; + ++b; + } else { + // Add coefficient of a and b + if (is_order_function((*a).rest) || is_order_function((*b).rest)) { + new_seq.push_back(expair(Order(_ex1), (*a).coeff)); + break; // Order term ends the sequence + } else { + ex sum = (*a).rest + (*b).rest; + if (!(sum.is_zero())) + new_seq.push_back(expair(sum, numeric(pow_a))); + ++a; + ++b; + } + } + } + return pseries(relational(var,point), new_seq); } /** Implementation of ex::series() for sums. This performs series addition when * adding pseries objects. * @see ex::series */ -ex add::series(const relational & r, int order) const -{ - ex acc; // Series accumulator - - // Get first term from overall_coeff - acc = overall_coeff.series(r, order); - - // Add remaining terms - epvector::const_iterator it = seq.begin(); - epvector::const_iterator itend = seq.end(); - for (; it!=itend; it++) { - ex op; - if (is_ex_exactly_of_type(it->rest, pseries)) - op = it->rest; - else - op = it->rest.series(r, order); - if (!it->coeff.is_equal(_ex1())) - op = ex_to_pseries(op).mul_const(ex_to_numeric(it->coeff)); - - // Series addition - acc = ex_to_pseries(acc).add_series(ex_to_pseries(op)); - } - return acc; +ex add::series(const relational & r, int order, unsigned options) const +{ + ex acc; // Series accumulator + + // Get first term from overall_coeff + acc = overall_coeff.series(r, order, options); + + // Add remaining terms + epvector::const_iterator it = seq.begin(); + epvector::const_iterator itend = seq.end(); + for (; it!=itend; ++it) { + ex op; + if (is_exactly_a(it->rest)) + op = it->rest; + else + op = it->rest.series(r, order, options); + if (!it->coeff.is_equal(_ex1)) + op = ex_to(op).mul_const(ex_to(it->coeff)); + + // Series addition + acc = ex_to(acc).add_series(ex_to(op)); + } + return acc; } @@ -603,18 +676,18 @@ ex add::series(const relational & r, int order) const * @return the product as a pseries */ ex pseries::mul_const(const numeric &other) const { - epvector new_seq; - new_seq.reserve(seq.size()); - - epvector::const_iterator it = seq.begin(), itend = seq.end(); - while (it != itend) { - if (!is_order_function(it->rest)) - new_seq.push_back(expair(it->rest * other, it->coeff)); - else - new_seq.push_back(*it); - it++; - } - return pseries(relational(var,point), new_seq); + epvector new_seq; + new_seq.reserve(seq.size()); + + epvector::const_iterator it = seq.begin(), itend = seq.end(); + while (it != itend) { + if (!is_order_function(it->rest)) + new_seq.push_back(expair(it->rest * other, it->coeff)); + else + new_seq.push_back(*it); + ++it; + } + return pseries(relational(var,point), new_seq); } @@ -625,82 +698,71 @@ ex pseries::mul_const(const numeric &other) const * @return the product as a pseries */ ex pseries::mul_series(const pseries &other) const { - // Multiplying two series with different variables or expansion points - // results in an empty (constant) series - if (!is_compatible_to(other)) { - epvector nul; - nul.push_back(expair(Order(_ex1()), _ex0())); - return pseries(relational(var,point), nul); - } - - // Series multiplication - epvector new_seq; - - const symbol *s = static_cast(var.bp); - int a_max = degree(*s); - int b_max = other.degree(*s); - int a_min = ldegree(*s); - int b_min = other.ldegree(*s); - int cdeg_min = a_min + b_min; - int cdeg_max = a_max + b_max; - - int higher_order_a = INT_MAX; - int higher_order_b = INT_MAX; - if (is_order_function(coeff(*s, a_max))) - higher_order_a = a_max + b_min; - if (is_order_function(other.coeff(*s, b_max))) - higher_order_b = b_max + a_min; - int higher_order_c = min(higher_order_a, higher_order_b); - if (cdeg_max >= higher_order_c) - cdeg_max = higher_order_c - 1; - - for (int cdeg=cdeg_min; cdeg<=cdeg_max; cdeg++) { - ex co = _ex0(); - // c(i)=a(0)b(i)+...+a(i)b(0) - for (int i=a_min; cdeg-i>=b_min; i++) { - ex a_coeff = coeff(*s, i); - ex b_coeff = other.coeff(*s, cdeg-i); - if (!is_order_function(a_coeff) && !is_order_function(b_coeff)) - co += a_coeff * b_coeff; - } - if (!co.is_zero()) - new_seq.push_back(expair(co, numeric(cdeg))); - } - if (higher_order_c < INT_MAX) - new_seq.push_back(expair(Order(_ex1()), numeric(higher_order_c))); - return pseries(relational(var,point), new_seq); + // Multiplying two series with different variables or expansion points + // results in an empty (constant) series + if (!is_compatible_to(other)) { + epvector nul; + nul.push_back(expair(Order(_ex1), _ex0)); + return pseries(relational(var,point), nul); + } + + // Series multiplication + epvector new_seq; + int a_max = degree(var); + int b_max = other.degree(var); + int a_min = ldegree(var); + int b_min = other.ldegree(var); + int cdeg_min = a_min + b_min; + int cdeg_max = a_max + b_max; + + int higher_order_a = INT_MAX; + int higher_order_b = INT_MAX; + if (is_order_function(coeff(var, a_max))) + higher_order_a = a_max + b_min; + if (is_order_function(other.coeff(var, b_max))) + higher_order_b = b_max + a_min; + int higher_order_c = std::min(higher_order_a, higher_order_b); + if (cdeg_max >= higher_order_c) + cdeg_max = higher_order_c - 1; + + for (int cdeg=cdeg_min; cdeg<=cdeg_max; ++cdeg) { + ex co = _ex0; + // c(i)=a(0)b(i)+...+a(i)b(0) + for (int i=a_min; cdeg-i>=b_min; ++i) { + ex a_coeff = coeff(var, i); + ex b_coeff = other.coeff(var, cdeg-i); + if (!is_order_function(a_coeff) && !is_order_function(b_coeff)) + co += a_coeff * b_coeff; + } + if (!co.is_zero()) + new_seq.push_back(expair(co, numeric(cdeg))); + } + if (higher_order_c < INT_MAX) + new_seq.push_back(expair(Order(_ex1), numeric(higher_order_c))); + return pseries(relational(var, point), new_seq); } /** Implementation of ex::series() for product. This performs series * multiplication when multiplying series. * @see ex::series */ -ex mul::series(const relational & r, int order) const -{ - ex acc; // Series accumulator - - // Get first term from overall_coeff - acc = overall_coeff.series(r, order); - - // Multiply with remaining terms - epvector::const_iterator it = seq.begin(); - epvector::const_iterator itend = seq.end(); - for (; it!=itend; it++) { - ex op = it->rest; - if (op.info(info_flags::numeric)) { - // series * const (special case, faster) - ex f = power(op, it->coeff); - acc = ex_to_pseries(acc).mul_const(ex_to_numeric(f)); - continue; - } else if (!is_ex_exactly_of_type(op, pseries)) - op = op.series(r, order); - if (!it->coeff.is_equal(_ex1())) - op = ex_to_pseries(op).power_const(ex_to_numeric(it->coeff), order); - - // Series multiplication - acc = ex_to_pseries(acc).mul_series(ex_to_pseries(op)); - } - return acc; +ex mul::series(const relational & r, int order, unsigned options) const +{ + pseries acc; // Series accumulator + + // Multiply with remaining terms + const epvector::const_iterator itbeg = seq.begin(); + const epvector::const_iterator itend = seq.end(); + for (epvector::const_iterator it=itbeg; it!=itend; ++it) { + ex op = recombine_pair_to_ex(*it).series(r, order, options); + + // Series multiplication + if (it==itbeg) + acc = ex_to(op); + else + acc = ex_to(acc.mul_series(ex_to(op))); + } + return acc.mul_const(ex_to(overall_coeff)); } @@ -710,101 +772,163 @@ ex mul::series(const relational & r, int order) const * @param deg truncation order of series calculation */ ex pseries::power_const(const numeric &p, int deg) const { - int i; - const symbol *s = static_cast(var.bp); - int ldeg = ldegree(*s); - - // Calculate coefficients of powered series - exvector co; - co.reserve(deg); - ex co0; - co.push_back(co0 = power(coeff(*s, ldeg), p)); - bool all_sums_zero = true; - for (i=1; icoeff += deg; + ++i; + } + return pseries(relational(var, point), newseq); } /** Implementation of ex::series() for powers. This performs Laurent expansion * of reciprocals of series at singularities. * @see ex::series */ -ex power::series(const relational & r, int order) const -{ - ex e; - if (!is_ex_exactly_of_type(basis, pseries)) { - // Basis is not a series, may there be a singulary? - if (!exponent.info(info_flags::negint)) - return basic::series(r, order); - - // Expression is of type something^(-int), check for singularity - if (!basis.subs(r).is_zero()) - return basic::series(r, order); - - // Singularity encountered, expand basis into series - e = basis.series(r, order); - } else { - // Basis is a series - e = basis; - } - - // Power e - return ex_to_pseries(e).power_const(ex_to_numeric(exponent), order); +ex power::series(const relational & r, int order, unsigned options) const +{ + // If basis is already a series, just power it + if (is_exactly_a(basis)) + return ex_to(basis).power_const(ex_to(exponent), order); + + // Basis is not a series, may there be a singularity? + bool must_expand_basis = false; + try { + basis.subs(r); + } catch (pole_error) { + must_expand_basis = true; + } + + // Is the expression of type something^(-int)? + if (!must_expand_basis && !exponent.info(info_flags::negint)) + return basic::series(r, order, options); + + // Is the expression of type 0^something? + if (!must_expand_basis && !basis.subs(r).is_zero()) + return basic::series(r, order, options); + + // Singularity encountered, is the basis equal to (var - point)? + if (basis.is_equal(r.lhs() - r.rhs())) { + epvector new_seq; + if (ex_to(exponent).to_int() < order) + new_seq.push_back(expair(_ex1, exponent)); + else + new_seq.push_back(expair(Order(_ex1), exponent)); + return pseries(r, new_seq); + } + + // No, expand basis into series + ex e = basis.series(r, order, options); + return ex_to(e).power_const(ex_to(exponent), order); } /** Re-expansion of a pseries object. */ -ex pseries::series(const relational & r, int order) const -{ - const ex p = r.rhs(); - GINAC_ASSERT(is_ex_exactly_of_type(r.lhs(),symbol)); - const symbol *s = static_cast(r.lhs().bp); - - if (var.is_equal(*s) && point.is_equal(p)) { - if (order > degree(*s)) - return *this; - else { - epvector new_seq; - epvector::const_iterator it = seq.begin(), itend = seq.end(); - while (it != itend) { - int o = ex_to_numeric(it->coeff).to_int(); - if (o >= order) { - new_seq.push_back(expair(Order(_ex1()), o)); - break; - } - new_seq.push_back(*it); - it++; - } - return pseries(r, new_seq); - } - } else - return convert_to_poly().series(r, order); +ex pseries::series(const relational & r, int order, unsigned options) const +{ + const ex p = r.rhs(); + GINAC_ASSERT(is_a(r.lhs())); + const symbol &s = ex_to(r.lhs()); + + if (var.is_equal(s) && point.is_equal(p)) { + if (order > degree(s)) + return *this; + else { + epvector new_seq; + epvector::const_iterator it = seq.begin(), itend = seq.end(); + while (it != itend) { + int o = ex_to(it->coeff).to_int(); + if (o >= order) { + new_seq.push_back(expair(Order(_ex1), o)); + break; + } + new_seq.push_back(*it); + ++it; + } + return pseries(r, new_seq); + } + } else + return convert_to_poly().series(r, order, options); } @@ -815,33 +939,27 @@ ex pseries::series(const relational & r, int order) const * * @param r expansion relation, lhs holds variable and rhs holds point * @param order truncation order of series calculations + * @param options of class series_options * @return an expression holding a pseries object */ -ex ex::series(const ex & r, int order) const -{ - GINAC_ASSERT(bp!=0); - ex e; - relational rel_; - - if (is_ex_exactly_of_type(r,relational)) - rel_ = ex_to_relational(r); - else if (is_ex_exactly_of_type(r,symbol)) - rel_ = relational(r,_ex0()); - else - throw (std::logic_error("ex::series(): expansion point has unknown type")); - - try { - e = bp->series(rel_, order); - } catch (exception &x) { - throw (std::logic_error(string("unable to compute series (") + x.what() + ")")); - } - return e; -} - - -// Global constants -const pseries some_pseries; -const type_info & typeid_pseries = typeid(some_pseries); - -#ifndef NO_NAMESPACE_GINAC +ex ex::series(const ex & r, int order, unsigned options) const +{ + GINAC_ASSERT(bp!=0); + ex e; + relational rel_; + + if (is_exactly_a(r)) + rel_ = ex_to(r); + else if (is_a(r)) + rel_ = relational(r,_ex0); + else + throw (std::logic_error("ex::series(): expansion point has unknown type")); + + try { + e = bp->series(rel_, order, options); + } catch (std::exception &x) { + throw (std::logic_error(std::string("unable to compute series (") + x.what() + ")")); + } + return e; +} + } // namespace GiNaC -#endif // ndef NO_NAMESPACE_GINAC