X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fpseries.cpp;h=bed134ed10abfab7506c7f8cbecd8ede4662191b;hp=87d0e4377a6ccbb3023723759b5c6be3773b45d8;hb=81efb5392132944d3649351b1efc5dac1a2625b1;hpb=6564c3b961f7e0b69c20187b56f90d86d4fdcb9a diff --git a/ginac/pseries.cpp b/ginac/pseries.cpp index 87d0e437..bed134ed 100644 --- a/ginac/pseries.cpp +++ b/ginac/pseries.cpp @@ -47,43 +47,43 @@ GINAC_IMPLEMENT_REGISTERED_CLASS(pseries, basic) pseries::pseries() : basic(TINFO_pseries) { - debugmsg("pseries default constructor", LOGLEVEL_CONSTRUCT); + debugmsg("pseries default constructor", LOGLEVEL_CONSTRUCT); } pseries::~pseries() { - debugmsg("pseries destructor", LOGLEVEL_DESTRUCT); - destroy(false); + debugmsg("pseries destructor", LOGLEVEL_DESTRUCT); + destroy(false); } pseries::pseries(const pseries &other) { - debugmsg("pseries copy constructor", LOGLEVEL_CONSTRUCT); - copy(other); + debugmsg("pseries copy constructor", LOGLEVEL_CONSTRUCT); + copy(other); } const pseries &pseries::operator=(const pseries & other) { - debugmsg("pseries operator=", LOGLEVEL_ASSIGNMENT); - if (this != &other) { - destroy(true); - copy(other); - } - return *this; + debugmsg("pseries operator=", LOGLEVEL_ASSIGNMENT); + if (this != &other) { + destroy(true); + copy(other); + } + return *this; } void pseries::copy(const pseries &other) { - inherited::copy(other); - seq = other.seq; - var = other.var; - point = other.point; + inherited::copy(other); + seq = other.seq; + var = other.var; + point = other.point; } void pseries::destroy(bool call_parent) { - if (call_parent) - inherited::destroy(call_parent); + if (call_parent) + inherited::destroy(call_parent); } @@ -97,15 +97,16 @@ void pseries::destroy(bool call_parent) * the last coefficient can be Order(_ex1()) to represent a truncated, * non-terminating series. * - * @param var_ series variable (must hold a symbol) - * @param point_ expansion point + * @param rel_ expansion variable and point (must hold a relational) * @param ops_ vector of {coefficient, power} pairs (coefficient must not be zero) * @return newly constructed pseries */ -pseries::pseries(const ex &var_, const ex &point_, const epvector &ops_) - : basic(TINFO_pseries), seq(ops_), var(var_), point(point_) +pseries::pseries(const ex &rel_, const epvector &ops_) : basic(TINFO_pseries), seq(ops_) { - debugmsg("pseries constructor from ex,ex,epvector", LOGLEVEL_CONSTRUCT); - GINAC_ASSERT(is_ex_exactly_of_type(var_, symbol)); + debugmsg("pseries constructor from ex,epvector", LOGLEVEL_CONSTRUCT); + GINAC_ASSERT(is_ex_exactly_of_type(rel_, relational)); + GINAC_ASSERT(is_ex_exactly_of_type(rel_.lhs(),symbol)); + point = rel_.rhs(); + var = *static_cast(rel_.lhs().bp); } @@ -116,135 +117,200 @@ pseries::pseries(const ex &var_, const ex &point_, const epvector &ops_) /** Construct object from archive_node. */ pseries::pseries(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) { - debugmsg("pseries constructor from archive_node", LOGLEVEL_CONSTRUCT); - for (unsigned int i=0; true; i++) { - ex rest; - ex coeff; - if (n.find_ex("coeff", rest, sym_lst, i) && n.find_ex("power", coeff, sym_lst, i)) - seq.push_back(expair(rest, coeff)); - else - break; - } - n.find_ex("var", var, sym_lst); - n.find_ex("point", point, sym_lst); + debugmsg("pseries constructor from archive_node", LOGLEVEL_CONSTRUCT); + for (unsigned int i=0; true; ++i) { + ex rest; + ex coeff; + if (n.find_ex("coeff", rest, sym_lst, i) && n.find_ex("power", coeff, sym_lst, i)) + seq.push_back(expair(rest, coeff)); + else + break; + } + n.find_ex("var", var, sym_lst); + n.find_ex("point", point, sym_lst); } /** Unarchive the object. */ ex pseries::unarchive(const archive_node &n, const lst &sym_lst) { - return (new pseries(n, sym_lst))->setflag(status_flags::dynallocated); + return (new pseries(n, sym_lst))->setflag(status_flags::dynallocated); } /** Archive the object. */ void pseries::archive(archive_node &n) const { - inherited::archive(n); - epvector::const_iterator i = seq.begin(), iend = seq.end(); - while (i != iend) { - n.add_ex("coeff", i->rest); - n.add_ex("power", i->coeff); - i++; - } - n.add_ex("var", var); - n.add_ex("point", point); + inherited::archive(n); + epvector::const_iterator i = seq.begin(), iend = seq.end(); + while (i != iend) { + n.add_ex("coeff", i->rest); + n.add_ex("power", i->coeff); + ++i; + } + n.add_ex("var", var); + n.add_ex("point", point); } - -/* - * Functions overriding virtual functions from base classes - */ +////////// +// functions overriding virtual functions from bases classes +////////// basic *pseries::duplicate() const { - debugmsg("pseries duplicate", LOGLEVEL_DUPLICATE); - return new pseries(*this); + debugmsg("pseries duplicate", LOGLEVEL_DUPLICATE); + return new pseries(*this); +} + +void pseries::print(std::ostream &os, unsigned upper_precedence) const +{ + debugmsg("pseries print", LOGLEVEL_PRINT); + if (precedence<=upper_precedence) os << "("; + for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) { + // omit zero terms + if (i->rest.is_zero()) + continue; + // print a sign, if needed + if (i!=seq.begin()) + os << '+'; + if (!is_order_function(i->rest)) { + // print 'rest', i.e. the expansion coefficient + if (i->rest.info(info_flags::numeric) && + i->rest.info(info_flags::positive)) { + os << i->rest; + } else + os << "(" << i->rest << ')'; + // print 'coeff', something like (x-1)^42 + if (!i->coeff.is_zero()) { + os << '*'; + if (!point.is_zero()) + os << '(' << var-point << ')'; + else + os << var; + if (i->coeff.compare(_ex1())) { + os << '^'; + if (i->coeff.info(info_flags::negative)) + os << '(' << i->coeff << ')'; + else + os << i->coeff; + } + } + } else { + os << Order(power(var-point,i->coeff)); + } + } + if (precedence<=upper_precedence) os << ")"; } -void pseries::print(ostream &os, unsigned upper_precedence) const -{ - debugmsg("pseries print", LOGLEVEL_PRINT); - convert_to_poly().print(os, upper_precedence); -} -void pseries::printraw(ostream &os) const +void pseries::printraw(std::ostream &os) const { debugmsg("pseries printraw", LOGLEVEL_PRINT); os << "pseries(" << var << ";" << point << ";"; - for (epvector::const_iterator i=seq.begin(); i!=seq.end(); i++) { + for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) { os << "(" << (*i).rest << "," << (*i).coeff << "),"; } os << ")"; } + +void pseries::printtree(std::ostream & os, unsigned indent) const +{ + debugmsg("pseries printtree",LOGLEVEL_PRINT); + os << std::string(indent,' ') << "pseries " + << ", hash=" << hashvalue + << " (0x" << std::hex << hashvalue << std::dec << ")" + << ", flags=" << flags << std::endl; + for (unsigned i=0; i= seq.size()) - throw (std::out_of_range("op() out of range")); - return seq[i].rest * power(var - point, seq[i].coeff); + if (i < 0 || unsigned(i) >= seq.size()) + throw (std::out_of_range("op() out of range")); + return seq[i].rest * power(var - point, seq[i].coeff); } + ex &pseries::let_op(int i) { - throw (std::logic_error("let_op not defined for pseries")); + throw (std::logic_error("let_op not defined for pseries")); } + +/** Return degree of highest power of the series. This is usually the exponent + * of the Order term. If s is not the expansion variable of the series, the + * series is examined termwise. */ int pseries::degree(const symbol &s) const { - if (var.is_equal(s)) { - // Return last exponent - if (seq.size()) - return ex_to_numeric((*(seq.end() - 1)).coeff).to_int(); - else - return 0; - } else { - epvector::const_iterator it = seq.begin(), itend = seq.end(); - if (it == itend) - return 0; - int max_pow = INT_MIN; - while (it != itend) { - int pow = it->rest.degree(s); - if (pow > max_pow) - max_pow = pow; - it++; - } - return max_pow; - } + if (var.is_equal(s)) { + // Return last exponent + if (seq.size()) + return ex_to_numeric((*(seq.end() - 1)).coeff).to_int(); + else + return 0; + } else { + epvector::const_iterator it = seq.begin(), itend = seq.end(); + if (it == itend) + return 0; + int max_pow = INT_MIN; + while (it != itend) { + int pow = it->rest.degree(s); + if (pow > max_pow) + max_pow = pow; + ++it; + } + return max_pow; + } } +/** Return degree of lowest power of the series. This is usually the exponent + * of the leading term. If s is not the expansion variable of the series, the + * series is examined termwise. If s is the expansion variable but the + * expansion point is not zero the series is not expanded to find the degree. + * I.e.: (1-x) + (1-x)^2 + Order((1-x)^3) has ldegree(x) 1, not 0. */ int pseries::ldegree(const symbol &s) const { - if (var.is_equal(s)) { - // Return first exponent - if (seq.size()) - return ex_to_numeric((*(seq.begin())).coeff).to_int(); - else - return 0; - } else { - epvector::const_iterator it = seq.begin(), itend = seq.end(); - if (it == itend) - return 0; - int min_pow = INT_MAX; - while (it != itend) { - int pow = it->rest.ldegree(s); - if (pow < min_pow) - min_pow = pow; - it++; - } - return min_pow; - } + if (var.is_equal(s)) { + // Return first exponent + if (seq.size()) + return ex_to_numeric((*(seq.begin())).coeff).to_int(); + else + return 0; + } else { + epvector::const_iterator it = seq.begin(), itend = seq.end(); + if (it == itend) + return 0; + int min_pow = INT_MAX; + while (it != itend) { + int pow = it->rest.ldegree(s); + if (pow < min_pow) + min_pow = pow; + ++it; + } + return min_pow; + } } ex pseries::coeff(const symbol &s, int n) const { - if (var.is_equal(s)) { + if (var.is_equal(s)) { if (seq.size() == 0) return _ex0(); - + // Binary search in sequence for given power numeric looking_for = numeric(n); int lo = 0, hi = seq.size() - 1; @@ -266,40 +332,59 @@ ex pseries::coeff(const symbol &s, int n) const } } return _ex0(); - } else - return convert_to_poly().coeff(s, n); + } else + return convert_to_poly().coeff(s, n); } + ex pseries::collect(const symbol &s) const { - if (var.is_equal(s)) - return convert_to_poly(); - else - return inherited::collect(s); + return *this; } + +/** Evaluate coefficients. */ ex pseries::eval(int level) const { - if (level == 1) - return this->hold(); - - // Construct a new series with evaluated coefficients - epvector new_seq; - new_seq.reserve(seq.size()); - epvector::const_iterator it = seq.begin(), itend = seq.end(); - while (it != itend) { - new_seq.push_back(expair(it->rest.eval(level-1), it->coeff)); - it++; - } - return (new pseries(var, point, new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated); -} - -/** Evaluate numerically. The order term is dropped. */ + if (level == 1) + return this->hold(); + + if (level == -max_recursion_level) + throw (std::runtime_error("pseries::eval(): recursion limit exceeded")); + + // Construct a new series with evaluated coefficients + epvector new_seq; + new_seq.reserve(seq.size()); + epvector::const_iterator it = seq.begin(), itend = seq.end(); + while (it != itend) { + new_seq.push_back(expair(it->rest.eval(level-1), it->coeff)); + ++it; + } + return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated); +} + + +/** Evaluate coefficients numerically. */ ex pseries::evalf(int level) const { - return convert_to_poly().evalf(level); + if (level == 1) + return *this; + + if (level == -max_recursion_level) + throw (std::runtime_error("pseries::evalf(): recursion limit exceeded")); + + // Construct a new series with evaluated coefficients + epvector new_seq; + new_seq.reserve(seq.size()); + epvector::const_iterator it = seq.begin(), itend = seq.end(); + while (it != itend) { + new_seq.push_back(expair(it->rest.evalf(level-1), it->coeff)); + ++it; + } + return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated); } + ex pseries::subs(const lst & ls, const lst & lr) const { // If expansion variable is being substituted, convert the series to a @@ -307,43 +392,58 @@ ex pseries::subs(const lst & ls, const lst & lr) const // no longer be a power series if (ls.has(var)) return convert_to_poly(true).subs(ls, lr); - + // Otherwise construct a new series with substituted coefficients and // expansion point - epvector new_seq; - new_seq.reserve(seq.size()); + epvector newseq; + newseq.reserve(seq.size()); epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { - new_seq.push_back(expair(it->rest.subs(ls, lr), it->coeff)); - it++; + newseq.push_back(expair(it->rest.subs(ls, lr), it->coeff)); + ++it; } - return (new pseries(var, point.subs(ls, lr), new_seq))->setflag(status_flags::dynallocated); + return (new pseries(relational(var,point.subs(ls, lr)), newseq))->setflag(status_flags::dynallocated); } + +/** Implementation of ex::expand() for a power series. It expands all the + * terms individually and returns the resulting series as a new pseries. + * @see ex::diff */ +ex pseries::expand(unsigned options) const +{ + epvector newseq; + newseq.reserve(seq.size()); + for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) + newseq.push_back(expair(i->rest.expand(), i->coeff)); + return (new pseries(relational(var,point), newseq)) + ->setflag(status_flags::dynallocated | status_flags::expanded); +} + + /** Implementation of ex::diff() for a power series. It treats the series as a * polynomial. * @see ex::diff */ ex pseries::derivative(const symbol & s) const { - if (s == var) { - epvector new_seq; - epvector::const_iterator it = seq.begin(), itend = seq.end(); - - // FIXME: coeff might depend on var - while (it != itend) { - if (is_order_function(it->rest)) { - new_seq.push_back(expair(it->rest, it->coeff - 1)); - } else { - ex c = it->rest * it->coeff; - if (!c.is_zero()) - new_seq.push_back(expair(c, it->coeff - 1)); - } - it++; - } - return pseries(var, point, new_seq); - } else { - return *this; - } + if (s == var) { + epvector new_seq; + epvector::const_iterator it = seq.begin(), itend = seq.end(); + + // FIXME: coeff might depend on var + while (it != itend) { + if (is_order_function(it->rest)) { + new_seq.push_back(expair(it->rest, it->coeff - 1)); + } else { + ex c = it->rest * it->coeff; + if (!c.is_zero()) + new_seq.push_back(expair(c, it->coeff - 1)); + } + ++it; + } + return pseries(relational(var,point), new_seq); + } else { + return *this; + } } @@ -356,18 +456,25 @@ ex pseries::derivative(const symbol & s) const * @param no_order flag: discard higher order terms */ ex pseries::convert_to_poly(bool no_order) const { - ex e; - epvector::const_iterator it = seq.begin(), itend = seq.end(); - - while (it != itend) { - if (is_order_function(it->rest)) { - if (!no_order) - e += Order(power(var - point, it->coeff)); - } else - e += it->rest * power(var - point, it->coeff); - it++; - } - return e; + ex e; + epvector::const_iterator it = seq.begin(), itend = seq.end(); + + while (it != itend) { + if (is_order_function(it->rest)) { + if (!no_order) + e += Order(power(var - point, it->coeff)); + } else + e += it->rest * power(var - point, it->coeff); + ++it; + } + return e; +} + +/** Returns true if there is no order term, i.e. the series terminates and + * false otherwise. */ +bool pseries::is_terminating(void) const +{ + return seq.size() == 0 || !is_order_function((seq.end()-1)->rest); } @@ -377,42 +484,48 @@ ex pseries::convert_to_poly(bool no_order) const /** Default implementation of ex::series(). This performs Taylor expansion. * @see ex::series */ -ex basic::series(const symbol & s, const ex & point, int order) const -{ - epvector seq; - numeric fac(1); - ex deriv = *this; - ex coeff = deriv.subs(s == point); - if (!coeff.is_zero()) - seq.push_back(expair(coeff, numeric(0))); - - int n; - for (n=1; n(r.lhs().bp); + + if (!coeff.is_zero()) + seq.push_back(expair(coeff, numeric(0))); + + int n; + for (n=1; n(r.lhs().bp); + + if (this->is_equal(*s)) { if (order > 0 && !point.is_zero()) seq.push_back(expair(point, _ex0())); if (order > 1) @@ -421,7 +534,7 @@ ex symbol::series(const symbol & s, const ex & point, int order) const seq.push_back(expair(Order(_ex1()), numeric(order))); } else seq.push_back(expair(*this, _ex0())); - return pseries(s, point, seq); + return pseries(r, seq); } @@ -432,99 +545,99 @@ ex symbol::series(const symbol & s, const ex & point, int order) const * @return the sum as a pseries */ ex pseries::add_series(const pseries &other) const { - // Adding two series with different variables or expansion points - // results in an empty (constant) series - if (!is_compatible_to(other)) { - epvector nul; - nul.push_back(expair(Order(_ex1()), _ex0())); - return pseries(var, point, nul); - } - - // Series addition - epvector new_seq; - epvector::const_iterator a = seq.begin(); - epvector::const_iterator b = other.seq.begin(); - epvector::const_iterator a_end = seq.end(); - epvector::const_iterator b_end = other.seq.end(); - int pow_a = INT_MAX, pow_b = INT_MAX; - for (;;) { - // If a is empty, fill up with elements from b and stop - if (a == a_end) { - while (b != b_end) { - new_seq.push_back(*b); - b++; - } - break; - } else - pow_a = ex_to_numeric((*a).coeff).to_int(); - - // If b is empty, fill up with elements from a and stop - if (b == b_end) { - while (a != a_end) { - new_seq.push_back(*a); - a++; - } - break; - } else - pow_b = ex_to_numeric((*b).coeff).to_int(); - - // a and b are non-empty, compare powers - if (pow_a < pow_b) { - // a has lesser power, get coefficient from a - new_seq.push_back(*a); - if (is_order_function((*a).rest)) - break; - a++; - } else if (pow_b < pow_a) { - // b has lesser power, get coefficient from b - new_seq.push_back(*b); - if (is_order_function((*b).rest)) - break; - b++; - } else { - // Add coefficient of a and b - if (is_order_function((*a).rest) || is_order_function((*b).rest)) { - new_seq.push_back(expair(Order(_ex1()), (*a).coeff)); - break; // Order term ends the sequence - } else { - ex sum = (*a).rest + (*b).rest; - if (!(sum.is_zero())) - new_seq.push_back(expair(sum, numeric(pow_a))); - a++; - b++; - } - } - } - return pseries(var, point, new_seq); + // Adding two series with different variables or expansion points + // results in an empty (constant) series + if (!is_compatible_to(other)) { + epvector nul; + nul.push_back(expair(Order(_ex1()), _ex0())); + return pseries(relational(var,point), nul); + } + + // Series addition + epvector new_seq; + epvector::const_iterator a = seq.begin(); + epvector::const_iterator b = other.seq.begin(); + epvector::const_iterator a_end = seq.end(); + epvector::const_iterator b_end = other.seq.end(); + int pow_a = INT_MAX, pow_b = INT_MAX; + for (;;) { + // If a is empty, fill up with elements from b and stop + if (a == a_end) { + while (b != b_end) { + new_seq.push_back(*b); + ++b; + } + break; + } else + pow_a = ex_to_numeric((*a).coeff).to_int(); + + // If b is empty, fill up with elements from a and stop + if (b == b_end) { + while (a != a_end) { + new_seq.push_back(*a); + ++a; + } + break; + } else + pow_b = ex_to_numeric((*b).coeff).to_int(); + + // a and b are non-empty, compare powers + if (pow_a < pow_b) { + // a has lesser power, get coefficient from a + new_seq.push_back(*a); + if (is_order_function((*a).rest)) + break; + ++a; + } else if (pow_b < pow_a) { + // b has lesser power, get coefficient from b + new_seq.push_back(*b); + if (is_order_function((*b).rest)) + break; + ++b; + } else { + // Add coefficient of a and b + if (is_order_function((*a).rest) || is_order_function((*b).rest)) { + new_seq.push_back(expair(Order(_ex1()), (*a).coeff)); + break; // Order term ends the sequence + } else { + ex sum = (*a).rest + (*b).rest; + if (!(sum.is_zero())) + new_seq.push_back(expair(sum, numeric(pow_a))); + ++a; + ++b; + } + } + } + return pseries(relational(var,point), new_seq); } /** Implementation of ex::series() for sums. This performs series addition when * adding pseries objects. * @see ex::series */ -ex add::series(const symbol & s, const ex & point, int order) const -{ - ex acc; // Series accumulator - - // Get first term from overall_coeff - acc = overall_coeff.series(s, point, order); - - // Add remaining terms - epvector::const_iterator it = seq.begin(); - epvector::const_iterator itend = seq.end(); - for (; it!=itend; it++) { - ex op; - if (is_ex_exactly_of_type(it->rest, pseries)) - op = it->rest; - else - op = it->rest.series(s, point, order); - if (!it->coeff.is_equal(_ex1())) - op = ex_to_pseries(op).mul_const(ex_to_numeric(it->coeff)); - - // Series addition - acc = ex_to_pseries(acc).add_series(ex_to_pseries(op)); - } - return acc; +ex add::series(const relational & r, int order, unsigned options) const +{ + ex acc; // Series accumulator + + // Get first term from overall_coeff + acc = overall_coeff.series(r, order, options); + + // Add remaining terms + epvector::const_iterator it = seq.begin(); + epvector::const_iterator itend = seq.end(); + for (; it!=itend; ++it) { + ex op; + if (is_ex_exactly_of_type(it->rest, pseries)) + op = it->rest; + else + op = it->rest.series(r, order, options); + if (!it->coeff.is_equal(_ex1())) + op = ex_to_pseries(op).mul_const(ex_to_numeric(it->coeff)); + + // Series addition + acc = ex_to_pseries(acc).add_series(ex_to_pseries(op)); + } + return acc; } @@ -535,18 +648,18 @@ ex add::series(const symbol & s, const ex & point, int order) const * @return the product as a pseries */ ex pseries::mul_const(const numeric &other) const { - epvector new_seq; - new_seq.reserve(seq.size()); - - epvector::const_iterator it = seq.begin(), itend = seq.end(); - while (it != itend) { - if (!is_order_function(it->rest)) - new_seq.push_back(expair(it->rest * other, it->coeff)); - else - new_seq.push_back(*it); - it++; - } - return pseries(var, point, new_seq); + epvector new_seq; + new_seq.reserve(seq.size()); + + epvector::const_iterator it = seq.begin(), itend = seq.end(); + while (it != itend) { + if (!is_order_function(it->rest)) + new_seq.push_back(expair(it->rest * other, it->coeff)); + else + new_seq.push_back(*it); + ++it; + } + return pseries(relational(var,point), new_seq); } @@ -557,82 +670,82 @@ ex pseries::mul_const(const numeric &other) const * @return the product as a pseries */ ex pseries::mul_series(const pseries &other) const { - // Multiplying two series with different variables or expansion points - // results in an empty (constant) series - if (!is_compatible_to(other)) { - epvector nul; - nul.push_back(expair(Order(_ex1()), _ex0())); - return pseries(var, point, nul); - } - - // Series multiplication - epvector new_seq; - - const symbol *s = static_cast(var.bp); - int a_max = degree(*s); - int b_max = other.degree(*s); - int a_min = ldegree(*s); - int b_min = other.ldegree(*s); - int cdeg_min = a_min + b_min; - int cdeg_max = a_max + b_max; - - int higher_order_a = INT_MAX; - int higher_order_b = INT_MAX; - if (is_order_function(coeff(*s, a_max))) - higher_order_a = a_max + b_min; - if (is_order_function(other.coeff(*s, b_max))) - higher_order_b = b_max + a_min; - int higher_order_c = min(higher_order_a, higher_order_b); - if (cdeg_max >= higher_order_c) - cdeg_max = higher_order_c - 1; - - for (int cdeg=cdeg_min; cdeg<=cdeg_max; cdeg++) { - ex co = _ex0(); - // c(i)=a(0)b(i)+...+a(i)b(0) - for (int i=a_min; cdeg-i>=b_min; i++) { - ex a_coeff = coeff(*s, i); - ex b_coeff = other.coeff(*s, cdeg-i); - if (!is_order_function(a_coeff) && !is_order_function(b_coeff)) - co += coeff(*s, i) * other.coeff(*s, cdeg-i); - } - if (!co.is_zero()) - new_seq.push_back(expair(co, numeric(cdeg))); - } - if (higher_order_c < INT_MAX) - new_seq.push_back(expair(Order(_ex1()), numeric(higher_order_c))); - return pseries(var, point, new_seq); + // Multiplying two series with different variables or expansion points + // results in an empty (constant) series + if (!is_compatible_to(other)) { + epvector nul; + nul.push_back(expair(Order(_ex1()), _ex0())); + return pseries(relational(var,point), nul); + } + + // Series multiplication + epvector new_seq; + + const symbol *s = static_cast(var.bp); + int a_max = degree(*s); + int b_max = other.degree(*s); + int a_min = ldegree(*s); + int b_min = other.ldegree(*s); + int cdeg_min = a_min + b_min; + int cdeg_max = a_max + b_max; + + int higher_order_a = INT_MAX; + int higher_order_b = INT_MAX; + if (is_order_function(coeff(*s, a_max))) + higher_order_a = a_max + b_min; + if (is_order_function(other.coeff(*s, b_max))) + higher_order_b = b_max + a_min; + int higher_order_c = std::min(higher_order_a, higher_order_b); + if (cdeg_max >= higher_order_c) + cdeg_max = higher_order_c - 1; + + for (int cdeg=cdeg_min; cdeg<=cdeg_max; ++cdeg) { + ex co = _ex0(); + // c(i)=a(0)b(i)+...+a(i)b(0) + for (int i=a_min; cdeg-i>=b_min; ++i) { + ex a_coeff = coeff(*s, i); + ex b_coeff = other.coeff(*s, cdeg-i); + if (!is_order_function(a_coeff) && !is_order_function(b_coeff)) + co += a_coeff * b_coeff; + } + if (!co.is_zero()) + new_seq.push_back(expair(co, numeric(cdeg))); + } + if (higher_order_c < INT_MAX) + new_seq.push_back(expair(Order(_ex1()), numeric(higher_order_c))); + return pseries(relational(var,point), new_seq); } /** Implementation of ex::series() for product. This performs series * multiplication when multiplying series. * @see ex::series */ -ex mul::series(const symbol & s, const ex & point, int order) const -{ - ex acc; // Series accumulator - - // Get first term from overall_coeff - acc = overall_coeff.series(s, point, order); - - // Multiply with remaining terms - epvector::const_iterator it = seq.begin(); - epvector::const_iterator itend = seq.end(); - for (; it!=itend; it++) { - ex op = it->rest; - if (op.info(info_flags::numeric)) { - // series * const (special case, faster) - ex f = power(op, it->coeff); - acc = ex_to_pseries(acc).mul_const(ex_to_numeric(f)); - continue; - } else if (!is_ex_exactly_of_type(op, pseries)) - op = op.series(s, point, order); - if (!it->coeff.is_equal(_ex1())) - op = ex_to_pseries(op).power_const(ex_to_numeric(it->coeff), order); - - // Series multiplication - acc = ex_to_pseries(acc).mul_series(ex_to_pseries(op)); - } - return acc; +ex mul::series(const relational & r, int order, unsigned options) const +{ + ex acc; // Series accumulator + + // Get first term from overall_coeff + acc = overall_coeff.series(r, order, options); + + // Multiply with remaining terms + epvector::const_iterator it = seq.begin(); + epvector::const_iterator itend = seq.end(); + for (; it!=itend; ++it) { + ex op = it->rest; + if (op.info(info_flags::numeric)) { + // series * const (special case, faster) + ex f = power(op, it->coeff); + acc = ex_to_pseries(acc).mul_const(ex_to_numeric(f)); + continue; + } else if (!is_ex_exactly_of_type(op, pseries)) + op = op.series(r, order, options); + if (!it->coeff.is_equal(_ex1())) + op = ex_to_pseries(op).power_const(ex_to_numeric(it->coeff), order); + + // Series multiplication + acc = ex_to_pseries(acc).mul_series(ex_to_pseries(op)); + } + return acc; } @@ -642,84 +755,98 @@ ex mul::series(const symbol & s, const ex & point, int order) const * @param deg truncation order of series calculation */ ex pseries::power_const(const numeric &p, int deg) const { - int i; - const symbol *s = static_cast(var.bp); - int ldeg = ldegree(*s); - - // Calculate coefficients of powered series - exvector co; - co.reserve(deg); - ex co0; - co.push_back(co0 = power(coeff(*s, ldeg), p)); - bool all_sums_zero = true; - for (i=1; i(var.bp); + int ldeg = ldegree(*s); + + // Calculate coefficients of powered series + exvector co; + co.reserve(deg); + ex co0; + co.push_back(co0 = power(coeff(*s, ldeg), p)); + bool all_sums_zero = true; + for (i=1; icoeff = i->coeff + deg; + return pseries(relational(var, point), newseq); } /** Implementation of ex::series() for powers. This performs Laurent expansion * of reciprocals of series at singularities. * @see ex::series */ -ex power::series(const symbol & s, const ex & point, int order) const -{ - ex e; - if (!is_ex_exactly_of_type(basis, pseries)) { - // Basis is not a series, may there be a singulary? - if (!exponent.info(info_flags::negint)) - return basic::series(s, point, order); - - // Expression is of type something^(-int), check for singularity - if (!basis.subs(s == point).is_zero()) - return basic::series(s, point, order); - - // Singularity encountered, expand basis into series - e = basis.series(s, point, order); - } else { - // Basis is a series - e = basis; - } - - // Power e - return ex_to_pseries(e).power_const(ex_to_numeric(exponent), order); +ex power::series(const relational & r, int order, unsigned options) const +{ + ex e; + if (!is_ex_exactly_of_type(basis, pseries)) { + // Basis is not a series, may there be a singulary? + if (!exponent.info(info_flags::negint)) + return basic::series(r, order, options); + + // Expression is of type something^(-int), check for singularity + if (!basis.subs(r).is_zero()) + return basic::series(r, order, options); + + // Singularity encountered, expand basis into series + e = basis.series(r, order, options); + } else { + // Basis is a series + e = basis; + } + + // Power e + return ex_to_pseries(e).power_const(ex_to_numeric(exponent), order); } /** Re-expansion of a pseries object. */ -ex pseries::series(const symbol & s, const ex & p, int order) const -{ - if (var.is_equal(s) && point.is_equal(p)) { - if (order > degree(s)) +ex pseries::series(const relational & r, int order, unsigned options) const +{ + const ex p = r.rhs(); + GINAC_ASSERT(is_ex_exactly_of_type(r.lhs(),symbol)); + const symbol *s = static_cast(r.lhs().bp); + + if (var.is_equal(*s) && point.is_equal(p)) { + if (order > degree(*s)) return *this; else { - epvector new_seq; - epvector::const_iterator it = seq.begin(), itend = seq.end(); + epvector new_seq; + epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { int o = ex_to_numeric(it->coeff).to_int(); if (o >= order) { @@ -727,34 +854,59 @@ ex pseries::series(const symbol & s, const ex & p, int order) const break; } new_seq.push_back(*it); - it++; + ++it; } - return pseries(var, point, new_seq); + return pseries(r, new_seq); } } else - return convert_to_poly().series(s, p, order); + return convert_to_poly().series(r, order, options); } /** Compute the truncated series expansion of an expression. - * This function returns an expression containing an object of class pseries to - * represent the series. If the series does not terminate within the given + * This function returns an expression containing an object of class pseries + * to represent the series. If the series does not terminate within the given * truncation order, the last term of the series will be an order term. * - * @param s expansion variable - * @param point expansion point + * @param r expansion relation, lhs holds variable and rhs holds point * @param order truncation order of series calculations + * @param options of class series_options * @return an expression holding a pseries object */ -ex ex::series(const symbol &s, const ex &point, int order) const -{ - GINAC_ASSERT(bp!=0); - return bp->series(s, point, order); +ex ex::series(const ex & r, int order, unsigned options) const +{ + GINAC_ASSERT(bp!=0); + ex e; + relational rel_; + + if (is_ex_exactly_of_type(r,relational)) + rel_ = ex_to_relational(r); + else if (is_ex_exactly_of_type(r,symbol)) + rel_ = relational(r,_ex0()); + else + throw (std::logic_error("ex::series(): expansion point has unknown type")); + + try { + e = bp->series(rel_, order, options); + } catch (std::exception &x) { + throw (std::logic_error(std::string("unable to compute series (") + x.what() + ")")); + } + return e; } +////////// +// static member variables +////////// + +// protected + +unsigned pseries::precedence = 38; // for clarity just below add::precedence + +////////// +// global constants +////////// -// Global constants const pseries some_pseries; -const type_info & typeid_pseries = typeid(some_pseries); +const std::type_info & typeid_pseries = typeid(some_pseries); #ifndef NO_NAMESPACE_GINAC } // namespace GiNaC