X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fnumeric.cpp;h=fc6c692c3f966643c98dda5ad9c42ce7b95f9789;hp=6074aeaf5cc0b15ae48492561d8ba6430e8be578;hb=5009504756694e3b9a6ce7f8a6913a838d940053;hpb=b4be7b0f30fbb6178cf4ee83e1b3952e084bd8ca diff --git a/ginac/numeric.cpp b/ginac/numeric.cpp index 6074aeaf..fc6c692c 100644 --- a/ginac/numeric.cpp +++ b/ginac/numeric.cpp @@ -7,7 +7,7 @@ * of special functions or implement the interface to the bignum package. */ /* - * GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2004 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -281,7 +281,7 @@ void numeric::archive(archive_node &n) const // Write number as string std::ostringstream s; if (this->is_crational()) - s << cln::the(value); + s << value; else { // Non-rational numbers are written in an integer-decoded format // to preserve the precision @@ -417,8 +417,8 @@ static void print_real_cl_N(const print_context & c, const cln::cl_R & x) void numeric::print_numeric(const print_context & c, const char *par_open, const char *par_close, const char *imag_sym, const char *mul_sym, unsigned level) const { - const cln::cl_R r = cln::realpart(cln::the(value)); - const cln::cl_R i = cln::imagpart(cln::the(value)); + const cln::cl_R r = cln::realpart(value); + const cln::cl_R i = cln::imagpart(value); if (cln::zerop(i)) { @@ -514,9 +514,9 @@ void numeric::do_print_csrc(const print_csrc & c, unsigned level) const else c.s << "float>("; - print_real_csrc(c, cln::realpart(cln::the(value))); + print_real_csrc(c, cln::realpart(value)); c.s << ","; - print_real_csrc(c, cln::imagpart(cln::the(value))); + print_real_csrc(c, cln::imagpart(value)); c.s << ")"; } @@ -535,17 +535,17 @@ void numeric::do_print_csrc_cl_N(const print_csrc_cl_N & c, unsigned level) cons // Complex number c.s << "cln::complex("; - print_real_cl_N(c, cln::realpart(cln::the(value))); + print_real_cl_N(c, cln::realpart(value)); c.s << ","; - print_real_cl_N(c, cln::imagpart(cln::the(value))); + print_real_cl_N(c, cln::imagpart(value)); c.s << ")"; } } void numeric::do_print_tree(const print_tree & c, unsigned level) const { - c.s << std::string(level, ' ') << cln::the(value) - << " (" << class_name() << ")" + c.s << std::string(level, ' ') << value + << " (" << class_name() << ")" << " @" << this << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec << std::endl; } @@ -663,8 +663,15 @@ ex numeric::eval(int level) const ex numeric::evalf(int level) const { // level can safely be discarded for numeric objects. - return numeric(cln::cl_float(1.0, cln::default_float_format) * - (cln::the(value))); + return numeric(cln::cl_float(1.0, cln::default_float_format) * value); +} + +ex numeric::conjugate() const +{ + if (is_real()) { + return *this; + } + return numeric(cln::conjugate(this->value)); } // protected @@ -694,7 +701,7 @@ unsigned numeric::calchash() const // equivalence relation on numbers). As a consequence, 3 and 3.0 share // the same hashvalue. That shouldn't really matter, though. setflag(status_flags::hash_calculated); - hashvalue = golden_ratio_hash(cln::equal_hashcode(cln::the(value))); + hashvalue = golden_ratio_hash(cln::equal_hashcode(value)); return hashvalue; } @@ -715,7 +722,7 @@ unsigned numeric::calchash() const * a numeric object. */ const numeric numeric::add(const numeric &other) const { - return numeric(cln::the(value)+cln::the(other.value)); + return numeric(value + other.value); } @@ -723,7 +730,7 @@ const numeric numeric::add(const numeric &other) const * result as a numeric object. */ const numeric numeric::sub(const numeric &other) const { - return numeric(cln::the(value)-cln::the(other.value)); + return numeric(value - other.value); } @@ -731,7 +738,7 @@ const numeric numeric::sub(const numeric &other) const * result as a numeric object. */ const numeric numeric::mul(const numeric &other) const { - return numeric(cln::the(value)*cln::the(other.value)); + return numeric(value * other.value); } @@ -741,9 +748,9 @@ const numeric numeric::mul(const numeric &other) const * @exception overflow_error (division by zero) */ const numeric numeric::div(const numeric &other) const { - if (cln::zerop(cln::the(other.value))) + if (cln::zerop(other.value)) throw std::overflow_error("numeric::div(): division by zero"); - return numeric(cln::the(value)/cln::the(other.value)); + return numeric(value / other.value); } @@ -753,20 +760,20 @@ const numeric numeric::power(const numeric &other) const { // Shortcut for efficiency and numeric stability (as in 1.0 exponent): // trap the neutral exponent. - if (&other==_num1_p || cln::equal(cln::the(other.value),cln::the(_num1.value))) + if (&other==_num1_p || cln::equal(other.value,_num1.value)) return *this; - if (cln::zerop(cln::the(value))) { - if (cln::zerop(cln::the(other.value))) + if (cln::zerop(value)) { + if (cln::zerop(other.value)) throw std::domain_error("numeric::eval(): pow(0,0) is undefined"); - else if (cln::zerop(cln::realpart(cln::the(other.value)))) + else if (cln::zerop(cln::realpart(other.value))) throw std::domain_error("numeric::eval(): pow(0,I) is undefined"); - else if (cln::minusp(cln::realpart(cln::the(other.value)))) + else if (cln::minusp(cln::realpart(other.value))) throw std::overflow_error("numeric::eval(): division by zero"); else return _num0; } - return numeric(cln::expt(cln::the(value),cln::the(other.value))); + return numeric(cln::expt(value, other.value)); } @@ -783,7 +790,7 @@ const numeric &numeric::add_dyn(const numeric &other) const else if (&other==_num0_p) return *this; - return static_cast((new numeric(cln::the(value)+cln::the(other.value)))-> + return static_cast((new numeric(value + other.value))-> setflag(status_flags::dynallocated)); } @@ -796,10 +803,10 @@ const numeric &numeric::sub_dyn(const numeric &other) const { // Efficiency shortcut: trap the neutral exponent (first by pointer). This // hack is supposed to keep the number of distinct numeric objects low. - if (&other==_num0_p || cln::zerop(cln::the(other.value))) + if (&other==_num0_p || cln::zerop(other.value)) return *this; - return static_cast((new numeric(cln::the(value)-cln::the(other.value)))-> + return static_cast((new numeric(value - other.value))-> setflag(status_flags::dynallocated)); } @@ -817,7 +824,7 @@ const numeric &numeric::mul_dyn(const numeric &other) const else if (&other==_num1_p) return *this; - return static_cast((new numeric(cln::the(value)*cln::the(other.value)))-> + return static_cast((new numeric(value * other.value))-> setflag(status_flags::dynallocated)); } @@ -836,7 +843,7 @@ const numeric &numeric::div_dyn(const numeric &other) const return *this; if (cln::zerop(cln::the(other.value))) throw std::overflow_error("division by zero"); - return static_cast((new numeric(cln::the(value)/cln::the(other.value)))-> + return static_cast((new numeric(value / other.value))-> setflag(status_flags::dynallocated)); } @@ -850,20 +857,20 @@ const numeric &numeric::power_dyn(const numeric &other) const // Efficiency shortcut: trap the neutral exponent (first try by pointer, then // try harder, since calls to cln::expt() below may return amazing results for // floating point exponent 1.0). - if (&other==_num1_p || cln::equal(cln::the(other.value),cln::the(_num1.value))) + if (&other==_num1_p || cln::equal(other.value, _num1.value)) return *this; - if (cln::zerop(cln::the(value))) { - if (cln::zerop(cln::the(other.value))) + if (cln::zerop(value)) { + if (cln::zerop(other.value)) throw std::domain_error("numeric::eval(): pow(0,0) is undefined"); - else if (cln::zerop(cln::realpart(cln::the(other.value)))) + else if (cln::zerop(cln::realpart(other.value))) throw std::domain_error("numeric::eval(): pow(0,I) is undefined"); - else if (cln::minusp(cln::realpart(cln::the(other.value)))) + else if (cln::minusp(cln::realpart(other.value))) throw std::overflow_error("numeric::eval(): division by zero"); else return _num0; } - return static_cast((new numeric(cln::expt(cln::the(value),cln::the(other.value))))-> + return static_cast((new numeric(cln::expt(value, other.value)))-> setflag(status_flags::dynallocated)); } @@ -907,9 +914,9 @@ const numeric &numeric::operator=(const char * s) /** Inverse of a number. */ const numeric numeric::inverse() const { - if (cln::zerop(cln::the(value))) + if (cln::zerop(value)) throw std::overflow_error("numeric::inverse(): division by zero"); - return numeric(cln::recip(cln::the(value))); + return numeric(cln::recip(value)); } @@ -920,16 +927,16 @@ const numeric numeric::inverse() const * @see numeric::compare(const numeric &other) */ int numeric::csgn() const { - if (cln::zerop(cln::the(value))) + if (cln::zerop(value)) return 0; - cln::cl_R r = cln::realpart(cln::the(value)); + cln::cl_R r = cln::realpart(value); if (!cln::zerop(r)) { if (cln::plusp(r)) return 1; else return -1; } else { - if (cln::plusp(cln::imagpart(cln::the(value)))) + if (cln::plusp(cln::imagpart(value))) return 1; else return -1; @@ -953,25 +960,25 @@ int numeric::compare(const numeric &other) const return cln::compare(cln::the(value), cln::the(other.value)); else { // No, first cln::compare real parts... - cl_signean real_cmp = cln::compare(cln::realpart(cln::the(value)), cln::realpart(cln::the(other.value))); + cl_signean real_cmp = cln::compare(cln::realpart(value), cln::realpart(other.value)); if (real_cmp) return real_cmp; // ...and then the imaginary parts. - return cln::compare(cln::imagpart(cln::the(value)), cln::imagpart(cln::the(other.value))); + return cln::compare(cln::imagpart(value), cln::imagpart(other.value)); } } bool numeric::is_equal(const numeric &other) const { - return cln::equal(cln::the(value),cln::the(other.value)); + return cln::equal(value, other.value); } /** True if object is zero. */ bool numeric::is_zero() const { - return cln::zerop(cln::the(value)); + return cln::zerop(value); } @@ -1056,13 +1063,13 @@ bool numeric::is_real() const bool numeric::operator==(const numeric &other) const { - return cln::equal(cln::the(value), cln::the(other.value)); + return cln::equal(value, other.value); } bool numeric::operator!=(const numeric &other) const { - return !cln::equal(cln::the(value), cln::the(other.value)); + return !cln::equal(value, other.value); } @@ -1073,8 +1080,8 @@ bool numeric::is_cinteger() const if (cln::instanceof(value, cln::cl_I_ring)) return true; else if (!this->is_real()) { // complex case, handle n+m*I - if (cln::instanceof(cln::realpart(cln::the(value)), cln::cl_I_ring) && - cln::instanceof(cln::imagpart(cln::the(value)), cln::cl_I_ring)) + if (cln::instanceof(cln::realpart(value), cln::cl_I_ring) && + cln::instanceof(cln::imagpart(value), cln::cl_I_ring)) return true; } return false; @@ -1088,8 +1095,8 @@ bool numeric::is_crational() const if (cln::instanceof(value, cln::cl_RA_ring)) return true; else if (!this->is_real()) { // complex case, handle Q(i): - if (cln::instanceof(cln::realpart(cln::the(value)), cln::cl_RA_ring) && - cln::instanceof(cln::imagpart(cln::the(value)), cln::cl_RA_ring)) + if (cln::instanceof(cln::realpart(value), cln::cl_RA_ring) && + cln::instanceof(cln::imagpart(value), cln::cl_RA_ring)) return true; } return false; @@ -1165,7 +1172,7 @@ long numeric::to_long() const double numeric::to_double() const { GINAC_ASSERT(this->is_real()); - return cln::double_approx(cln::realpart(cln::the(value))); + return cln::double_approx(cln::realpart(value)); } @@ -1174,21 +1181,21 @@ double numeric::to_double() const */ cln::cl_N numeric::to_cl_N() const { - return cln::cl_N(cln::the(value)); + return value; } /** Real part of a number. */ const numeric numeric::real() const { - return numeric(cln::realpart(cln::the(value))); + return numeric(cln::realpart(value)); } /** Imaginary part of a number. */ const numeric numeric::imag() const { - return numeric(cln::imagpart(cln::the(value))); + return numeric(cln::imagpart(value)); } @@ -1205,8 +1212,8 @@ const numeric numeric::numer() const return numeric(cln::numerator(cln::the(value))); else if (!this->is_real()) { // complex case, handle Q(i): - const cln::cl_RA r = cln::the(cln::realpart(cln::the(value))); - const cln::cl_RA i = cln::the(cln::imagpart(cln::the(value))); + const cln::cl_RA r = cln::the(cln::realpart(value)); + const cln::cl_RA i = cln::the(cln::imagpart(value)); if (cln::instanceof(r, cln::cl_I_ring) && cln::instanceof(i, cln::cl_I_ring)) return numeric(*this); if (cln::instanceof(r, cln::cl_I_ring) && cln::instanceof(i, cln::cl_RA_ring)) @@ -1236,8 +1243,8 @@ const numeric numeric::denom() const return numeric(cln::denominator(cln::the(value))); if (!this->is_real()) { // complex case, handle Q(i): - const cln::cl_RA r = cln::the(cln::realpart(cln::the(value))); - const cln::cl_RA i = cln::the(cln::imagpart(cln::the(value))); + const cln::cl_RA r = cln::the(cln::realpart(value)); + const cln::cl_RA i = cln::the(cln::imagpart(value)); if (cln::instanceof(r, cln::cl_I_ring) && cln::instanceof(i, cln::cl_I_ring)) return _num1; if (cln::instanceof(r, cln::cl_I_ring) && cln::instanceof(i, cln::cl_RA_ring)) @@ -1287,14 +1294,14 @@ const numeric exp(const numeric &x) /** Natural logarithm. * - * @param z complex number + * @param x complex number * @return arbitrary precision numerical log(x). * @exception pole_error("log(): logarithmic pole",0) */ -const numeric log(const numeric &z) +const numeric log(const numeric &x) { - if (z.is_zero()) + if (x.is_zero()) throw pole_error("log(): logarithmic pole",0); - return cln::log(z.to_cl_N()); + return cln::log(x.to_cl_N()); } @@ -1345,8 +1352,8 @@ const numeric acos(const numeric &x) /** Arcustangent. * - * @param z complex number - * @return atan(z) + * @param x complex number + * @return atan(x) * @exception pole_error("atan(): logarithmic pole",0) */ const numeric atan(const numeric &x) { @@ -1515,7 +1522,7 @@ const numeric Li2(const numeric &x) else if (!x.imag().is_rational()) prec = cln::float_format(cln::the(cln::imagpart(value))); - if (cln::the(value)==1) // may cause trouble with log(1-x) + if (value==1) // may cause trouble with log(1-x) return cln::zeta(2, prec); if (cln::abs(value) > 1) @@ -1927,16 +1934,16 @@ const numeric lcm(const numeric &a, const numeric &b) /** Numeric square root. - * If possible, sqrt(z) should respect squares of exact numbers, i.e. sqrt(4) + * If possible, sqrt(x) should respect squares of exact numbers, i.e. sqrt(4) * should return integer 2. * - * @param z numeric argument - * @return square root of z. Branch cut along negative real axis, the negative - * real axis itself where imag(z)==0 and real(z)<0 belongs to the upper part - * where imag(z)>0. */ -const numeric sqrt(const numeric &z) + * @param x numeric argument + * @return square root of x. Branch cut along negative real axis, the negative + * real axis itself where imag(x)==0 and real(x)<0 belongs to the upper part + * where imag(x)>0. */ +const numeric sqrt(const numeric &x) { - return cln::sqrt(z.to_cl_N()); + return cln::sqrt(x.to_cl_N()); }