X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fnumeric.cpp;h=ef4e3e929ce5732f854bfae80d3f72f9f55e2b34;hp=3398f60db6aca79a82bd5b27244a03ebe8b70cf9;hb=ac58769a3265fa850c74f5d601b6f68077276d84;hpb=e5362a33f72613b324b3714524a8c2e5f7b7f46f diff --git a/ginac/numeric.cpp b/ginac/numeric.cpp index 3398f60d..ef4e3e92 100644 --- a/ginac/numeric.cpp +++ b/ginac/numeric.cpp @@ -40,6 +40,7 @@ #include "numeric.h" #include "ex.h" +#include "print.h" #include "archive.h" #include "debugmsg.h" #include "utils.h" @@ -63,52 +64,40 @@ #include #include -#ifndef NO_NAMESPACE_GINAC namespace GiNaC { -#endif // ndef NO_NAMESPACE_GINAC GINAC_IMPLEMENT_REGISTERED_CLASS(numeric, basic) ////////// -// default constructor, destructor, copy constructor assignment +// default ctor, dtor, copy ctor assignment // operator and helpers ////////// -// public - /** default ctor. Numerically it initializes to an integer zero. */ numeric::numeric() : basic(TINFO_numeric) { - debugmsg("numeric default constructor", LOGLEVEL_CONSTRUCT); + debugmsg("numeric default ctor", LOGLEVEL_CONSTRUCT); value = cln::cl_I(0); - calchash(); - setflag(status_flags::evaluated | - status_flags::expanded | - status_flags::hash_calculated); + setflag(status_flags::evaluated | status_flags::expanded); } -// protected - -void numeric::copy(const numeric & other) +void numeric::copy(const numeric &other) { - basic::copy(other); + inherited::copy(other); value = other.value; } -void numeric::destroy(bool call_parent) -{ - if (call_parent) basic::destroy(call_parent); -} +DEFAULT_DESTROY(numeric) ////////// -// other constructors +// other ctors ////////// // public numeric::numeric(int i) : basic(TINFO_numeric) { - debugmsg("numeric constructor from int",LOGLEVEL_CONSTRUCT); + debugmsg("numeric ctor from int",LOGLEVEL_CONSTRUCT); // Not the whole int-range is available if we don't cast to long // first. This is due to the behaviour of the cl_I-ctor, which // emphasizes efficiency. However, if the integer is small enough, @@ -118,16 +107,13 @@ numeric::numeric(int i) : basic(TINFO_numeric) value = cln::cl_I(i); else value = cln::cl_I((long) i); - calchash(); - setflag(status_flags::evaluated | - status_flags::expanded | - status_flags::hash_calculated); + setflag(status_flags::evaluated | status_flags::expanded); } numeric::numeric(unsigned int i) : basic(TINFO_numeric) { - debugmsg("numeric constructor from uint",LOGLEVEL_CONSTRUCT); + debugmsg("numeric ctor from uint",LOGLEVEL_CONSTRUCT); // Not the whole uint-range is available if we don't cast to ulong // first. This is due to the behaviour of the cl_I-ctor, which // emphasizes efficiency. However, if the integer is small enough, @@ -137,32 +123,23 @@ numeric::numeric(unsigned int i) : basic(TINFO_numeric) value = cln::cl_I(i); else value = cln::cl_I((unsigned long) i); - calchash(); - setflag(status_flags::evaluated | - status_flags::expanded | - status_flags::hash_calculated); + setflag(status_flags::evaluated | status_flags::expanded); } numeric::numeric(long i) : basic(TINFO_numeric) { - debugmsg("numeric constructor from long",LOGLEVEL_CONSTRUCT); + debugmsg("numeric ctor from long",LOGLEVEL_CONSTRUCT); value = cln::cl_I(i); - calchash(); - setflag(status_flags::evaluated | - status_flags::expanded | - status_flags::hash_calculated); + setflag(status_flags::evaluated | status_flags::expanded); } numeric::numeric(unsigned long i) : basic(TINFO_numeric) { - debugmsg("numeric constructor from ulong",LOGLEVEL_CONSTRUCT); + debugmsg("numeric ctor from ulong",LOGLEVEL_CONSTRUCT); value = cln::cl_I(i); - calchash(); - setflag(status_flags::evaluated | - status_flags::expanded | - status_flags::hash_calculated); + setflag(status_flags::evaluated | status_flags::expanded); } /** Ctor for rational numerics a/b. @@ -170,35 +147,30 @@ numeric::numeric(unsigned long i) : basic(TINFO_numeric) * @exception overflow_error (division by zero) */ numeric::numeric(long numer, long denom) : basic(TINFO_numeric) { - debugmsg("numeric constructor from long/long",LOGLEVEL_CONSTRUCT); + debugmsg("numeric ctor from long/long",LOGLEVEL_CONSTRUCT); if (!denom) throw std::overflow_error("division by zero"); value = cln::cl_I(numer) / cln::cl_I(denom); - calchash(); - setflag(status_flags::evaluated | - status_flags::expanded | - status_flags::hash_calculated); + setflag(status_flags::evaluated | status_flags::expanded); } numeric::numeric(double d) : basic(TINFO_numeric) { - debugmsg("numeric constructor from double",LOGLEVEL_CONSTRUCT); + debugmsg("numeric ctor from double",LOGLEVEL_CONSTRUCT); // We really want to explicitly use the type cl_LF instead of the // more general cl_F, since that would give us a cl_DF only which // will not be promoted to cl_LF if overflow occurs: value = cln::cl_float(d, cln::default_float_format); - calchash(); - setflag(status_flags::evaluated | - status_flags::expanded | - status_flags::hash_calculated); + setflag(status_flags::evaluated | status_flags::expanded); } + /** ctor from C-style string. It also accepts complex numbers in GiNaC * notation like "2+5*I". */ numeric::numeric(const char *s) : basic(TINFO_numeric) { - debugmsg("numeric constructor from string",LOGLEVEL_CONSTRUCT); + debugmsg("numeric ctor from string",LOGLEVEL_CONSTRUCT); cln::cl_N ctorval = 0; // parse complex numbers (functional but not completely safe, unfortunately // std::string does not understand regexpese): @@ -254,7 +226,7 @@ numeric::numeric(const char *s) : basic(TINFO_numeric) #else char buf[14]; std::ostrstream(buf,sizeof(buf)) << unsigned(Digits) << std::ends; - term += "_" + string(buf); + term += "_" + std::string(buf); #endif // construct float using cln::cl_F(const char *) ctor. if (imaginary) @@ -270,32 +242,26 @@ numeric::numeric(const char *s) : basic(TINFO_numeric) } } while(delim != std::string::npos); value = ctorval; - calchash(); - setflag(status_flags::evaluated | - status_flags::expanded | - status_flags::hash_calculated); + setflag(status_flags::evaluated | status_flags::expanded); } + /** Ctor from CLN types. This is for the initiated user or internal use * only. */ -numeric::numeric(const cln::cl_N & z) : basic(TINFO_numeric) +numeric::numeric(const cln::cl_N &z) : basic(TINFO_numeric) { - debugmsg("numeric constructor from cl_N", LOGLEVEL_CONSTRUCT); + debugmsg("numeric ctor from cl_N", LOGLEVEL_CONSTRUCT); value = z; - calchash(); - setflag(status_flags::evaluated | - status_flags::expanded | - status_flags::hash_calculated); + setflag(status_flags::evaluated | status_flags::expanded); } ////////// // archiving ////////// -/** Construct object from archive_node. */ numeric::numeric(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) { - debugmsg("numeric constructor from archive_node", LOGLEVEL_CONSTRUCT); + debugmsg("numeric ctor from archive_node", LOGLEVEL_CONSTRUCT); cln::cl_N ctorval = 0; // Read number as string @@ -327,19 +293,9 @@ numeric::numeric(const archive_node &n, const lst &sym_lst) : inherited(n, sym_l } } value = ctorval; - calchash(); - setflag(status_flags::evaluated | - status_flags::expanded | - status_flags::hash_calculated); -} - -/** Unarchive the object. */ -ex numeric::unarchive(const archive_node &n, const lst &sym_lst) -{ - return (new numeric(n, sym_lst))->setflag(status_flags::dynallocated); + setflag(status_flags::evaluated | status_flags::expanded); } -/** Archive the object. */ void numeric::archive(archive_node &n) const { inherited::archive(n); @@ -377,19 +333,12 @@ void numeric::archive(archive_node &n) const #endif } +DEFAULT_UNARCHIVE(numeric) + ////////// // functions overriding virtual functions from bases classes ////////// -// public - -basic * numeric::duplicate() const -{ - debugmsg("numeric duplicate", LOGLEVEL_DUPLICATE); - return new numeric(*this); -} - - /** Helper function to print a real number in a nicer way than is CLN's * default. Instead of printing 42.0L0 this just prints 42.0 to ostream os * and instead of 3.99168L7 it prints 3.99168E7. This is fine in GiNaC as @@ -397,7 +346,7 @@ basic * numeric::duplicate() const * want to visibly distinguish from cl_LF. * * @see numeric::print() */ -static void print_real_number(std::ostream & os, const cln::cl_R & num) +static void print_real_number(std::ostream &os, const cln::cl_R &num) { cln::cl_print_flags ourflags; if (cln::instanceof(num, cln::cl_RA_ring)) { @@ -417,126 +366,116 @@ static void print_real_number(std::ostream & os, const cln::cl_R & num) * with the other routines and produces something compatible to ginsh input. * * @see print_real_number() */ -void numeric::print(std::ostream & os, unsigned upper_precedence) const +void numeric::print(const print_context & c, unsigned level) const { debugmsg("numeric print", LOGLEVEL_PRINT); - cln::cl_R r = cln::realpart(cln::the(value)); - cln::cl_R i = cln::imagpart(cln::the(value)); - if (cln::zerop(i)) { - // case 1, real: x or -x - if ((precedence<=upper_precedence) && (!this->is_nonneg_integer())) { - os << "("; - print_real_number(os, r); - os << ")"; + + if (is_of_type(c, print_tree)) { + + c.s << std::string(level, ' ') << cln::the(value) + << " (" << class_name() << ")" + << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec + << std::endl; + + } else if (is_of_type(c, print_csrc)) { + + std::ios::fmtflags oldflags = c.s.flags(); + c.s.setf(std::ios::scientific); + if (this->is_rational() && !this->is_integer()) { + if (compare(_num0()) > 0) { + c.s << "("; + if (is_of_type(c, print_csrc_cl_N)) + c.s << "cln::cl_F(\"" << numer().evalf() << "\")"; + else + c.s << numer().to_double(); + } else { + c.s << "-("; + if (is_of_type(c, print_csrc_cl_N)) + c.s << "cln::cl_F(\"" << -numer().evalf() << "\")"; + else + c.s << -numer().to_double(); + } + c.s << "/"; + if (is_of_type(c, print_csrc_cl_N)) + c.s << "cln::cl_F(\"" << denom().evalf() << "\")"; + else + c.s << denom().to_double(); + c.s << ")"; } else { - print_real_number(os, r); + if (is_of_type(c, print_csrc_cl_N)) + c.s << "cln::cl_F(\"" << evalf() << "\")"; + else + c.s << to_double(); } + c.s.flags(oldflags); + } else { - if (cln::zerop(r)) { - // case 2, imaginary: y*I or -y*I - if ((precedence<=upper_precedence) && (i < 0)) { - if (i == -1) { - os << "(-I)"; - } else { - os << "("; - print_real_number(os, i); - os << "*I)"; - } + const std::string par_open = is_of_type(c, print_latex) ? "{(" : "("; + const std::string par_close = is_of_type(c, print_latex) ? ")}" : ")"; + const std::string imag_sym = is_of_type(c, print_latex) ? "i" : "I"; + const std::string mul_sym = is_of_type(c, print_latex) ? " " : "*"; + const cln::cl_R r = cln::realpart(cln::the(value)); + const cln::cl_R i = cln::imagpart(cln::the(value)); + if (cln::zerop(i)) { + // case 1, real: x or -x + if ((precedence <= level) && (!this->is_nonneg_integer())) { + c.s << par_open; + print_real_number(c.s, r); + c.s << par_close; } else { - if (i == 1) { - os << "I"; - } else { + print_real_number(c.s, r); + } + } else { + if (cln::zerop(r)) { + // case 2, imaginary: y*I or -y*I + if ((precedence <= level) && (i < 0)) { if (i == -1) { - os << "-I"; + c.s << par_open+imag_sym+par_close; } else { - print_real_number(os, i); - os << "*I"; + c.s << par_open; + print_real_number(c.s, i); + c.s << mul_sym+imag_sym+par_close; } - } - } - } else { - // case 3, complex: x+y*I or x-y*I or -x+y*I or -x-y*I - if (precedence <= upper_precedence) - os << "("; - print_real_number(os, r); - if (i < 0) { - if (i == -1) { - os << "-I"; } else { - print_real_number(os, i); - os << "*I"; + if (i == 1) { + c.s << imag_sym; + } else { + if (i == -1) { + c.s << "-" << imag_sym; + } else { + print_real_number(c.s, i); + c.s << mul_sym+imag_sym; + } + } } } else { - if (i == 1) { - os << "+I"; + // case 3, complex: x+y*I or x-y*I or -x+y*I or -x-y*I + if (precedence <= level) + c.s << par_open; + print_real_number(c.s, r); + if (i < 0) { + if (i == -1) { + c.s << "-"+imag_sym; + } else { + print_real_number(c.s, i); + c.s << mul_sym+imag_sym; + } } else { - os << "+"; - print_real_number(os, i); - os << "*I"; + if (i == 1) { + c.s << "+"+imag_sym; + } else { + c.s << "+"; + print_real_number(c.s, i); + c.s << mul_sym+imag_sym; + } } + if (precedence <= level) + c.s << par_close; } - if (precedence <= upper_precedence) - os << ")"; } } } - -void numeric::printraw(std::ostream & os) const -{ - // The method printraw doesn't do much, it simply uses CLN's operator<<() - // for output, which is ugly but reliable. e.g: 2+2i - debugmsg("numeric printraw", LOGLEVEL_PRINT); - os << "numeric(" << cln::the(value) << ")"; -} - - -void numeric::printtree(std::ostream & os, unsigned indent) const -{ - debugmsg("numeric printtree", LOGLEVEL_PRINT); - os << std::string(indent,' ') << cln::the(value) - << " (numeric): " - << "hash=" << hashvalue - << " (0x" << std::hex << hashvalue << std::dec << ")" - << ", flags=" << flags << std::endl; -} - - -void numeric::printcsrc(std::ostream & os, unsigned type, unsigned upper_precedence) const -{ - debugmsg("numeric print csrc", LOGLEVEL_PRINT); - std::ios::fmtflags oldflags = os.flags(); - os.setf(std::ios::scientific); - if (this->is_rational() && !this->is_integer()) { - if (compare(_num0()) > 0) { - os << "("; - if (type == csrc_types::ctype_cl_N) - os << "cln::cl_F(\"" << numer().evalf() << "\")"; - else - os << numer().to_double(); - } else { - os << "-("; - if (type == csrc_types::ctype_cl_N) - os << "cln::cl_F(\"" << -numer().evalf() << "\")"; - else - os << -numer().to_double(); - } - os << "/"; - if (type == csrc_types::ctype_cl_N) - os << "cln::cl_F(\"" << denom().evalf() << "\")"; - else - os << denom().to_double(); - os << ")"; - } else { - if (type == csrc_types::ctype_cl_N) - os << "cln::cl_F(\"" << evalf() << "\")"; - else - os << to_double(); - } - os.flags(oldflags); -} - - bool numeric::info(unsigned inf) const { switch (inf) { @@ -588,11 +527,11 @@ bool numeric::info(unsigned inf) const * results: (2+I).has(-2) -> true. But this is consistent, since we also * would like to have (-2+I).has(2) -> true and we want to think about the * sign as a multiplicative factor. */ -bool numeric::has(const ex & other) const +bool numeric::has(const ex &other) const { if (!is_exactly_of_type(*other.bp, numeric)) return false; - const numeric & o = static_cast(const_cast(*other.bp)); + const numeric &o = static_cast(const_cast(*other.bp)); if (this->is_equal(o) || this->is_equal(-o)) return true; if (o.imag().is_zero()) // e.g. scan for 3 in -3*I @@ -629,30 +568,21 @@ ex numeric::evalf(int level) const { // level can safely be discarded for numeric objects. return numeric(cln::cl_float(1.0, cln::default_float_format) * - (cln::the(value))); + (cln::the(value))); } // protected -/** Implementation of ex::diff() for a numeric. It always returns 0. - * - * @see ex::diff */ -ex numeric::derivative(const symbol & s) const -{ - return _ex0(); -} - - -int numeric::compare_same_type(const basic & other) const +int numeric::compare_same_type(const basic &other) const { GINAC_ASSERT(is_exactly_of_type(other, numeric)); - const numeric & o = static_cast(const_cast(other)); + const numeric &o = static_cast(const_cast(other)); return this->compare(o); } -bool numeric::is_equal_same_type(const basic & other) const +bool numeric::is_equal_same_type(const basic &other) const { GINAC_ASSERT(is_exactly_of_type(other,numeric)); const numeric *o = static_cast(&other); @@ -666,6 +596,7 @@ unsigned numeric::calchash(void) const // Use CLN's hashcode. Warning: It depends only on the number's value, not // its type or precision (i.e. a true equivalence relation on numbers). As // a consequence, 3 and 3.0 share the same hashvalue. + setflag(status_flags::hash_calculated); return (hashvalue = cln::equal_hashcode(cln::the(value)) | 0x80000000U); } @@ -683,8 +614,8 @@ unsigned numeric::calchash(void) const // public /** Numerical addition method. Adds argument to *this and returns result as - * a new numeric object. */ -const numeric numeric::add(const numeric & other) const + * a numeric object. */ +const numeric numeric::add(const numeric &other) const { // Efficiency shortcut: trap the neutral element by pointer. static const numeric * _num0p = &_num0(); @@ -698,16 +629,16 @@ const numeric numeric::add(const numeric & other) const /** Numerical subtraction method. Subtracts argument from *this and returns - * result as a new numeric object. */ -const numeric numeric::sub(const numeric & other) const + * result as a numeric object. */ +const numeric numeric::sub(const numeric &other) const { return numeric(cln::the(value)-cln::the(other.value)); } /** Numerical multiplication method. Multiplies *this and argument and returns - * result as a new numeric object. */ -const numeric numeric::mul(const numeric & other) const + * result as a numeric object. */ +const numeric numeric::mul(const numeric &other) const { // Efficiency shortcut: trap the neutral element by pointer. static const numeric * _num1p = &_num1(); @@ -721,10 +652,10 @@ const numeric numeric::mul(const numeric & other) const /** Numerical division method. Divides *this by argument and returns result as - * a new numeric object. + * a numeric object. * * @exception overflow_error (division by zero) */ -const numeric numeric::div(const numeric & other) const +const numeric numeric::div(const numeric &other) const { if (cln::zerop(cln::the(other.value))) throw std::overflow_error("numeric::div(): division by zero"); @@ -732,7 +663,9 @@ const numeric numeric::div(const numeric & other) const } -const numeric numeric::power(const numeric & other) const +/** Numerical exponentiation. Raises *this to the power given as argument and + * returns result as a numeric object. */ +const numeric numeric::power(const numeric &other) const { // Efficiency shortcut: trap the neutral exponent by pointer. static const numeric * _num1p = &_num1(); @@ -753,7 +686,7 @@ const numeric numeric::power(const numeric & other) const } -const numeric & numeric::add_dyn(const numeric & other) const +const numeric &numeric::add_dyn(const numeric &other) const { // Efficiency shortcut: trap the neutral element by pointer. static const numeric * _num0p = &_num0(); @@ -767,14 +700,14 @@ const numeric & numeric::add_dyn(const numeric & other) const } -const numeric & numeric::sub_dyn(const numeric & other) const +const numeric &numeric::sub_dyn(const numeric &other) const { return static_cast((new numeric(cln::the(value)-cln::the(other.value)))-> setflag(status_flags::dynallocated)); } -const numeric & numeric::mul_dyn(const numeric & other) const +const numeric &numeric::mul_dyn(const numeric &other) const { // Efficiency shortcut: trap the neutral element by pointer. static const numeric * _num1p = &_num1(); @@ -788,7 +721,7 @@ const numeric & numeric::mul_dyn(const numeric & other) const } -const numeric & numeric::div_dyn(const numeric & other) const +const numeric &numeric::div_dyn(const numeric &other) const { if (cln::zerop(cln::the(other.value))) throw std::overflow_error("division by zero"); @@ -797,7 +730,7 @@ const numeric & numeric::div_dyn(const numeric & other) const } -const numeric & numeric::power_dyn(const numeric & other) const +const numeric &numeric::power_dyn(const numeric &other) const { // Efficiency shortcut: trap the neutral exponent by pointer. static const numeric * _num1p=&_num1(); @@ -819,37 +752,37 @@ const numeric & numeric::power_dyn(const numeric & other) const } -const numeric & numeric::operator=(int i) +const numeric &numeric::operator=(int i) { return operator=(numeric(i)); } -const numeric & numeric::operator=(unsigned int i) +const numeric &numeric::operator=(unsigned int i) { return operator=(numeric(i)); } -const numeric & numeric::operator=(long i) +const numeric &numeric::operator=(long i) { return operator=(numeric(i)); } -const numeric & numeric::operator=(unsigned long i) +const numeric &numeric::operator=(unsigned long i) { return operator=(numeric(i)); } -const numeric & numeric::operator=(double d) +const numeric &numeric::operator=(double d) { return operator=(numeric(d)); } -const numeric & numeric::operator=(const char * s) +const numeric &numeric::operator=(const char * s) { return operator=(numeric(s)); } @@ -868,7 +801,7 @@ const numeric numeric::inverse(void) const * csgn(x)==0 for x==0, csgn(x)==1 for Re(x)>0 or Re(x)=0 and Im(x)>0, * csgn(x)==-1 for Re(x)<0 or Re(x)=0 and Im(x)<0. * - * @see numeric::compare(const numeric & other) */ + * @see numeric::compare(const numeric &other) */ int numeric::csgn(void) const { if (cln::zerop(cln::the(value))) @@ -895,7 +828,7 @@ int numeric::csgn(void) const * * @return csgn(*this-other) * @see numeric::csgn(void) */ -int numeric::compare(const numeric & other) const +int numeric::compare(const numeric &other) const { // Comparing two real numbers? if (cln::instanceof(value, cln::cl_R_ring) && @@ -913,7 +846,7 @@ int numeric::compare(const numeric & other) const } -bool numeric::is_equal(const numeric & other) const +bool numeric::is_equal(const numeric &other) const { return cln::equal(cln::the(value),cln::the(other.value)); } @@ -1003,15 +936,15 @@ bool numeric::is_real(void) const } -bool numeric::operator==(const numeric & other) const +bool numeric::operator==(const numeric &other) const { - return equal(cln::the(value), cln::the(other.value)); + return cln::equal(cln::the(value), cln::the(other.value)); } -bool numeric::operator!=(const numeric & other) const +bool numeric::operator!=(const numeric &other) const { - return !equal(cln::the(value), cln::the(other.value)); + return !cln::equal(cln::the(value), cln::the(other.value)); } @@ -1048,7 +981,7 @@ bool numeric::is_crational(void) const /** Numerical comparison: less. * * @exception invalid_argument (complex inequality) */ -bool numeric::operator<(const numeric & other) const +bool numeric::operator<(const numeric &other) const { if (this->is_real() && other.is_real()) return (cln::the(value) < cln::the(other.value)); @@ -1059,7 +992,7 @@ bool numeric::operator<(const numeric & other) const /** Numerical comparison: less or equal. * * @exception invalid_argument (complex inequality) */ -bool numeric::operator<=(const numeric & other) const +bool numeric::operator<=(const numeric &other) const { if (this->is_real() && other.is_real()) return (cln::the(value) <= cln::the(other.value)); @@ -1070,7 +1003,7 @@ bool numeric::operator<=(const numeric & other) const /** Numerical comparison: greater. * * @exception invalid_argument (complex inequality) */ -bool numeric::operator>(const numeric & other) const +bool numeric::operator>(const numeric &other) const { if (this->is_real() && other.is_real()) return (cln::the(value) > cln::the(other.value)); @@ -1081,7 +1014,7 @@ bool numeric::operator>(const numeric & other) const /** Numerical comparison: greater or equal. * * @exception invalid_argument (complex inequality) */ -bool numeric::operator>=(const numeric & other) const +bool numeric::operator>=(const numeric &other) const { if (this->is_real() && other.is_real()) return (cln::the(value) >= cln::the(other.value)); @@ -1181,7 +1114,7 @@ const numeric numeric::denom(void) const if (this->is_integer()) return _num1(); - if (instanceof(value, cln::cl_RA_ring)) + if (cln::instanceof(value, cln::cl_RA_ring)) return numeric(cln::denominator(cln::the(value))); if (!this->is_real()) { // complex case, handle Q(i): @@ -1229,14 +1162,15 @@ unsigned numeric::precedence = 30; ////////// /** Imaginary unit. This is not a constant but a numeric since we are - * natively handing complex numbers anyways. */ + * natively handing complex numbers anyways, so in each expression containing + * an I it is automatically eval'ed away anyhow. */ const numeric I = numeric(cln::complex(cln::cl_I(0),cln::cl_I(1))); /** Exponential function. * * @return arbitrary precision numerical exp(x). */ -const numeric exp(const numeric & x) +const numeric exp(const numeric &x) { return cln::exp(x.to_cl_N()); } @@ -1247,7 +1181,7 @@ const numeric exp(const numeric & x) * @param z complex number * @return arbitrary precision numerical log(x). * @exception pole_error("log(): logarithmic pole",0) */ -const numeric log(const numeric & z) +const numeric log(const numeric &z) { if (z.is_zero()) throw pole_error("log(): logarithmic pole",0); @@ -1258,7 +1192,7 @@ const numeric log(const numeric & z) /** Numeric sine (trigonometric function). * * @return arbitrary precision numerical sin(x). */ -const numeric sin(const numeric & x) +const numeric sin(const numeric &x) { return cln::sin(x.to_cl_N()); } @@ -1267,7 +1201,7 @@ const numeric sin(const numeric & x) /** Numeric cosine (trigonometric function). * * @return arbitrary precision numerical cos(x). */ -const numeric cos(const numeric & x) +const numeric cos(const numeric &x) { return cln::cos(x.to_cl_N()); } @@ -1276,7 +1210,7 @@ const numeric cos(const numeric & x) /** Numeric tangent (trigonometric function). * * @return arbitrary precision numerical tan(x). */ -const numeric tan(const numeric & x) +const numeric tan(const numeric &x) { return cln::tan(x.to_cl_N()); } @@ -1285,7 +1219,7 @@ const numeric tan(const numeric & x) /** Numeric inverse sine (trigonometric function). * * @return arbitrary precision numerical asin(x). */ -const numeric asin(const numeric & x) +const numeric asin(const numeric &x) { return cln::asin(x.to_cl_N()); } @@ -1294,7 +1228,7 @@ const numeric asin(const numeric & x) /** Numeric inverse cosine (trigonometric function). * * @return arbitrary precision numerical acos(x). */ -const numeric acos(const numeric & x) +const numeric acos(const numeric &x) { return cln::acos(x.to_cl_N()); } @@ -1305,7 +1239,7 @@ const numeric acos(const numeric & x) * @param z complex number * @return atan(z) * @exception pole_error("atan(): logarithmic pole",0) */ -const numeric atan(const numeric & x) +const numeric atan(const numeric &x) { if (!x.is_real() && x.real().is_zero() && @@ -1320,7 +1254,7 @@ const numeric atan(const numeric & x) * @param x real number * @param y real number * @return atan(y/x) */ -const numeric atan(const numeric & y, const numeric & x) +const numeric atan(const numeric &y, const numeric &x) { if (x.is_real() && y.is_real()) return cln::atan(cln::the(x.to_cl_N()), @@ -1333,7 +1267,7 @@ const numeric atan(const numeric & y, const numeric & x) /** Numeric hyperbolic sine (trigonometric function). * * @return arbitrary precision numerical sinh(x). */ -const numeric sinh(const numeric & x) +const numeric sinh(const numeric &x) { return cln::sinh(x.to_cl_N()); } @@ -1342,7 +1276,7 @@ const numeric sinh(const numeric & x) /** Numeric hyperbolic cosine (trigonometric function). * * @return arbitrary precision numerical cosh(x). */ -const numeric cosh(const numeric & x) +const numeric cosh(const numeric &x) { return cln::cosh(x.to_cl_N()); } @@ -1351,7 +1285,7 @@ const numeric cosh(const numeric & x) /** Numeric hyperbolic tangent (trigonometric function). * * @return arbitrary precision numerical tanh(x). */ -const numeric tanh(const numeric & x) +const numeric tanh(const numeric &x) { return cln::tanh(x.to_cl_N()); } @@ -1360,7 +1294,7 @@ const numeric tanh(const numeric & x) /** Numeric inverse hyperbolic sine (trigonometric function). * * @return arbitrary precision numerical asinh(x). */ -const numeric asinh(const numeric & x) +const numeric asinh(const numeric &x) { return cln::asinh(x.to_cl_N()); } @@ -1369,7 +1303,7 @@ const numeric asinh(const numeric & x) /** Numeric inverse hyperbolic cosine (trigonometric function). * * @return arbitrary precision numerical acosh(x). */ -const numeric acosh(const numeric & x) +const numeric acosh(const numeric &x) { return cln::acosh(x.to_cl_N()); } @@ -1378,14 +1312,14 @@ const numeric acosh(const numeric & x) /** Numeric inverse hyperbolic tangent (trigonometric function). * * @return arbitrary precision numerical atanh(x). */ -const numeric atanh(const numeric & x) +const numeric atanh(const numeric &x) { return cln::atanh(x.to_cl_N()); } -/*static cln::cl_N Li2_series(const ::cl_N & x, - const ::float_format_t & prec) +/*static cln::cl_N Li2_series(const ::cl_N &x, + const ::float_format_t &prec) { // Note: argument must be in the unit circle // This is very inefficient unless we have fast floating point Bernoulli @@ -1412,8 +1346,8 @@ const numeric atanh(const numeric & x) /** Numeric evaluation of Dilogarithm within circle of convergence (unit * circle) using a power series. */ -static cln::cl_N Li2_series(const cln::cl_N & x, - const cln::float_format_t & prec) +static cln::cl_N Li2_series(const cln::cl_N &x, + const cln::float_format_t &prec) { // Note: argument must be in the unit circle cln::cl_N aug, acc; @@ -1431,8 +1365,8 @@ static cln::cl_N Li2_series(const cln::cl_N & x, } /** Folds Li2's argument inside a small rectangle to enhance convergence. */ -static cln::cl_N Li2_projection(const cln::cl_N & x, - const cln::float_format_t & prec) +static cln::cl_N Li2_projection(const cln::cl_N &x, + const cln::float_format_t &prec) { const cln::cl_R re = cln::realpart(x); const cln::cl_R im = cln::imagpart(x); @@ -1457,7 +1391,7 @@ static cln::cl_N Li2_projection(const cln::cl_N & x, * continuous with quadrant IV. * * @return arbitrary precision numerical Li2(x). */ -const numeric Li2(const numeric & x) +const numeric Li2(const numeric &x) { if (x.is_zero()) return _num0(); @@ -1487,7 +1421,7 @@ const numeric Li2(const numeric & x) /** Numeric evaluation of Riemann's Zeta function. Currently works only for * integer arguments. */ -const numeric zeta(const numeric & x) +const numeric zeta(const numeric &x) { // A dirty hack to allow for things like zeta(3.0), since CLN currently // only knows about integer arguments and zeta(3).evalf() automatically @@ -1500,7 +1434,7 @@ const numeric zeta(const numeric & x) return cln::zeta(aux); } std::clog << "zeta(" << x - << "): Does anybody know good way to calculate this numerically?" + << "): Does anybody know a good way to calculate this numerically?" << std::endl; return numeric(0); } @@ -1508,17 +1442,17 @@ const numeric zeta(const numeric & x) /** The Gamma function. * This is only a stub! */ -const numeric lgamma(const numeric & x) +const numeric lgamma(const numeric &x) { std::clog << "lgamma(" << x - << "): Does anybody know good way to calculate this numerically?" + << "): Does anybody know a good way to calculate this numerically?" << std::endl; return numeric(0); } -const numeric tgamma(const numeric & x) +const numeric tgamma(const numeric &x) { std::clog << "tgamma(" << x - << "): Does anybody know good way to calculate this numerically?" + << "): Does anybody know a good way to calculate this numerically?" << std::endl; return numeric(0); } @@ -1526,10 +1460,10 @@ const numeric tgamma(const numeric & x) /** The psi function (aka polygamma function). * This is only a stub! */ -const numeric psi(const numeric & x) +const numeric psi(const numeric &x) { std::clog << "psi(" << x - << "): Does anybody know good way to calculate this numerically?" + << "): Does anybody know a good way to calculate this numerically?" << std::endl; return numeric(0); } @@ -1537,10 +1471,10 @@ const numeric psi(const numeric & x) /** The psi functions (aka polygamma functions). * This is only a stub! */ -const numeric psi(const numeric & n, const numeric & x) +const numeric psi(const numeric &n, const numeric &x) { std::clog << "psi(" << n << "," << x - << "): Does anybody know good way to calculate this numerically?" + << "): Does anybody know a good way to calculate this numerically?" << std::endl; return numeric(0); } @@ -1550,7 +1484,7 @@ const numeric psi(const numeric & n, const numeric & x) * * @param n integer argument >= 0 * @exception range_error (argument must be integer >= 0) */ -const numeric factorial(const numeric & n) +const numeric factorial(const numeric &n) { if (!n.is_nonneg_integer()) throw std::range_error("numeric::factorial(): argument must be integer >= 0"); @@ -1564,9 +1498,9 @@ const numeric factorial(const numeric & n) * @param n integer argument >= -1 * @return n!! == n * (n-2) * (n-4) * ... * ({1|2}) with 0!! == (-1)!! == 1 * @exception range_error (argument must be integer >= -1) */ -const numeric doublefactorial(const numeric & n) +const numeric doublefactorial(const numeric &n) { - if (n == numeric(-1)) + if (n.is_equal(_num_1())) return _num1(); if (!n.is_nonneg_integer()) @@ -1580,7 +1514,7 @@ const numeric doublefactorial(const numeric & n) * integer n and k and positive n this is the number of ways of choosing k * objects from n distinct objects. If n is negative, the formula * binomial(n,k) == (-1)^k*binomial(k-n-1,k) is used to compute the result. */ -const numeric binomial(const numeric & n, const numeric & k) +const numeric binomial(const numeric &n, const numeric &k) { if (n.is_integer() && k.is_integer()) { if (n.is_nonneg_integer()) { @@ -1603,7 +1537,7 @@ const numeric binomial(const numeric & n, const numeric & k) * * @return the nth Bernoulli number (a rational number). * @exception range_error (argument must be integer >= 0) */ -const numeric bernoulli(const numeric & nn) +const numeric bernoulli(const numeric &nn) { if (!nn.is_integer() || nn.is_negative()) throw std::range_error("numeric::bernoulli(): argument must be integer >= 0"); @@ -1680,7 +1614,7 @@ const numeric bernoulli(const numeric & nn) * @param n an integer * @return the nth Fibonacci number F(n) (an integer number) * @exception range_error (argument must be an integer) */ -const numeric fibonacci(const numeric & n) +const numeric fibonacci(const numeric &n) { if (!n.is_integer()) throw std::range_error("numeric::fibonacci(): argument must be integer"); @@ -1747,7 +1681,7 @@ const numeric abs(const numeric& x) * * @return a mod b in the range [0,abs(b)-1] with sign of b if both are * integer, 0 otherwise. */ -const numeric mod(const numeric & a, const numeric & b) +const numeric mod(const numeric &a, const numeric &b) { if (a.is_integer() && b.is_integer()) return cln::mod(cln::the(a.to_cl_N()), @@ -1761,7 +1695,7 @@ const numeric mod(const numeric & a, const numeric & b) * Equivalent to Maple's mods. * * @return a mod b in the range [-iquo(abs(m)-1,2), iquo(abs(m),2)]. */ -const numeric smod(const numeric & a, const numeric & b) +const numeric smod(const numeric &a, const numeric &b) { if (a.is_integer() && b.is_integer()) { const cln::cl_I b2 = cln::ceiling1(cln::the(b.to_cl_N()) >> 1) - 1; @@ -1778,7 +1712,7 @@ const numeric smod(const numeric & a, const numeric & b) * sign of a or is zero. * * @return remainder of a/b if both are integer, 0 otherwise. */ -const numeric irem(const numeric & a, const numeric & b) +const numeric irem(const numeric &a, const numeric &b) { if (a.is_integer() && b.is_integer()) return cln::rem(cln::the(a.to_cl_N()), @@ -1795,7 +1729,7 @@ const numeric irem(const numeric & a, const numeric & b) * * @return remainder of a/b and quotient stored in q if both are integer, * 0 otherwise. */ -const numeric irem(const numeric & a, const numeric & b, numeric & q) +const numeric irem(const numeric &a, const numeric &b, numeric &q) { if (a.is_integer() && b.is_integer()) { const cln::cl_I_div_t rem_quo = cln::truncate2(cln::the(a.to_cl_N()), @@ -1813,11 +1747,11 @@ const numeric irem(const numeric & a, const numeric & b, numeric & q) * Equivalent to Maple's iquo as far as sign conventions are concerned. * * @return truncated quotient of a/b if both are integer, 0 otherwise. */ -const numeric iquo(const numeric & a, const numeric & b) +const numeric iquo(const numeric &a, const numeric &b) { if (a.is_integer() && b.is_integer()) - return truncate1(cln::the(a.to_cl_N()), - cln::the(b.to_cl_N())); + return cln::truncate1(cln::the(a.to_cl_N()), + cln::the(b.to_cl_N())); else return _num0(); } @@ -1829,7 +1763,7 @@ const numeric iquo(const numeric & a, const numeric & b) * * @return truncated quotient of a/b and remainder stored in r if both are * integer, 0 otherwise. */ -const numeric iquo(const numeric & a, const numeric & b, numeric & r) +const numeric iquo(const numeric &a, const numeric &b, numeric &r) { if (a.is_integer() && b.is_integer()) { const cln::cl_I_div_t rem_quo = cln::truncate2(cln::the(a.to_cl_N()), @@ -1847,7 +1781,7 @@ const numeric iquo(const numeric & a, const numeric & b, numeric & r) * * @return The GCD of two numbers if both are integer, a numerical 1 * if they are not. */ -const numeric gcd(const numeric & a, const numeric & b) +const numeric gcd(const numeric &a, const numeric &b) { if (a.is_integer() && b.is_integer()) return cln::gcd(cln::the(a.to_cl_N()), @@ -1861,7 +1795,7 @@ const numeric gcd(const numeric & a, const numeric & b) * * @return The LCM of two numbers if both are integer, the product of those * two numbers if they are not. */ -const numeric lcm(const numeric & a, const numeric & b) +const numeric lcm(const numeric &a, const numeric &b) { if (a.is_integer() && b.is_integer()) return cln::lcm(cln::the(a.to_cl_N()), @@ -1879,14 +1813,14 @@ const numeric lcm(const numeric & a, const numeric & b) * @return square root of z. Branch cut along negative real axis, the negative * real axis itself where imag(z)==0 and real(z)<0 belongs to the upper part * where imag(z)>0. */ -const numeric sqrt(const numeric & z) +const numeric sqrt(const numeric &z) { return cln::sqrt(z.to_cl_N()); } /** Integer numeric square root. */ -const numeric isqrt(const numeric & x) +const numeric isqrt(const numeric &x) { if (x.is_integer()) { cln::cl_I root; @@ -1918,13 +1852,15 @@ ex CatalanEvalf(void) } +/** _numeric_digits default ctor, checking for singleton invariance. */ _numeric_digits::_numeric_digits() : digits(17) { // It initializes to 17 digits, because in CLN float_format(17) turns out // to be 61 (<64) while float_format(18)=65. The reason is we want to // have a cl_LF instead of cl_SF, cl_FF or cl_DF. - assert(!too_late); + if (too_late) + throw(std::runtime_error("I told you not to do instantiate me!")); too_late = true; cln::default_float_format = cln::float_format(17); } @@ -1948,14 +1884,14 @@ _numeric_digits::operator long() /** Append global Digits object to ostream. */ -void _numeric_digits::print(std::ostream & os) const +void _numeric_digits::print(std::ostream &os) const { debugmsg("_numeric_digits print", LOGLEVEL_PRINT); os << digits; } -std::ostream& operator<<(std::ostream& os, const _numeric_digits & e) +std::ostream& operator<<(std::ostream &os, const _numeric_digits &e) { e.print(os); return os; @@ -1974,6 +1910,4 @@ bool _numeric_digits::too_late = false; * assignment from C++ unsigned ints and evaluated like any built-in type. */ _numeric_digits Digits; -#ifndef NO_NAMESPACE_GINAC } // namespace GiNaC -#endif // ndef NO_NAMESPACE_GINAC