X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fnumeric.cpp;h=4c11ac4bf63dd1d4010794a87de82c0078cc20c9;hp=69a787b5d985b5e174ea61a6f38c7b89f2bb3a2c;hb=866b3eb23253a272788d8791b1ed023e63674d50;hpb=a7693a0f710b49494f95ce5a4a0953752e69c7f9 diff --git a/ginac/numeric.cpp b/ginac/numeric.cpp index 69a787b5..4c11ac4b 100644 --- a/ginac/numeric.cpp +++ b/ginac/numeric.cpp @@ -7,7 +7,7 @@ * of special functions or implement the interface to the bignum package. */ /* - * GiNaC Copyright (C) 1999-2008 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2010 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -26,12 +26,6 @@ #include "config.h" -#include -#include -#include -#include -#include - #include "numeric.h" #include "ex.h" #include "operators.h" @@ -39,6 +33,12 @@ #include "tostring.h" #include "utils.h" +#include +#include +#include +#include +#include + // CLN should pollute the global namespace as little as possible. Hence, we // include most of it here and include only the part needed for properly // declaring cln::cl_number in numeric.h. This can only be safely done in @@ -73,7 +73,7 @@ GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(numeric, basic, ////////// /** default ctor. Numerically it initializes to an integer zero. */ -numeric::numeric() : basic(&numeric::tinfo_static) +numeric::numeric() { value = cln::cl_I(0); setflag(status_flags::evaluated | status_flags::expanded); @@ -85,7 +85,7 @@ numeric::numeric() : basic(&numeric::tinfo_static) // public -numeric::numeric(int i) : basic(&numeric::tinfo_static) +numeric::numeric(int i) { // Not the whole int-range is available if we don't cast to long // first. This is due to the behaviour of the cl_I-ctor, which @@ -106,7 +106,7 @@ numeric::numeric(int i) : basic(&numeric::tinfo_static) } -numeric::numeric(unsigned int i) : basic(&numeric::tinfo_static) +numeric::numeric(unsigned int i) { // Not the whole uint-range is available if we don't cast to ulong // first. This is due to the behaviour of the cl_I-ctor, which @@ -127,14 +127,14 @@ numeric::numeric(unsigned int i) : basic(&numeric::tinfo_static) } -numeric::numeric(long i) : basic(&numeric::tinfo_static) +numeric::numeric(long i) { value = cln::cl_I(i); setflag(status_flags::evaluated | status_flags::expanded); } -numeric::numeric(unsigned long i) : basic(&numeric::tinfo_static) +numeric::numeric(unsigned long i) { value = cln::cl_I(i); setflag(status_flags::evaluated | status_flags::expanded); @@ -144,7 +144,7 @@ numeric::numeric(unsigned long i) : basic(&numeric::tinfo_static) /** Constructor for rational numerics a/b. * * @exception overflow_error (division by zero) */ -numeric::numeric(long numer, long denom) : basic(&numeric::tinfo_static) +numeric::numeric(long numer, long denom) { if (!denom) throw std::overflow_error("division by zero"); @@ -153,7 +153,7 @@ numeric::numeric(long numer, long denom) : basic(&numeric::tinfo_static) } -numeric::numeric(double d) : basic(&numeric::tinfo_static) +numeric::numeric(double d) { // We really want to explicitly use the type cl_LF instead of the // more general cl_F, since that would give us a cl_DF only which @@ -165,7 +165,7 @@ numeric::numeric(double d) : basic(&numeric::tinfo_static) /** ctor from C-style string. It also accepts complex numbers in GiNaC * notation like "2+5*I". */ -numeric::numeric(const char *s) : basic(&numeric::tinfo_static) +numeric::numeric(const char *s) { cln::cl_N ctorval = 0; // parse complex numbers (functional but not completely safe, unfortunately @@ -244,7 +244,7 @@ numeric::numeric(const char *s) : basic(&numeric::tinfo_static) /** Ctor from CLN types. This is for the initiated user or internal use * only. */ -numeric::numeric(const cln::cl_N &z) : basic(&numeric::tinfo_static) +numeric::numeric(const cln::cl_N &z) { value = z; setflag(status_flags::evaluated | status_flags::expanded); @@ -255,66 +255,126 @@ numeric::numeric(const cln::cl_N &z) : basic(&numeric::tinfo_static) // archiving ////////// -numeric::numeric(const archive_node &n, lst &sym_lst) : inherited(n, sym_lst) +/** + * Construct a floating point number from sign, mantissa, and exponent + */ +static const cln::cl_F make_real_float(const cln::cl_idecoded_float& dec) { - cln::cl_N ctorval = 0; + cln::cl_F x = cln::cl_float(dec.mantissa, cln::default_float_format); + x = cln::scale_float(x, dec.exponent); + cln::cl_F sign = cln::cl_float(dec.sign, cln::default_float_format); + x = cln::float_sign(sign, x); + return x; +} + +/** + * Read serialized floating point number + */ +static const cln::cl_F read_real_float(std::istream& s) +{ + cln::cl_idecoded_float dec; + s >> dec.sign >> dec.mantissa >> dec.exponent; + const cln::cl_F x = make_real_float(dec); + return x; +} +void numeric::read_archive(const archive_node &n, lst &sym_lst) +{ + inherited::read_archive(n, sym_lst); + value = 0; + // Read number as string std::string str; if (n.find_string("number", str)) { std::istringstream s(str); - cln::cl_idecoded_float re, im; + cln::cl_R re, im; char c; s.get(c); switch (c) { - case 'R': // Integer-decoded real number - s >> re.sign >> re.mantissa >> re.exponent; - ctorval = re.sign * re.mantissa * cln::expt(cln::cl_float(2.0, cln::default_float_format), re.exponent); + case 'R': + // real FP (floating point) number + re = read_real_float(s); + value = re; + break; + case 'C': + // both real and imaginary part are FP numbers + re = read_real_float(s); + im = read_real_float(s); + value = cln::complex(re, im); break; - case 'C': // Integer-decoded complex number - s >> re.sign >> re.mantissa >> re.exponent; - s >> im.sign >> im.mantissa >> im.exponent; - ctorval = cln::complex(re.sign * re.mantissa * cln::expt(cln::cl_float(2.0, cln::default_float_format), re.exponent), - im.sign * im.mantissa * cln::expt(cln::cl_float(2.0, cln::default_float_format), im.exponent)); + case 'H': + // real part is a rational number, + // imaginary part is a FP number + s >> re; + im = read_real_float(s); + value = cln::complex(re, im); break; - default: // Ordinary number + case 'J': + // real part is a FP number, + // imaginary part is a rational number + re = read_real_float(s); + s >> im; + value = cln::complex(re, im); + break; + default: + // both real and imaginary parts are rational s.putback(c); - s >> ctorval; + s >> value; break; } } - value = ctorval; setflag(status_flags::evaluated | status_flags::expanded); } +GINAC_BIND_UNARCHIVER(numeric); + +static void write_real_float(std::ostream& s, const cln::cl_R& n) +{ + const cln::cl_idecoded_float dec = cln::integer_decode_float(cln::the(n)); + s << dec.sign << ' ' << dec.mantissa << ' ' << dec.exponent; +} void numeric::archive(archive_node &n) const { inherited::archive(n); // Write number as string + + const cln::cl_R re = cln::realpart(value); + const cln::cl_R im = cln::imagpart(value); + const bool re_rationalp = cln::instanceof(re, cln::cl_RA_ring); + const bool im_rationalp = cln::instanceof(im, cln::cl_RA_ring); + + // Non-rational numbers are written in an integer-decoded format + // to preserve the precision std::ostringstream s; - if (this->is_crational()) + if (re_rationalp && im_rationalp) s << value; - else { - // Non-rational numbers are written in an integer-decoded format - // to preserve the precision - if (this->is_real()) { - cln::cl_idecoded_float re = cln::integer_decode_float(cln::the(value)); - s << "R"; - s << re.sign << " " << re.mantissa << " " << re.exponent; - } else { - cln::cl_idecoded_float re = cln::integer_decode_float(cln::the(cln::realpart(cln::the(value)))); - cln::cl_idecoded_float im = cln::integer_decode_float(cln::the(cln::imagpart(cln::the(value)))); - s << "C"; - s << re.sign << " " << re.mantissa << " " << re.exponent << " "; - s << im.sign << " " << im.mantissa << " " << im.exponent; - } + else if (zerop(im)) { + // real FP (floating point) number + s << 'R'; + write_real_float(s, re); + } else if (re_rationalp) { + s << 'H'; // just any unique character + // real part is a rational number, + // imaginary part is a FP number + s << re << ' '; + write_real_float(s, im); + } else if (im_rationalp) { + s << 'J'; + // real part is a FP number, + // imaginary part is a rational number + write_real_float(s, re); + s << ' ' << im; + } else { + // both real and imaginary parts are floating point + s << 'C'; + write_real_float(s, re); + s << ' '; + write_real_float(s, im); } n.add_string("number", s.str()); } -DEFAULT_UNARCHIVE(numeric) - ////////// // functions overriding virtual functions from base classes ////////// @@ -2218,11 +2278,14 @@ const numeric fibonacci(const numeric &n) // F(2n+2) = F(n+1)*(2*F(n) + F(n+1)) if (n.is_zero()) return *_num0_p; - if (n.is_negative()) - if (n.is_even()) + if (n.is_negative()) { + if (n.is_even()) { return -fibonacci(-n); - else + } + else { return fibonacci(-n); + } + } cln::cl_I u(0); cln::cl_I v(1); @@ -2274,15 +2337,18 @@ const numeric mod(const numeric &a, const numeric &b) /** Modulus (in symmetric representation). - * Equivalent to Maple's mods. * - * @return a mod b in the range [-iquo(abs(b)-1,2), iquo(abs(b),2)]. */ -const numeric smod(const numeric &a, const numeric &b) -{ - if (a.is_integer() && b.is_integer()) { - const cln::cl_I b2 = cln::ceiling1(cln::the(b.to_cl_N()) >> 1) - 1; - return numeric(cln::mod(cln::the(a.to_cl_N()) + b2, - cln::the(b.to_cl_N())) - b2); + * @return a mod b in the range [-iquo(abs(b),2), iquo(abs(b),2)]. */ +const numeric smod(const numeric &a_, const numeric &b_) +{ + if (a_.is_integer() && b_.is_integer()) { + const cln::cl_I a = cln::the(a_.to_cl_N()); + const cln::cl_I b = cln::the(b_.to_cl_N()); + const cln::cl_I b2 = b >> 1; + const cln::cl_I m = cln::mod(a, b); + const cln::cl_I m_b = m - b; + const cln::cl_I ret = m > b2 ? m_b : m; + return numeric(ret); } else return *_num0_p; }