X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fnormal.cpp;h=f0e24aa2c5680179b6d53b4c44152c5bb52ca6bb;hp=70447acfc5cb94c793c579af7b39abb5e0913d01;hb=003197fb7b25e822db436a77b70ce9d5ccb82714;hpb=f50359e46371c8f9ece3c0fcf0d226b9e649baad diff --git a/ginac/normal.cpp b/ginac/normal.cpp index 70447acf..f0e24aa2 100644 --- a/ginac/normal.cpp +++ b/ginac/normal.cpp @@ -3,11 +3,10 @@ * This file implements several functions that work on univariate and * multivariate polynomials and rational functions. * These functions include polynomial quotient and remainder, GCD and LCM - * computation, square-free factorization and rational function normalization. - */ + * computation, square-free factorization and rational function normalization. */ /* - * GiNaC Copyright (C) 1999 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -43,10 +42,13 @@ #include "numeric.h" #include "power.h" #include "relational.h" -#include "series.h" +#include "pseries.h" #include "symbol.h" +#include "utils.h" +#ifndef NO_NAMESPACE_GINAC namespace GiNaC { +#endif // ndef NO_NAMESPACE_GINAC // If comparing expressions (ex::compare()) is fast, you can set this to 1. // Some routines like quo(), rem() and gcd() will then return a quick answer @@ -54,7 +56,35 @@ namespace GiNaC { #define FAST_COMPARE 1 // Set this if you want divide_in_z() to use remembering -#define USE_REMEMBER 1 +#define USE_REMEMBER 0 + +// Set this if you want divide_in_z() to use trial division followed by +// polynomial interpolation (always slower except for completely dense +// polynomials) +#define USE_TRIAL_DIVISION 0 + +// Set this to enable some statistical output for the GCD routines +#define STATISTICS 0 + + +#if STATISTICS +// Statistics variables +static int gcd_called = 0; +static int sr_gcd_called = 0; +static int heur_gcd_called = 0; +static int heur_gcd_failed = 0; + +// Print statistics at end of program +static struct _stat_print { + _stat_print() {} + ~_stat_print() { + cout << "gcd() called " << gcd_called << " times\n"; + cout << "sr_gcd() called " << sr_gcd_called << " times\n"; + cout << "heur_gcd() called " << heur_gcd_called << " times\n"; + cout << "heur_gcd() failed " << heur_gcd_failed << " times\n"; + } +} stat_print; +#endif /** Return pointer to first symbol found in expression. Due to GiNaCĀ“s @@ -64,21 +94,20 @@ namespace GiNaC { * @param e expression to search * @param x pointer to first symbol found (returned) * @return "false" if no symbol was found, "true" otherwise */ - static bool get_first_symbol(const ex &e, const symbol *&x) { - if (is_ex_exactly_of_type(e, symbol)) { - x = static_cast(e.bp); - return true; - } else if (is_ex_exactly_of_type(e, add) || is_ex_exactly_of_type(e, mul)) { - for (int i=0; i(e.bp); + return true; + } else if (is_ex_exactly_of_type(e, add) || is_ex_exactly_of_type(e, mul)) { + for (unsigned i=0; i sym_desc_vec; +typedef std::vector sym_desc_vec; // Add symbol the sym_desc_vec (used internally by get_symbol_stats()) static void add_symbol(const symbol *s, sym_desc_vec &v) { - sym_desc_vec::iterator it = v.begin(), itend = v.end(); - while (it != itend) { - if (it->sym->compare(*s) == 0) // If it's already in there, don't add it a second time - return; - it++; - } - sym_desc d; - d.sym = s; - v.push_back(d); + sym_desc_vec::iterator it = v.begin(), itend = v.end(); + while (it != itend) { + if (it->sym->compare(*s) == 0) // If it's already in there, don't add it a second time + return; + it++; + } + sym_desc d; + d.sym = s; + v.push_back(d); } // Collect all symbols of an expression (used internally by get_symbol_stats()) static void collect_symbols(const ex &e, sym_desc_vec &v) { - if (is_ex_exactly_of_type(e, symbol)) { - add_symbol(static_cast(e.bp), v); - } else if (is_ex_exactly_of_type(e, add) || is_ex_exactly_of_type(e, mul)) { - for (int i=0; i(e.bp), v); + } else if (is_ex_exactly_of_type(e, add) || is_ex_exactly_of_type(e, mul)) { + for (unsigned i=0; isym)); - int deg_b = b.degree(*(it->sym)); - it->deg_a = deg_a; - it->deg_b = deg_b; - it->min_deg = min(deg_a, deg_b); - it->ldeg_a = a.ldegree(*(it->sym)); - it->ldeg_b = b.ldegree(*(it->sym)); - it++; - } - sort(v.begin(), v.end()); + collect_symbols(a.eval(), v); // eval() to expand assigned symbols + collect_symbols(b.eval(), v); + sym_desc_vec::iterator it = v.begin(), itend = v.end(); + while (it != itend) { + int deg_a = a.degree(*(it->sym)); + int deg_b = b.degree(*(it->sym)); + it->deg_a = deg_a; + it->deg_b = deg_b; + it->max_deg = std::max(deg_a,deg_b); + it->ldeg_a = a.ldegree(*(it->sym)); + it->ldeg_b = b.ldegree(*(it->sym)); + it++; + } + sort(v.begin(), v.end()); +#if 0 + std::clog << "Symbols:\n"; + it = v.begin(); itend = v.end(); + while (it != itend) { + std::clog << " " << *it->sym << ": deg_a=" << it->deg_a << ", deg_b=" << it->deg_b << ", ldeg_a=" << it->ldeg_a << ", ldeg_b=" << it->ldeg_b << ", max_deg=" << it->max_deg << endl; + std::clog << " lcoeff_a=" << a.lcoeff(*(it->sym)) << ", lcoeff_b=" << b.lcoeff(*(it->sym)) << endl; + it++; + } +#endif } @@ -185,30 +222,61 @@ static void get_symbol_stats(const ex &a, const ex &b, sym_desc_vec &v) // expression recursively (used internally by lcm_of_coefficients_denominators()) static numeric lcmcoeff(const ex &e, const numeric &l) { - if (e.info(info_flags::rational)) - return lcm(ex_to_numeric(e).denom(), l); - else if (is_ex_exactly_of_type(e, add) || is_ex_exactly_of_type(e, mul)) { - numeric c = numONE(); - for (int i=0; iinteger_content(); + GINAC_ASSERT(bp!=0); + return bp->integer_content(); } numeric basic::integer_content(void) const { - return numONE(); + return _num1(); } numeric numeric::integer_content(void) const { - return abs(*this); + return abs(*this); } numeric add::integer_content(void) const { - epvector::const_iterator it = seq.begin(); - epvector::const_iterator itend = seq.end(); - numeric c = numZERO(); - while (it != itend) { - ASSERT(!is_ex_exactly_of_type(it->rest,numeric)); - ASSERT(is_ex_exactly_of_type(it->coeff,numeric)); - c = gcd(ex_to_numeric(it->coeff), c); - it++; - } - ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); - c = gcd(ex_to_numeric(overall_coeff),c); - return c; + epvector::const_iterator it = seq.begin(); + epvector::const_iterator itend = seq.end(); + numeric c = _num0(); + while (it != itend) { + GINAC_ASSERT(!is_ex_exactly_of_type(it->rest,numeric)); + GINAC_ASSERT(is_ex_exactly_of_type(it->coeff,numeric)); + c = gcd(ex_to_numeric(it->coeff), c); + it++; + } + GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); + c = gcd(ex_to_numeric(overall_coeff),c); + return c; } numeric mul::integer_content(void) const { -#ifdef DOASSERT - epvector::const_iterator it = seq.begin(); - epvector::const_iterator itend = seq.end(); - while (it != itend) { - ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric)); - ++it; - } -#endif // def DOASSERT - ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); - return abs(ex_to_numeric(overall_coeff)); +#ifdef DO_GINAC_ASSERT + epvector::const_iterator it = seq.begin(); + epvector::const_iterator itend = seq.end(); + while (it != itend) { + GINAC_ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric)); + ++it; + } +#endif // def DO_GINAC_ASSERT + GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); + return abs(ex_to_numeric(overall_coeff)); } @@ -278,45 +345,44 @@ numeric mul::integer_content(void) const * @param check_args check whether a and b are polynomials with rational * coefficients (defaults to "true") * @return quotient of a and b in Q[x] */ - ex quo(const ex &a, const ex &b, const symbol &x, bool check_args) { - if (b.is_zero()) - throw(std::overflow_error("quo: division by zero")); - if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) - return a / b; + if (b.is_zero()) + throw(std::overflow_error("quo: division by zero")); + if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) + return a / b; #if FAST_COMPARE - if (a.is_equal(b)) - return exONE(); + if (a.is_equal(b)) + return _ex1(); #endif - if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) - throw(std::invalid_argument("quo: arguments must be polynomials over the rationals")); - - // Polynomial long division - ex q = exZERO(); - ex r = a.expand(); - if (r.is_zero()) - return r; - int bdeg = b.degree(x); - int rdeg = r.degree(x); - ex blcoeff = b.expand().coeff(x, bdeg); - bool blcoeff_is_numeric = is_ex_exactly_of_type(blcoeff, numeric); - while (rdeg >= bdeg) { - ex term, rcoeff = r.coeff(x, rdeg); - if (blcoeff_is_numeric) - term = rcoeff / blcoeff; - else { - if (!divide(rcoeff, blcoeff, term, false)) - return *new ex(fail()); - } - term *= power(x, rdeg - bdeg); - q += term; - r -= (term * b).expand(); - if (r.is_zero()) - break; - rdeg = r.degree(x); - } - return q; + if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) + throw(std::invalid_argument("quo: arguments must be polynomials over the rationals")); + + // Polynomial long division + ex q = _ex0(); + ex r = a.expand(); + if (r.is_zero()) + return r; + int bdeg = b.degree(x); + int rdeg = r.degree(x); + ex blcoeff = b.expand().coeff(x, bdeg); + bool blcoeff_is_numeric = is_ex_exactly_of_type(blcoeff, numeric); + while (rdeg >= bdeg) { + ex term, rcoeff = r.coeff(x, rdeg); + if (blcoeff_is_numeric) + term = rcoeff / blcoeff; + else { + if (!divide(rcoeff, blcoeff, term, false)) + return *new ex(fail()); + } + term *= power(x, rdeg - bdeg); + q += term; + r -= (term * b).expand(); + if (r.is_zero()) + break; + rdeg = r.degree(x); + } + return q; } @@ -329,47 +395,46 @@ ex quo(const ex &a, const ex &b, const symbol &x, bool check_args) * @param check_args check whether a and b are polynomials with rational * coefficients (defaults to "true") * @return remainder of a(x) and b(x) in Q[x] */ - ex rem(const ex &a, const ex &b, const symbol &x, bool check_args) { - if (b.is_zero()) - throw(std::overflow_error("rem: division by zero")); - if (is_ex_exactly_of_type(a, numeric)) { - if (is_ex_exactly_of_type(b, numeric)) - return exZERO(); - else - return b; - } + if (b.is_zero()) + throw(std::overflow_error("rem: division by zero")); + if (is_ex_exactly_of_type(a, numeric)) { + if (is_ex_exactly_of_type(b, numeric)) + return _ex0(); + else + return b; + } #if FAST_COMPARE - if (a.is_equal(b)) - return exZERO(); + if (a.is_equal(b)) + return _ex0(); #endif - if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) - throw(std::invalid_argument("rem: arguments must be polynomials over the rationals")); - - // Polynomial long division - ex r = a.expand(); - if (r.is_zero()) - return r; - int bdeg = b.degree(x); - int rdeg = r.degree(x); - ex blcoeff = b.expand().coeff(x, bdeg); - bool blcoeff_is_numeric = is_ex_exactly_of_type(blcoeff, numeric); - while (rdeg >= bdeg) { - ex term, rcoeff = r.coeff(x, rdeg); - if (blcoeff_is_numeric) - term = rcoeff / blcoeff; - else { - if (!divide(rcoeff, blcoeff, term, false)) - return *new ex(fail()); - } - term *= power(x, rdeg - bdeg); - r -= (term * b).expand(); - if (r.is_zero()) - break; - rdeg = r.degree(x); - } - return r; + if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) + throw(std::invalid_argument("rem: arguments must be polynomials over the rationals")); + + // Polynomial long division + ex r = a.expand(); + if (r.is_zero()) + return r; + int bdeg = b.degree(x); + int rdeg = r.degree(x); + ex blcoeff = b.expand().coeff(x, bdeg); + bool blcoeff_is_numeric = is_ex_exactly_of_type(blcoeff, numeric); + while (rdeg >= bdeg) { + ex term, rcoeff = r.coeff(x, rdeg); + if (blcoeff_is_numeric) + term = rcoeff / blcoeff; + else { + if (!divide(rcoeff, blcoeff, term, false)) + return *new ex(fail()); + } + term *= power(x, rdeg - bdeg); + r -= (term * b).expand(); + if (r.is_zero()) + break; + rdeg = r.degree(x); + } + return r; } @@ -381,48 +446,98 @@ ex rem(const ex &a, const ex &b, const symbol &x, bool check_args) * @param check_args check whether a and b are polynomials with rational * coefficients (defaults to "true") * @return pseudo-remainder of a(x) and b(x) in Z[x] */ - ex prem(const ex &a, const ex &b, const symbol &x, bool check_args) { - if (b.is_zero()) - throw(std::overflow_error("prem: division by zero")); - if (is_ex_exactly_of_type(a, numeric)) { - if (is_ex_exactly_of_type(b, numeric)) - return exZERO(); - else - return b; - } - if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) - throw(std::invalid_argument("prem: arguments must be polynomials over the rationals")); - - // Polynomial long division - ex r = a.expand(); - ex eb = b.expand(); - int rdeg = r.degree(x); - int bdeg = eb.degree(x); - ex blcoeff; - if (bdeg <= rdeg) { - blcoeff = eb.coeff(x, bdeg); - if (bdeg == 0) - eb = exZERO(); - else - eb -= blcoeff * power(x, bdeg); - } else - blcoeff = exONE(); - - int delta = rdeg - bdeg + 1, i = 0; - while (rdeg >= bdeg && !r.is_zero()) { - ex rlcoeff = r.coeff(x, rdeg); - ex term = (power(x, rdeg - bdeg) * eb * rlcoeff).expand(); - if (rdeg == 0) - r = exZERO(); - else - r -= rlcoeff * power(x, rdeg); - r = (blcoeff * r).expand() - term; - rdeg = r.degree(x); - i++; - } - return power(blcoeff, delta - i) * r; + if (b.is_zero()) + throw(std::overflow_error("prem: division by zero")); + if (is_ex_exactly_of_type(a, numeric)) { + if (is_ex_exactly_of_type(b, numeric)) + return _ex0(); + else + return b; + } + if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) + throw(std::invalid_argument("prem: arguments must be polynomials over the rationals")); + + // Polynomial long division + ex r = a.expand(); + ex eb = b.expand(); + int rdeg = r.degree(x); + int bdeg = eb.degree(x); + ex blcoeff; + if (bdeg <= rdeg) { + blcoeff = eb.coeff(x, bdeg); + if (bdeg == 0) + eb = _ex0(); + else + eb -= blcoeff * power(x, bdeg); + } else + blcoeff = _ex1(); + + int delta = rdeg - bdeg + 1, i = 0; + while (rdeg >= bdeg && !r.is_zero()) { + ex rlcoeff = r.coeff(x, rdeg); + ex term = (power(x, rdeg - bdeg) * eb * rlcoeff).expand(); + if (rdeg == 0) + r = _ex0(); + else + r -= rlcoeff * power(x, rdeg); + r = (blcoeff * r).expand() - term; + rdeg = r.degree(x); + i++; + } + return power(blcoeff, delta - i) * r; +} + + +/** Sparse pseudo-remainder of polynomials a(x) and b(x) in Z[x]. + * + * @param a first polynomial in x (dividend) + * @param b second polynomial in x (divisor) + * @param x a and b are polynomials in x + * @param check_args check whether a and b are polynomials with rational + * coefficients (defaults to "true") + * @return sparse pseudo-remainder of a(x) and b(x) in Z[x] */ + +ex sprem(const ex &a, const ex &b, const symbol &x, bool check_args) +{ + if (b.is_zero()) + throw(std::overflow_error("prem: division by zero")); + if (is_ex_exactly_of_type(a, numeric)) { + if (is_ex_exactly_of_type(b, numeric)) + return _ex0(); + else + return b; + } + if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) + throw(std::invalid_argument("prem: arguments must be polynomials over the rationals")); + + // Polynomial long division + ex r = a.expand(); + ex eb = b.expand(); + int rdeg = r.degree(x); + int bdeg = eb.degree(x); + ex blcoeff; + if (bdeg <= rdeg) { + blcoeff = eb.coeff(x, bdeg); + if (bdeg == 0) + eb = _ex0(); + else + eb -= blcoeff * power(x, bdeg); + } else + blcoeff = _ex1(); + + while (rdeg >= bdeg && !r.is_zero()) { + ex rlcoeff = r.coeff(x, rdeg); + ex term = (power(x, rdeg - bdeg) * eb * rlcoeff).expand(); + if (rdeg == 0) + r = _ex0(); + else + r -= rlcoeff * power(x, rdeg); + r = (blcoeff * r).expand() - term; + rdeg = r.degree(x); + } + return r; } @@ -435,54 +550,56 @@ ex prem(const ex &a, const ex &b, const symbol &x, bool check_args) * coefficients (defaults to "true") * @return "true" when exact division succeeds (quotient returned in q), * "false" otherwise */ - bool divide(const ex &a, const ex &b, ex &q, bool check_args) { - q = exZERO(); - if (b.is_zero()) - throw(std::overflow_error("divide: division by zero")); - if (is_ex_exactly_of_type(b, numeric)) { - q = a / b; - return true; - } else if (is_ex_exactly_of_type(a, numeric)) - return false; + q = _ex0(); + if (b.is_zero()) + throw(std::overflow_error("divide: division by zero")); + if (a.is_zero()) + return true; + if (is_ex_exactly_of_type(b, numeric)) { + q = a / b; + return true; + } else if (is_ex_exactly_of_type(a, numeric)) + return false; #if FAST_COMPARE - if (a.is_equal(b)) { - q = exONE(); - return true; - } + if (a.is_equal(b)) { + q = _ex1(); + return true; + } #endif - if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) - throw(std::invalid_argument("divide: arguments must be polynomials over the rationals")); - - // Find first symbol - const symbol *x; - if (!get_first_symbol(a, x) && !get_first_symbol(b, x)) - throw(std::invalid_argument("invalid expression in divide()")); - - // Polynomial long division (recursive) - ex r = a.expand(); - if (r.is_zero()) - return true; - int bdeg = b.degree(*x); - int rdeg = r.degree(*x); - ex blcoeff = b.expand().coeff(*x, bdeg); - bool blcoeff_is_numeric = is_ex_exactly_of_type(blcoeff, numeric); - while (rdeg >= bdeg) { - ex term, rcoeff = r.coeff(*x, rdeg); - if (blcoeff_is_numeric) - term = rcoeff / blcoeff; - else - if (!divide(rcoeff, blcoeff, term, false)) - return false; - term *= power(*x, rdeg - bdeg); - q += term; - r -= (term * b).expand(); - if (r.is_zero()) - return true; - rdeg = r.degree(*x); - } - return false; + if (check_args && (!a.info(info_flags::rational_polynomial) || + !b.info(info_flags::rational_polynomial))) + throw(std::invalid_argument("divide: arguments must be polynomials over the rationals")); + + // Find first symbol + const symbol *x; + if (!get_first_symbol(a, x) && !get_first_symbol(b, x)) + throw(std::invalid_argument("invalid expression in divide()")); + + // Polynomial long division (recursive) + ex r = a.expand(); + if (r.is_zero()) + return true; + int bdeg = b.degree(*x); + int rdeg = r.degree(*x); + ex blcoeff = b.expand().coeff(*x, bdeg); + bool blcoeff_is_numeric = is_ex_exactly_of_type(blcoeff, numeric); + while (rdeg >= bdeg) { + ex term, rcoeff = r.coeff(*x, rdeg); + if (blcoeff_is_numeric) + term = rcoeff / blcoeff; + else + if (!divide(rcoeff, blcoeff, term, false)) + return false; + term *= power(*x, rdeg - bdeg); + q += term; + r -= (term * b).expand(); + if (r.is_zero()) + return true; + rdeg = r.degree(*x); + } + return false; } @@ -491,17 +608,17 @@ bool divide(const ex &a, const ex &b, ex &q, bool check_args) * Remembering */ -typedef pair ex2; -typedef pair exbool; +typedef std::pair ex2; +typedef std::pair exbool; struct ex2_less { - bool operator() (const ex2 p, const ex2 q) const - { - return p.first.compare(q.first) < 0 || (!(q.first.compare(p.first) < 0) && p.second.compare(q.second) < 0); - } + bool operator() (const ex2 p, const ex2 q) const + { + return p.first.compare(q.first) < 0 || (!(q.first.compare(p.first) < 0) && p.second.compare(q.second) < 0); + } }; -typedef map ex2_exbool_remember; +typedef std::map ex2_exbool_remember; #endif @@ -523,127 +640,128 @@ typedef map ex2_exbool_remember; * @see get_symbol_stats, heur_gcd */ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_iterator var) { - q = exZERO(); - if (b.is_zero()) - throw(std::overflow_error("divide_in_z: division by zero")); - if (b.is_equal(exONE())) { - q = a; - return true; - } - if (is_ex_exactly_of_type(a, numeric)) { - if (is_ex_exactly_of_type(b, numeric)) { - q = a / b; - return q.info(info_flags::integer); - } else - return false; - } + q = _ex0(); + if (b.is_zero()) + throw(std::overflow_error("divide_in_z: division by zero")); + if (b.is_equal(_ex1())) { + q = a; + return true; + } + if (is_ex_exactly_of_type(a, numeric)) { + if (is_ex_exactly_of_type(b, numeric)) { + q = a / b; + return q.info(info_flags::integer); + } else + return false; + } #if FAST_COMPARE - if (a.is_equal(b)) { - q = exONE(); - return true; - } + if (a.is_equal(b)) { + q = _ex1(); + return true; + } #endif #if USE_REMEMBER - // Remembering - static ex2_exbool_remember dr_remember; - ex2_exbool_remember::const_iterator remembered = dr_remember.find(ex2(a, b)); - if (remembered != dr_remember.end()) { - q = remembered->second.first; - return remembered->second.second; - } + // Remembering + static ex2_exbool_remember dr_remember; + ex2_exbool_remember::const_iterator remembered = dr_remember.find(ex2(a, b)); + if (remembered != dr_remember.end()) { + q = remembered->second.first; + return remembered->second.second; + } #endif - // Main symbol - const symbol *x = var->sym; + // Main symbol + const symbol *x = var->sym; + + // Compare degrees + int adeg = a.degree(*x), bdeg = b.degree(*x); + if (bdeg > adeg) + return false; + +#if USE_TRIAL_DIVISION + + // Trial division with polynomial interpolation + int i, k; + + // Compute values at evaluation points 0..adeg + vector alpha; alpha.reserve(adeg + 1); + exvector u; u.reserve(adeg + 1); + numeric point = _num0(); + ex c; + for (i=0; i<=adeg; i++) { + ex bs = b.subs(*x == point); + while (bs.is_zero()) { + point += _num1(); + bs = b.subs(*x == point); + } + if (!divide_in_z(a.subs(*x == point), bs, c, var+1)) + return false; + alpha.push_back(point); + u.push_back(c); + point += _num1(); + } - // Compare degrees - int adeg = a.degree(*x), bdeg = b.degree(*x); - if (bdeg > adeg) - return false; + // Compute inverses + vector rcp; rcp.reserve(adeg + 1); + rcp.push_back(_num0()); + for (k=1; k<=adeg; k++) { + numeric product = alpha[k] - alpha[0]; + for (i=1; i=0; i--) + temp = temp * (alpha[k] - alpha[i]) + v[i]; + v.push_back((u[k] - temp) * rcp[k]); + } + + // Convert from Newton form to standard form + c = v[adeg]; + for (k=adeg-1; k>=0; k--) + c = c * (*x - alpha[k]) + v[k]; + + if (c.degree(*x) == (adeg - bdeg)) { + q = c.expand(); + return true; + } else + return false; + +#else - // Polynomial long division (recursive) - ex r = a.expand(); - if (r.is_zero()) - return true; - int rdeg = adeg; - ex eb = b.expand(); - ex blcoeff = eb.coeff(*x, bdeg); - while (rdeg >= bdeg) { - ex term, rcoeff = r.coeff(*x, rdeg); - if (!divide_in_z(rcoeff, blcoeff, term, var+1)) - break; - term = (term * power(*x, rdeg - bdeg)).expand(); - q += term; - r -= (term * eb).expand(); - if (r.is_zero()) { + // Polynomial long division (recursive) + ex r = a.expand(); + if (r.is_zero()) + return true; + int rdeg = adeg; + ex eb = b.expand(); + ex blcoeff = eb.coeff(*x, bdeg); + while (rdeg >= bdeg) { + ex term, rcoeff = r.coeff(*x, rdeg); + if (!divide_in_z(rcoeff, blcoeff, term, var+1)) + break; + term = (term * power(*x, rdeg - bdeg)).expand(); + q += term; + r -= (term * eb).expand(); + if (r.is_zero()) { #if USE_REMEMBER - dr_remember[ex2(a, b)] = exbool(q, true); + dr_remember[ex2(a, b)] = exbool(q, true); #endif - return true; - } - rdeg = r.degree(*x); - } + return true; + } + rdeg = r.degree(*x); + } #if USE_REMEMBER - dr_remember[ex2(a, b)] = exbool(q, false); + dr_remember[ex2(a, b)] = exbool(q, false); #endif - return false; - -#else + return false; - // Trial division using polynomial interpolation - int i, k; - - // Compute values at evaluation points 0..adeg - vector alpha; alpha.reserve(adeg + 1); - exvector u; u.reserve(adeg + 1); - numeric point = numZERO(); - ex c; - for (i=0; i<=adeg; i++) { - ex bs = b.subs(*x == point); - while (bs.is_zero()) { - point += numONE(); - bs = b.subs(*x == point); - } - if (!divide_in_z(a.subs(*x == point), bs, c, var+1)) - return false; - alpha.push_back(point); - u.push_back(c); - point += numONE(); - } - - // Compute inverses - vector rcp; rcp.reserve(adeg + 1); - rcp.push_back(0); - for (k=1; k<=adeg; k++) { - numeric product = alpha[k] - alpha[0]; - for (i=1; i=0; i--) - temp = temp * (alpha[k] - alpha[i]) + v[i]; - v.push_back((u[k] - temp) * rcp[k]); - } - - // Convert from Newton form to standard form - c = v[adeg]; - for (k=adeg-1; k>=0; k--) - c = c * (*x - alpha[k]) + v[k]; - - if (c.degree(*x) == (adeg - bdeg)) { - q = c.expand(); - return true; - } else - return false; #endif } @@ -661,16 +779,16 @@ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_ite * @see ex::content, ex::primpart */ ex ex::unit(const symbol &x) const { - ex c = expand().lcoeff(x); - if (is_ex_exactly_of_type(c, numeric)) - return c < exZERO() ? exMINUSONE() : exONE(); - else { - const symbol *y; - if (get_first_symbol(c, y)) - return c.unit(*y); - else - throw(std::invalid_argument("invalid expression in unit()")); - } + ex c = expand().lcoeff(x); + if (is_ex_exactly_of_type(c, numeric)) + return c < _ex0() ? _ex_1() : _ex1(); + else { + const symbol *y; + if (get_first_symbol(c, y)) + return c.unit(*y); + else + throw(std::invalid_argument("invalid expression in unit()")); + } } @@ -683,30 +801,30 @@ ex ex::unit(const symbol &x) const * @see ex::unit, ex::primpart */ ex ex::content(const symbol &x) const { - if (is_zero()) - return exZERO(); - if (is_ex_exactly_of_type(*this, numeric)) - return info(info_flags::negative) ? -*this : *this; - ex e = expand(); - if (e.is_zero()) - return exZERO(); - - // First, try the integer content - ex c = e.integer_content(); - ex r = e / c; - ex lcoeff = r.lcoeff(x); - if (lcoeff.info(info_flags::integer)) - return c; - - // GCD of all coefficients - int deg = e.degree(x); - int ldeg = e.ldegree(x); - if (deg == ldeg) - return e.lcoeff(x) / e.unit(x); - c = exZERO(); - for (int i=ldeg; i<=deg; i++) - c = gcd(e.coeff(x, i), c, NULL, NULL, false); - return c; + if (is_zero()) + return _ex0(); + if (is_ex_exactly_of_type(*this, numeric)) + return info(info_flags::negative) ? -*this : *this; + ex e = expand(); + if (e.is_zero()) + return _ex0(); + + // First, try the integer content + ex c = e.integer_content(); + ex r = e / c; + ex lcoeff = r.lcoeff(x); + if (lcoeff.info(info_flags::integer)) + return c; + + // GCD of all coefficients + int deg = e.degree(x); + int ldeg = e.ldegree(x); + if (deg == ldeg) + return e.lcoeff(x) / e.unit(x); + c = _ex0(); + for (int i=ldeg; i<=deg; i++) + c = gcd(e.coeff(x, i), c, NULL, NULL, false); + return c; } @@ -719,19 +837,19 @@ ex ex::content(const symbol &x) const * @see ex::unit, ex::content */ ex ex::primpart(const symbol &x) const { - if (is_zero()) - return exZERO(); - if (is_ex_exactly_of_type(*this, numeric)) - return exONE(); - - ex c = content(x); - if (c.is_zero()) - return exZERO(); - ex u = unit(x); - if (is_ex_exactly_of_type(c, numeric)) - return *this / (c * u); - else - return quo(*this, c * u, x, false); + if (is_zero()) + return _ex0(); + if (is_ex_exactly_of_type(*this, numeric)) + return _ex1(); + + ex c = content(x); + if (c.is_zero()) + return _ex0(); + ex u = unit(x); + if (is_ex_exactly_of_type(c, numeric)) + return *this / (c * u); + else + return quo(*this, c * u, x, false); } @@ -742,21 +860,20 @@ ex ex::primpart(const symbol &x) const * @param x variable in which to compute the primitive part * @param c previously computed content part * @return primitive part */ - ex ex::primpart(const symbol &x, const ex &c) const { - if (is_zero()) - return exZERO(); - if (c.is_zero()) - return exZERO(); - if (is_ex_exactly_of_type(*this, numeric)) - return exONE(); - - ex u = unit(x); - if (is_ex_exactly_of_type(c, numeric)) - return *this / (c * u); - else - return quo(*this, c * u, x, false); + if (is_zero()) + return _ex0(); + if (c.is_zero()) + return _ex0(); + if (is_ex_exactly_of_type(*this, numeric)) + return _ex1(); + + ex u = unit(x); + if (is_ex_exactly_of_type(c, numeric)) + return *this / (c * u); + else + return quo(*this, c * u, x, false); } @@ -764,8 +881,141 @@ ex ex::primpart(const symbol &x, const ex &c) const * GCD of multivariate polynomials */ -/** Compute GCD of multivariate polynomials using the subresultant PRS - * algorithm. This function is used internally gy gcd(). +/** Compute GCD of polynomials in Q[X] using the Euclidean algorithm (not + * really suited for multivariate GCDs). This function is only provided for + * testing purposes. + * + * @param a first multivariate polynomial + * @param b second multivariate polynomial + * @param x pointer to symbol (main variable) in which to compute the GCD in + * @return the GCD as a new expression + * @see gcd */ + +static ex eu_gcd(const ex &a, const ex &b, const symbol *x) +{ +//std::clog << "eu_gcd(" << a << "," << b << ")\n"; + + // Sort c and d so that c has higher degree + ex c, d; + int adeg = a.degree(*x), bdeg = b.degree(*x); + if (adeg >= bdeg) { + c = a; + d = b; + } else { + c = b; + d = a; + } + + // Normalize in Q[x] + c = c / c.lcoeff(*x); + d = d / d.lcoeff(*x); + + // Euclidean algorithm + ex r; + for (;;) { +//std::clog << " d = " << d << endl; + r = rem(c, d, *x, false); + if (r.is_zero()) + return d / d.lcoeff(*x); + c = d; + d = r; + } +} + + +/** Compute GCD of multivariate polynomials using the Euclidean PRS algorithm + * with pseudo-remainders ("World's Worst GCD Algorithm", staying in Z[X]). + * This function is only provided for testing purposes. + * + * @param a first multivariate polynomial + * @param b second multivariate polynomial + * @param x pointer to symbol (main variable) in which to compute the GCD in + * @return the GCD as a new expression + * @see gcd */ + +static ex euprem_gcd(const ex &a, const ex &b, const symbol *x) +{ +//std::clog << "euprem_gcd(" << a << "," << b << ")\n"; + + // Sort c and d so that c has higher degree + ex c, d; + int adeg = a.degree(*x), bdeg = b.degree(*x); + if (adeg >= bdeg) { + c = a; + d = b; + } else { + c = b; + d = a; + } + + // Calculate GCD of contents + ex gamma = gcd(c.content(*x), d.content(*x), NULL, NULL, false); + + // Euclidean algorithm with pseudo-remainders + ex r; + for (;;) { +//std::clog << " d = " << d << endl; + r = prem(c, d, *x, false); + if (r.is_zero()) + return d.primpart(*x) * gamma; + c = d; + d = r; + } +} + + +/** Compute GCD of multivariate polynomials using the primitive Euclidean + * PRS algorithm (complete content removal at each step). This function is + * only provided for testing purposes. + * + * @param a first multivariate polynomial + * @param b second multivariate polynomial + * @param x pointer to symbol (main variable) in which to compute the GCD in + * @return the GCD as a new expression + * @see gcd */ + +static ex peu_gcd(const ex &a, const ex &b, const symbol *x) +{ +//std::clog << "peu_gcd(" << a << "," << b << ")\n"; + + // Sort c and d so that c has higher degree + ex c, d; + int adeg = a.degree(*x), bdeg = b.degree(*x); + int ddeg; + if (adeg >= bdeg) { + c = a; + d = b; + ddeg = bdeg; + } else { + c = b; + d = a; + ddeg = adeg; + } + + // Remove content from c and d, to be attached to GCD later + ex cont_c = c.content(*x); + ex cont_d = d.content(*x); + ex gamma = gcd(cont_c, cont_d, NULL, NULL, false); + if (ddeg == 0) + return gamma; + c = c.primpart(*x, cont_c); + d = d.primpart(*x, cont_d); + + // Euclidean algorithm with content removal + ex r; + for (;;) { +//std::clog << " d = " << d << endl; + r = prem(c, d, *x, false); + if (r.is_zero()) + return gamma * d; + c = d; + d = r.primpart(*x); + } +} + + +/** Compute GCD of multivariate polynomials using the reduced PRS algorithm. + * This function is only provided for testing purposes. * * @param a first multivariate polynomial * @param b second multivariate polynomial @@ -773,62 +1023,142 @@ ex ex::primpart(const symbol &x, const ex &c) const * @return the GCD as a new expression * @see gcd */ -static ex sr_gcd(const ex &a, const ex &b, const symbol *x) +static ex red_gcd(const ex &a, const ex &b, const symbol *x) { - // Sort c and d so that c has higher degree - ex c, d; - int adeg = a.degree(*x), bdeg = b.degree(*x); - int cdeg, ddeg; - if (adeg >= bdeg) { - c = a; - d = b; - cdeg = adeg; - ddeg = bdeg; - } else { - c = b; - d = a; - cdeg = bdeg; - ddeg = adeg; - } - - // Remove content from c and d, to be attached to GCD later - ex cont_c = c.content(*x); - ex cont_d = d.content(*x); - ex gamma = gcd(cont_c, cont_d, NULL, NULL, false); - if (ddeg == 0) - return gamma; - c = c.primpart(*x, cont_c); - d = d.primpart(*x, cont_d); - - // First element of subresultant sequence - ex r = exZERO(), ri = exONE(), psi = exONE(); - int delta = cdeg - ddeg; - - for (;;) { - // Calculate polynomial pseudo-remainder - r = prem(c, d, *x, false); - if (r.is_zero()) - return gamma * d.primpart(*x); - c = d; - cdeg = ddeg; - if (!divide(r, ri * power(psi, delta), d, false)) - throw(std::runtime_error("invalid expression in sr_gcd(), division failed")); - ddeg = d.degree(*x); - if (ddeg == 0) { - if (is_ex_exactly_of_type(r, numeric)) - return gamma; - else - return gamma * r.primpart(*x); - } - - // Next element of subresultant sequence - ri = c.expand().lcoeff(*x); - if (delta == 1) - psi = ri; - else if (delta) - divide(power(ri, delta), power(psi, delta-1), psi, false); - delta = cdeg - ddeg; - } +//std::clog << "red_gcd(" << a << "," << b << ")\n"; + + // Sort c and d so that c has higher degree + ex c, d; + int adeg = a.degree(*x), bdeg = b.degree(*x); + int cdeg, ddeg; + if (adeg >= bdeg) { + c = a; + d = b; + cdeg = adeg; + ddeg = bdeg; + } else { + c = b; + d = a; + cdeg = bdeg; + ddeg = adeg; + } + + // Remove content from c and d, to be attached to GCD later + ex cont_c = c.content(*x); + ex cont_d = d.content(*x); + ex gamma = gcd(cont_c, cont_d, NULL, NULL, false); + if (ddeg == 0) + return gamma; + c = c.primpart(*x, cont_c); + d = d.primpart(*x, cont_d); + + // First element of divisor sequence + ex r, ri = _ex1(); + int delta = cdeg - ddeg; + + for (;;) { + // Calculate polynomial pseudo-remainder +//std::clog << " d = " << d << endl; + r = prem(c, d, *x, false); + if (r.is_zero()) + return gamma * d.primpart(*x); + c = d; + cdeg = ddeg; + + if (!divide(r, pow(ri, delta), d, false)) + throw(std::runtime_error("invalid expression in red_gcd(), division failed")); + ddeg = d.degree(*x); + if (ddeg == 0) { + if (is_ex_exactly_of_type(r, numeric)) + return gamma; + else + return gamma * r.primpart(*x); + } + + ri = c.expand().lcoeff(*x); + delta = cdeg - ddeg; + } +} + + +/** Compute GCD of multivariate polynomials using the subresultant PRS + * algorithm. This function is used internally by gcd(). + * + * @param a first multivariate polynomial + * @param b second multivariate polynomial + * @param var iterator to first element of vector of sym_desc structs + * @return the GCD as a new expression + * @see gcd */ + +static ex sr_gcd(const ex &a, const ex &b, sym_desc_vec::const_iterator var) +{ +//std::clog << "sr_gcd(" << a << "," << b << ")\n"; +#if STATISTICS + sr_gcd_called++; +#endif + + // The first symbol is our main variable + const symbol &x = *(var->sym); + + // Sort c and d so that c has higher degree + ex c, d; + int adeg = a.degree(x), bdeg = b.degree(x); + int cdeg, ddeg; + if (adeg >= bdeg) { + c = a; + d = b; + cdeg = adeg; + ddeg = bdeg; + } else { + c = b; + d = a; + cdeg = bdeg; + ddeg = adeg; + } + + // Remove content from c and d, to be attached to GCD later + ex cont_c = c.content(x); + ex cont_d = d.content(x); + ex gamma = gcd(cont_c, cont_d, NULL, NULL, false); + if (ddeg == 0) + return gamma; + c = c.primpart(x, cont_c); + d = d.primpart(x, cont_d); +//std::clog << " content " << gamma << " removed, continuing with sr_gcd(" << c << "," << d << ")\n"; + + // First element of subresultant sequence + ex r = _ex0(), ri = _ex1(), psi = _ex1(); + int delta = cdeg - ddeg; + + for (;;) { + // Calculate polynomial pseudo-remainder +//std::clog << " start of loop, psi = " << psi << ", calculating pseudo-remainder...\n"; +//std::clog << " d = " << d << endl; + r = prem(c, d, x, false); + if (r.is_zero()) + return gamma * d.primpart(x); + c = d; + cdeg = ddeg; +//std::clog << " dividing...\n"; + if (!divide_in_z(r, ri * pow(psi, delta), d, var)) + throw(std::runtime_error("invalid expression in sr_gcd(), division failed")); + ddeg = d.degree(x); + if (ddeg == 0) { + if (is_ex_exactly_of_type(r, numeric)) + return gamma; + else + return gamma * r.primpart(x); + } + + // Next element of subresultant sequence +//std::clog << " calculating next subresultant...\n"; + ri = c.expand().lcoeff(x); + if (delta == 1) + psi = ri; + else if (delta) + divide_in_z(pow(ri, delta), pow(psi, delta-1), psi, var+1); + delta = cdeg - ddeg; + } } @@ -838,52 +1168,51 @@ static ex sr_gcd(const ex &a, const ex &b, const symbol *x) * @param e expanded multivariate polynomial * @return maximum coefficient * @see heur_gcd */ - numeric ex::max_coefficient(void) const { - ASSERT(bp!=0); - return bp->max_coefficient(); + GINAC_ASSERT(bp!=0); + return bp->max_coefficient(); } numeric basic::max_coefficient(void) const { - return numONE(); + return _num1(); } numeric numeric::max_coefficient(void) const { - return abs(*this); + return abs(*this); } numeric add::max_coefficient(void) const { - epvector::const_iterator it = seq.begin(); - epvector::const_iterator itend = seq.end(); - ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); - numeric cur_max = abs(ex_to_numeric(overall_coeff)); - while (it != itend) { - numeric a; - ASSERT(!is_ex_exactly_of_type(it->rest,numeric)); - a = abs(ex_to_numeric(it->coeff)); - if (a > cur_max) - cur_max = a; - it++; - } - return cur_max; + epvector::const_iterator it = seq.begin(); + epvector::const_iterator itend = seq.end(); + GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); + numeric cur_max = abs(ex_to_numeric(overall_coeff)); + while (it != itend) { + numeric a; + GINAC_ASSERT(!is_ex_exactly_of_type(it->rest,numeric)); + a = abs(ex_to_numeric(it->coeff)); + if (a > cur_max) + cur_max = a; + it++; + } + return cur_max; } numeric mul::max_coefficient(void) const { -#ifdef DOASSERT - epvector::const_iterator it = seq.begin(); - epvector::const_iterator itend = seq.end(); - while (it != itend) { - ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric)); - it++; - } -#endif // def DOASSERT - ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); - return abs(ex_to_numeric(overall_coeff)); +#ifdef DO_GINAC_ASSERT + epvector::const_iterator it = seq.begin(); + epvector::const_iterator itend = seq.end(); + while (it != itend) { + GINAC_ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric)); + it++; + } +#endif // def DO_GINAC_ASSERT + GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); + return abs(ex_to_numeric(overall_coeff)); } @@ -894,61 +1223,90 @@ numeric mul::max_coefficient(void) const * @param xi modulus * @return mapped polynomial * @see heur_gcd */ - ex ex::smod(const numeric &xi) const { - ASSERT(bp!=0); - return bp->smod(xi); + GINAC_ASSERT(bp!=0); + return bp->smod(xi); } ex basic::smod(const numeric &xi) const { - return *this; + return *this; } ex numeric::smod(const numeric &xi) const { - return GiNaC::smod(*this, xi); +#ifndef NO_NAMESPACE_GINAC + return GiNaC::smod(*this, xi); +#else // ndef NO_NAMESPACE_GINAC + return ::smod(*this, xi); +#endif // ndef NO_NAMESPACE_GINAC } ex add::smod(const numeric &xi) const { - epvector newseq; - newseq.reserve(seq.size()+1); - epvector::const_iterator it = seq.begin(); - epvector::const_iterator itend = seq.end(); - while (it != itend) { - ASSERT(!is_ex_exactly_of_type(it->rest,numeric)); - numeric coeff = GiNaC::smod(ex_to_numeric(it->coeff), xi); - if (!coeff.is_zero()) - newseq.push_back(expair(it->rest, coeff)); - it++; - } - ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); - numeric coeff = GiNaC::smod(ex_to_numeric(overall_coeff), xi); - return (new add(newseq,coeff))->setflag(status_flags::dynallocated); + epvector newseq; + newseq.reserve(seq.size()+1); + epvector::const_iterator it = seq.begin(); + epvector::const_iterator itend = seq.end(); + while (it != itend) { + GINAC_ASSERT(!is_ex_exactly_of_type(it->rest,numeric)); +#ifndef NO_NAMESPACE_GINAC + numeric coeff = GiNaC::smod(ex_to_numeric(it->coeff), xi); +#else // ndef NO_NAMESPACE_GINAC + numeric coeff = ::smod(ex_to_numeric(it->coeff), xi); +#endif // ndef NO_NAMESPACE_GINAC + if (!coeff.is_zero()) + newseq.push_back(expair(it->rest, coeff)); + it++; + } + GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); +#ifndef NO_NAMESPACE_GINAC + numeric coeff = GiNaC::smod(ex_to_numeric(overall_coeff), xi); +#else // ndef NO_NAMESPACE_GINAC + numeric coeff = ::smod(ex_to_numeric(overall_coeff), xi); +#endif // ndef NO_NAMESPACE_GINAC + return (new add(newseq,coeff))->setflag(status_flags::dynallocated); } ex mul::smod(const numeric &xi) const { -#ifdef DOASSERT - epvector::const_iterator it = seq.begin(); - epvector::const_iterator itend = seq.end(); - while (it != itend) { - ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric)); - it++; - } -#endif // def DOASSERT - mul * mulcopyp=new mul(*this); - ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); - mulcopyp->overall_coeff = GiNaC::smod(ex_to_numeric(overall_coeff),xi); - mulcopyp->clearflag(status_flags::evaluated); - mulcopyp->clearflag(status_flags::hash_calculated); - return mulcopyp->setflag(status_flags::dynallocated); +#ifdef DO_GINAC_ASSERT + epvector::const_iterator it = seq.begin(); + epvector::const_iterator itend = seq.end(); + while (it != itend) { + GINAC_ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric)); + it++; + } +#endif // def DO_GINAC_ASSERT + mul * mulcopyp=new mul(*this); + GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); +#ifndef NO_NAMESPACE_GINAC + mulcopyp->overall_coeff = GiNaC::smod(ex_to_numeric(overall_coeff),xi); +#else // ndef NO_NAMESPACE_GINAC + mulcopyp->overall_coeff = ::smod(ex_to_numeric(overall_coeff),xi); +#endif // ndef NO_NAMESPACE_GINAC + mulcopyp->clearflag(status_flags::evaluated); + mulcopyp->clearflag(status_flags::hash_calculated); + return mulcopyp->setflag(status_flags::dynallocated); } -/** Exception thrown by heur_gcd() to signal failure */ +/** xi-adic polynomial interpolation */ +static ex interpolate(const ex &gamma, const numeric &xi, const symbol &x) +{ + ex g = _ex0(); + ex e = gamma; + numeric rxi = xi.inverse(); + for (int i=0; !e.is_zero(); i++) { + ex gi = e.smod(xi); + g += gi * power(x, i); + e = (e - gi) * rxi; + } + return g; +} + +/** Exception thrown by heur_gcd() to signal failure. */ class gcdheu_failed {}; /** Compute GCD of multivariate polynomials using the heuristic GCD algorithm. @@ -966,75 +1324,108 @@ class gcdheu_failed {}; * @return the GCD as a new expression * @see gcd * @exception gcdheu_failed() */ - static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const_iterator var) { - if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) { - numeric g = gcd(ex_to_numeric(a), ex_to_numeric(b)); - numeric rg; - if (ca || cb) - rg = g.inverse(); - if (ca) - *ca = ex_to_numeric(a).mul(rg); - if (cb) - *cb = ex_to_numeric(b).mul(rg); - return g; - } - - // The first symbol is our main variable - const symbol *x = var->sym; - - // Remove integer content - numeric gc = gcd(a.integer_content(), b.integer_content()); - numeric rgc = gc.inverse(); - ex p = a * rgc; - ex q = b * rgc; - int maxdeg = max(p.degree(*x), q.degree(*x)); - - // Find evaluation point - numeric mp = p.max_coefficient(), mq = q.max_coefficient(); - numeric xi; - if (mp > mq) - xi = mq * numTWO() + numTWO(); - else - xi = mp * numTWO() + numTWO(); - - // 6 tries maximum - for (int t=0; t<6; t++) { - if (xi.int_length() * maxdeg > 50000) - throw gcdheu_failed(); - - // Apply evaluation homomorphism and calculate GCD - ex gamma = heur_gcd(p.subs(*x == xi), q.subs(*x == xi), NULL, NULL, var+1).expand(); - if (!is_ex_exactly_of_type(gamma, fail)) { - - // Reconstruct polynomial from GCD of mapped polynomials - ex g = exZERO(); - numeric rxi = xi.inverse(); - for (int i=0; !gamma.is_zero(); i++) { - ex gi = gamma.smod(xi); - g += gi * power(*x, i); - gamma = (gamma - gi) * rxi; - } - // Remove integer content - g /= g.integer_content(); - - // If the calculated polynomial divides both a and b, this is the GCD - ex dummy; - if (divide_in_z(p, g, ca ? *ca : dummy, var) && divide_in_z(q, g, cb ? *cb : dummy, var)) { - g *= gc; - ex lc = g.lcoeff(*x); - if (is_ex_exactly_of_type(lc, numeric) && lc.compare(exZERO()) < 0) - return -g; - else - return g; - } - } - - // Next evaluation point - xi = iquo(xi * isqrt(isqrt(xi)) * numeric(73794), numeric(27011)); - } - return *new ex(fail()); +//std::clog << "heur_gcd(" << a << "," << b << ")\n"; +#if STATISTICS + heur_gcd_called++; +#endif + + // Algorithms only works for non-vanishing input polynomials + if (a.is_zero() || b.is_zero()) + return *new ex(fail()); + + // GCD of two numeric values -> CLN + if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) { + numeric g = gcd(ex_to_numeric(a), ex_to_numeric(b)); + if (ca) + *ca = ex_to_numeric(a) / g; + if (cb) + *cb = ex_to_numeric(b) / g; + return g; + } + + // The first symbol is our main variable + const symbol &x = *(var->sym); + + // Remove integer content + numeric gc = gcd(a.integer_content(), b.integer_content()); + numeric rgc = gc.inverse(); + ex p = a * rgc; + ex q = b * rgc; + int maxdeg = std::max(p.degree(x),q.degree(x)); + + // Find evaluation point + numeric mp = p.max_coefficient(); + numeric mq = q.max_coefficient(); + numeric xi; + if (mp > mq) + xi = mq * _num2() + _num2(); + else + xi = mp * _num2() + _num2(); + + // 6 tries maximum + for (int t=0; t<6; t++) { + if (xi.int_length() * maxdeg > 100000) { +//std::clog << "giving up heur_gcd, xi.int_length = " << xi.int_length() << ", maxdeg = " << maxdeg << endl; + throw gcdheu_failed(); + } + + // Apply evaluation homomorphism and calculate GCD + ex cp, cq; + ex gamma = heur_gcd(p.subs(x == xi), q.subs(x == xi), &cp, &cq, var+1).expand(); + if (!is_ex_exactly_of_type(gamma, fail)) { + + // Reconstruct polynomial from GCD of mapped polynomials + ex g = interpolate(gamma, xi, x); + + // Remove integer content + g /= g.integer_content(); + + // If the calculated polynomial divides both p and q, this is the GCD + ex dummy; + if (divide_in_z(p, g, ca ? *ca : dummy, var) && divide_in_z(q, g, cb ? *cb : dummy, var)) { + g *= gc; + ex lc = g.lcoeff(x); + if (is_ex_exactly_of_type(lc, numeric) && ex_to_numeric(lc).is_negative()) + return -g; + else + return g; + } +#if 0 + cp = interpolate(cp, xi, x); + if (divide_in_z(cp, p, g, var)) { + if (divide_in_z(g, q, cb ? *cb : dummy, var)) { + g *= gc; + if (ca) + *ca = cp; + ex lc = g.lcoeff(x); + if (is_ex_exactly_of_type(lc, numeric) && ex_to_numeric(lc).is_negative()) + return -g; + else + return g; + } + } + cq = interpolate(cq, xi, x); + if (divide_in_z(cq, q, g, var)) { + if (divide_in_z(g, p, ca ? *ca : dummy, var)) { + g *= gc; + if (cb) + *cb = cq; + ex lc = g.lcoeff(x); + if (is_ex_exactly_of_type(lc, numeric) && ex_to_numeric(lc).is_negative()) + return -g; + else + return g; + } + } +#endif + } + + // Next evaluation point + xi = iquo(xi * isqrt(isqrt(xi)) * numeric(73794), numeric(27011)); + } + return *new ex(fail()); } @@ -1046,104 +1437,233 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const * @param check_args check whether a and b are polynomials with rational * coefficients (defaults to "true") * @return the GCD as a new expression */ - ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args) { - // Some trivial cases +//std::clog << "gcd(" << a << "," << b << ")\n"; +#if STATISTICS + gcd_called++; +#endif + + // GCD of numerics -> CLN + if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) { + numeric g = gcd(ex_to_numeric(a), ex_to_numeric(b)); + if (ca || cb) { + if (g.is_zero()) { + if (ca) + *ca = _ex0(); + if (cb) + *cb = _ex0(); + } else { + if (ca) + *ca = ex_to_numeric(a) / g; + if (cb) + *cb = ex_to_numeric(b) / g; + } + } + return g; + } + + // Check arguments + if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) { + throw(std::invalid_argument("gcd: arguments must be polynomials over the rationals")); + } + + // Partially factored cases (to avoid expanding large expressions) + if (is_ex_exactly_of_type(a, mul)) { + if (is_ex_exactly_of_type(b, mul) && b.nops() > a.nops()) + goto factored_b; +factored_a: + ex g = _ex1(); + ex acc_ca = _ex1(); + ex part_b = b; + for (unsigned i=0; i b.nops()) + goto factored_a; +factored_b: + ex g = _ex1(); + ex acc_cb = _ex1(); + ex part_a = a; + for (unsigned i=0; isym; - - // Cancel trivial common factor - int ldeg_a = var->ldeg_a; - int ldeg_b = var->ldeg_b; - int min_ldeg = min(ldeg_a, ldeg_b); - if (min_ldeg > 0) { - ex common = power(*x, min_ldeg); -//clog << "trivial common factor " << common << endl; - return gcd((aex / common).expand(), (bex / common).expand(), ca, cb, false) * common; - } - - // Try to eliminate variables - if (var->deg_a == 0) { -//clog << "eliminating variable " << *x << " from b" << endl; - ex c = bex.content(*x); - ex g = gcd(aex, c, ca, cb, false); - if (cb) - *cb *= bex.unit(*x) * bex.primpart(*x, c); - return g; - } else if (var->deg_b == 0) { -//clog << "eliminating variable " << *x << " from a" << endl; - ex c = aex.content(*x); - ex g = gcd(c, bex, ca, cb, false); - if (ca) - *ca *= aex.unit(*x) * aex.primpart(*x, c); - return g; - } - - // Try heuristic algorithm first, fall back to PRS if that failed - ex g; - try { - g = heur_gcd(aex, bex, ca, cb, var); - } catch (gcdheu_failed) { - g = *new ex(fail()); - } - if (is_ex_exactly_of_type(g, fail)) { -//clog << "heuristics failed\n"; - g = sr_gcd(aex, bex, x); - if (ca) - divide(aex, g, *ca, false); - if (cb) - divide(bex, g, *cb, false); - } - return g; + + // Gather symbol statistics + sym_desc_vec sym_stats; + get_symbol_stats(a, b, sym_stats); + + // The symbol with least degree is our main variable + sym_desc_vec::const_iterator var = sym_stats.begin(); + const symbol &x = *(var->sym); + + // Cancel trivial common factor + int ldeg_a = var->ldeg_a; + int ldeg_b = var->ldeg_b; + int min_ldeg = std::min(ldeg_a,ldeg_b); + if (min_ldeg > 0) { + ex common = power(x, min_ldeg); +//std::clog << "trivial common factor " << common << endl; + return gcd((aex / common).expand(), (bex / common).expand(), ca, cb, false) * common; + } + + // Try to eliminate variables + if (var->deg_a == 0) { +//std::clog << "eliminating variable " << x << " from b" << endl; + ex c = bex.content(x); + ex g = gcd(aex, c, ca, cb, false); + if (cb) + *cb *= bex.unit(x) * bex.primpart(x, c); + return g; + } else if (var->deg_b == 0) { +//std::clog << "eliminating variable " << x << " from a" << endl; + ex c = aex.content(x); + ex g = gcd(c, bex, ca, cb, false); + if (ca) + *ca *= aex.unit(x) * aex.primpart(x, c); + return g; + } + + ex g; +#if 1 + // Try heuristic algorithm first, fall back to PRS if that failed + try { + g = heur_gcd(aex, bex, ca, cb, var); + } catch (gcdheu_failed) { + g = *new ex(fail()); + } + if (is_ex_exactly_of_type(g, fail)) { +//std::clog << "heuristics failed" << endl; +#if STATISTICS + heur_gcd_failed++; +#endif +#endif +// g = heur_gcd(aex, bex, ca, cb, var); +// g = eu_gcd(aex, bex, &x); +// g = euprem_gcd(aex, bex, &x); +// g = peu_gcd(aex, bex, &x); +// g = red_gcd(aex, bex, &x); + g = sr_gcd(aex, bex, var); + if (g.is_equal(_ex1())) { + // Keep cofactors factored if possible + if (ca) + *ca = a; + if (cb) + *cb = b; + } else { + if (ca) + divide(aex, g, *ca, false); + if (cb) + divide(bex, g, *cb, false); + } +#if 1 + } else { + if (g.is_equal(_ex1())) { + // Keep cofactors factored if possible + if (ca) + *ca = a; + if (cb) + *cb = b; + } + } +#endif + return g; } @@ -1156,14 +1676,14 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args) * @return the LCM as a new expression */ ex lcm(const ex &a, const ex &b, bool check_args) { - if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) - return gcd(ex_to_numeric(a), ex_to_numeric(b)); - if (check_args && !a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)) - throw(std::invalid_argument("lcm: arguments must be polynomials over the rationals")); - - ex ca, cb; - ex g = gcd(a, b, &ca, &cb, false); - return ca * cb * g; + if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) + return lcm(ex_to_numeric(a), ex_to_numeric(b)); + if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) + throw(std::invalid_argument("lcm: arguments must be polynomials over the rationals")); + + ex ca, cb; + ex g = gcd(a, b, &ca, &cb, false); + return ca * cb * g; } @@ -1175,34 +1695,34 @@ ex lcm(const ex &a, const ex &b, bool check_args) // a and b can be multivariate polynomials but they are treated as univariate polynomials in x. static ex univariate_gcd(const ex &a, const ex &b, const symbol &x) { - if (a.is_zero()) - return b; - if (b.is_zero()) - return a; - if (a.is_equal(exONE()) || b.is_equal(exONE())) - return exONE(); - if (is_ex_of_type(a, numeric) && is_ex_of_type(b, numeric)) - return gcd(ex_to_numeric(a), ex_to_numeric(b)); - if (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)) - throw(std::invalid_argument("univariate_gcd: arguments must be polynomials over the rationals")); - - // Euclidean algorithm - ex c, d, r; - if (a.degree(x) >= b.degree(x)) { - c = a; - d = b; - } else { - c = b; - d = a; - } - for (;;) { - r = rem(c, d, x, false); - if (r.is_zero()) - break; - c = d; - d = r; - } - return d / d.lcoeff(x); + if (a.is_zero()) + return b; + if (b.is_zero()) + return a; + if (a.is_equal(_ex1()) || b.is_equal(_ex1())) + return _ex1(); + if (is_ex_of_type(a, numeric) && is_ex_of_type(b, numeric)) + return gcd(ex_to_numeric(a), ex_to_numeric(b)); + if (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)) + throw(std::invalid_argument("univariate_gcd: arguments must be polynomials over the rationals")); + + // Euclidean algorithm + ex c, d, r; + if (a.degree(x) >= b.degree(x)) { + c = a; + d = b; + } else { + c = b; + d = a; + } + for (;;) { + r = rem(c, d, x, false); + if (r.is_zero()) + break; + c = d; + d = r; + } + return d / d.lcoeff(x); } @@ -1214,27 +1734,27 @@ static ex univariate_gcd(const ex &a, const ex &b, const symbol &x) * @return factored polynomial */ ex sqrfree(const ex &a, const symbol &x) { - int i = 1; - ex res = exONE(); - ex b = a.diff(x); - ex c = univariate_gcd(a, b, x); - ex w; - if (c.is_equal(exONE())) { - w = a; - } else { - w = quo(a, c, x); - ex y = quo(b, c, x); - ex z = y - w.diff(x); - while (!z.is_zero()) { - ex g = univariate_gcd(w, z, x); - res *= power(g, i); - w = quo(w, g, x); - y = quo(z, g, x); - z = y - w.diff(x); - i++; - } - } - return res * power(w, i); + int i = 1; + ex res = _ex1(); + ex b = a.diff(x); + ex c = univariate_gcd(a, b, x); + ex w; + if (c.is_equal(_ex1())) { + w = a; + } else { + w = quo(a, c, x); + ex y = quo(b, c, x); + ex z = y - w.diff(x); + while (!z.is_zero()) { + ex g = univariate_gcd(w, z, x); + res *= power(g, i); + w = quo(w, g, x); + y = quo(z, g, x); + z = y - w.diff(x); + i++; + } + } + return res * power(w, i); } @@ -1242,42 +1762,71 @@ ex sqrfree(const ex &a, const symbol &x) * Normal form of rational functions */ -// Create a symbol for replacing the expression "e" (or return a previously -// assigned symbol). The symbol is appended to sym_list and returned, the -// expression is appended to repl_list. +/* + * Note: The internal normal() functions (= basic::normal() and overloaded + * functions) all return lists of the form {numerator, denominator}. This + * is to get around mul::eval()'s automatic expansion of numeric coefficients. + * E.g. (a+b)/3 is automatically converted to a/3+b/3 but we want to keep + * the information that (a+b) is the numerator and 3 is the denominator. + */ + +/** Create a symbol for replacing the expression "e" (or return a previously + * assigned symbol). The symbol is appended to sym_lst and returned, the + * expression is appended to repl_lst. + * @see ex::normal */ static ex replace_with_symbol(const ex &e, lst &sym_lst, lst &repl_lst) { - // Expression already in repl_lst? Then return the assigned symbol - for (int i=0; isetflag(status_flags::dynallocated); } -/** Implementation of ex::normal() for symbols. This returns the unmodifies symbol. +/** Implementation of ex::normal() for symbols. This returns the unmodified symbol. * @see ex::normal */ ex symbol::normal(lst &sym_lst, lst &repl_lst, int level) const { - return *this; + return (new lst(*this, _ex1()))->setflag(status_flags::dynallocated); } @@ -1287,53 +1836,57 @@ ex symbol::normal(lst &sym_lst, lst &repl_lst, int level) const * @see ex::normal */ ex numeric::normal(lst &sym_lst, lst &repl_lst, int level) const { - if (is_real()) - if (is_rational()) - return *this; - else - return replace_with_symbol(*this, sym_lst, repl_lst); - else { // complex - numeric re = real(), im = imag(); + numeric num = numer(); + ex numex = num; + + if (num.is_real()) { + if (!num.is_integer()) + numex = replace_with_symbol(numex, sym_lst, repl_lst); + } else { // complex + numeric re = num.real(), im = num.imag(); ex re_ex = re.is_rational() ? re : replace_with_symbol(re, sym_lst, repl_lst); ex im_ex = im.is_rational() ? im : replace_with_symbol(im, sym_lst, repl_lst); - return re_ex + im_ex * replace_with_symbol(I, sym_lst, repl_lst); + numex = re_ex + im_ex * replace_with_symbol(I, sym_lst, repl_lst); } + + // Denominator is always a real integer (see numeric::denom()) + return (new lst(numex, denom()))->setflag(status_flags::dynallocated); } -/* - * Helper function for fraction cancellation (returns cancelled fraction n/d) - */ - +/** Fraction cancellation. + * @param n numerator + * @param d denominator + * @return cancelled fraction {n, d} as a list */ static ex frac_cancel(const ex &n, const ex &d) { - ex num = n; - ex den = d; - ex pre_factor = exONE(); - - // Handle special cases where numerator or denominator is 0 - if (num.is_zero()) - return exZERO(); - if (den.expand().is_zero()) - throw(std::overflow_error("frac_cancel: division by zero in frac_cancel")); - - // More special cases - if (is_ex_exactly_of_type(den, numeric)) - return num / den; - if (num.is_zero()) - return exZERO(); - - // Bring numerator and denominator to Z[X] by multiplying with - // LCM of all coefficients' denominators - ex num_lcm = lcm_of_coefficients_denominators(num); - ex den_lcm = lcm_of_coefficients_denominators(den); - num *= num_lcm; - den *= den_lcm; - pre_factor = den_lcm / num_lcm; - - // Cancel GCD from numerator and denominator - ex cnum, cden; - if (gcd(num, den, &cnum, &cden, false) != exONE()) { + ex num = n; + ex den = d; + numeric pre_factor = _num1(); + +//std::clog << "frac_cancel num = " << num << ", den = " << den << endl; + + // Handle trivial case where denominator is 1 + if (den.is_equal(_ex1())) + return (new lst(num, den))->setflag(status_flags::dynallocated); + + // Handle special cases where numerator or denominator is 0 + if (num.is_zero()) + return (new lst(num, _ex1()))->setflag(status_flags::dynallocated); + if (den.expand().is_zero()) + throw(std::overflow_error("frac_cancel: division by zero in frac_cancel")); + + // Bring numerator and denominator to Z[X] by multiplying with + // LCM of all coefficients' denominators + numeric num_lcm = lcm_of_coefficients_denominators(num); + numeric den_lcm = lcm_of_coefficients_denominators(den); + num = multiply_lcm(num, num_lcm); + den = multiply_lcm(den, den_lcm); + pre_factor = den_lcm / num_lcm; + + // Cancel GCD from numerator and denominator + ex cnum, cden; + if (gcd(num, den, &cnum, &cden, false) != _ex1()) { num = cnum; den = cden; } @@ -1342,12 +1895,16 @@ static ex frac_cancel(const ex &n, const ex &d) // as defined by get_first_symbol() is made positive) const symbol *x; if (get_first_symbol(den, x)) { - if (den.unit(*x).compare(exZERO()) < 0) { - num *= exMINUSONE(); - den *= exMINUSONE(); + GINAC_ASSERT(is_ex_exactly_of_type(den.unit(*x),numeric)); + if (ex_to_numeric(den.unit(*x)).is_negative()) { + num *= _ex_1(); + den *= _ex_1(); } } - return pre_factor * num / den; + + // Return result as list +//std::clog << " returns num = " << num << ", den = " << den << ", pre_factor = " << pre_factor << endl; + return (new lst(num * pre_factor.numer(), den * pre_factor.denom()))->setflag(status_flags::dynallocated); } @@ -1356,51 +1913,57 @@ static ex frac_cancel(const ex &n, const ex &d) * @see ex::normal */ ex add::normal(lst &sym_lst, lst &repl_lst, int level) const { - // Normalize and expand children - exvector o; - o.reserve(seq.size()+1); - epvector::const_iterator it = seq.begin(), itend = seq.end(); - while (it != itend) { - ex n = recombine_pair_to_ex(*it).bp->normal(sym_lst, repl_lst, level-1).expand(); - if (is_ex_exactly_of_type(n, add)) { - epvector::const_iterator bit = (static_cast(n.bp))->seq.begin(), bitend = (static_cast(n.bp))->seq.end(); - while (bit != bitend) { - o.push_back(recombine_pair_to_ex(*bit)); - bit++; - } - o.push_back((static_cast(n.bp))->overall_coeff); - } else - o.push_back(n); - it++; - } - o.push_back(overall_coeff.bp->normal(sym_lst, repl_lst, level-1)); - - // Determine common denominator - ex den = exONE(); - exvector::const_iterator ait = o.begin(), aitend = o.end(); - while (ait != aitend) { - den = lcm((*ait).denom(false), den, false); - ait++; - } - - // Add fractions - if (den.is_equal(exONE())) - return (new add(o))->setflag(status_flags::dynallocated); - else { - exvector num_seq; - for (ait=o.begin(); ait!=aitend; ait++) { - ex q; - if (!divide(den, (*ait).denom(false), q, false)) { - // should not happen - throw(std::runtime_error("invalid expression in add::normal, division failed")); - } - num_seq.push_back((*ait).numer(false) * q); - } - ex num = add(num_seq); - - // Cancel common factors from num/den - return frac_cancel(num, den); - } + if (level == 1) + return (new lst(replace_with_symbol(*this, sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated); + else if (level == -max_recursion_level) + throw(std::runtime_error("max recursion level reached")); + + // Normalize children and split each one into numerator and denominator + exvector nums, dens; + nums.reserve(seq.size()+1); + dens.reserve(seq.size()+1); + epvector::const_iterator it = seq.begin(), itend = seq.end(); + while (it != itend) { + ex n = recombine_pair_to_ex(*it).bp->normal(sym_lst, repl_lst, level-1); + nums.push_back(n.op(0)); + dens.push_back(n.op(1)); + it++; + } + ex n = overall_coeff.bp->normal(sym_lst, repl_lst, level-1); + nums.push_back(n.op(0)); + dens.push_back(n.op(1)); + GINAC_ASSERT(nums.size() == dens.size()); + + // Now, nums is a vector of all numerators and dens is a vector of + // all denominators +//std::clog << "add::normal uses " << nums.size() << " summands:\n"; + + // Add fractions sequentially + exvector::const_iterator num_it = nums.begin(), num_itend = nums.end(); + exvector::const_iterator den_it = dens.begin(), den_itend = dens.end(); +//std::clog << " num = " << *num_it << ", den = " << *den_it << endl; + ex num = *num_it++, den = *den_it++; + while (num_it != num_itend) { +//std::clog << " num = " << *num_it << ", den = " << *den_it << endl; + ex next_num = *num_it++, next_den = *den_it++; + + // Trivially add sequences of fractions with identical denominators + while ((den_it != den_itend) && next_den.is_equal(*den_it)) { + next_num += *num_it; + num_it++; den_it++; + } + + // Additiion of two fractions, taking advantage of the fact that + // the heuristic GCD algorithm computes the cofactors at no extra cost + ex co_den1, co_den2; + ex g = gcd(den, next_den, &co_den1, &co_den2, false); + num = ((num * co_den2) + (next_num * co_den1)).expand(); + den *= co_den2; // this is the lcm(den, next_den) + } +//std::clog << " common denominator = " << den << endl; + + // Cancel common factors from num/den + return frac_cancel(num, den); } @@ -1409,17 +1972,28 @@ ex add::normal(lst &sym_lst, lst &repl_lst, int level) const * @see ex::normal() */ ex mul::normal(lst &sym_lst, lst &repl_lst, int level) const { - // Normalize children - exvector o; - o.reserve(seq.size()+1); - epvector::const_iterator it = seq.begin(), itend = seq.end(); - while (it != itend) { - o.push_back(recombine_pair_to_ex(*it).bp->normal(sym_lst, repl_lst, level-1)); - it++; - } - o.push_back(overall_coeff.bp->normal(sym_lst, repl_lst, level-1)); - ex n = (new mul(o))->setflag(status_flags::dynallocated); - return frac_cancel(n.numer(false), n.denom(false)); + if (level == 1) + return (new lst(replace_with_symbol(*this, sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated); + else if (level == -max_recursion_level) + throw(std::runtime_error("max recursion level reached")); + + // Normalize children, separate into numerator and denominator + ex num = _ex1(); + ex den = _ex1(); + ex n; + epvector::const_iterator it = seq.begin(), itend = seq.end(); + while (it != itend) { + n = recombine_pair_to_ex(*it).bp->normal(sym_lst, repl_lst, level-1); + num *= n.op(0); + den *= n.op(1); + it++; + } + n = overall_coeff.bp->normal(sym_lst, repl_lst, level-1); + num *= n.op(0); + den *= n.op(1); + + // Perform fraction cancellation + return frac_cancel(num, den); } @@ -1429,36 +2003,79 @@ ex mul::normal(lst &sym_lst, lst &repl_lst, int level) const * @see ex::normal */ ex power::normal(lst &sym_lst, lst &repl_lst, int level) const { - if (exponent.info(info_flags::integer)) { - // Integer powers are distributed - ex n = basis.bp->normal(sym_lst, repl_lst, level-1); - ex num = n.numer(false); - ex den = n.denom(false); - return power(num, exponent) / power(den, exponent); - } else { - // Non-integer powers are replaced by temporary symbol (after normalizing basis) - ex n = power(basis.bp->normal(sym_lst, repl_lst, level-1), exponent); - return replace_with_symbol(n, sym_lst, repl_lst); - } + if (level == 1) + return (new lst(replace_with_symbol(*this, sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated); + else if (level == -max_recursion_level) + throw(std::runtime_error("max recursion level reached")); + + // Normalize basis + ex n = basis.bp->normal(sym_lst, repl_lst, level-1); + + if (exponent.info(info_flags::integer)) { + + if (exponent.info(info_flags::positive)) { + + // (a/b)^n -> {a^n, b^n} + return (new lst(power(n.op(0), exponent), power(n.op(1), exponent)))->setflag(status_flags::dynallocated); + + } else if (exponent.info(info_flags::negative)) { + + // (a/b)^-n -> {b^n, a^n} + return (new lst(power(n.op(1), -exponent), power(n.op(0), -exponent)))->setflag(status_flags::dynallocated); + } + + } else { + + if (exponent.info(info_flags::positive)) { + + // (a/b)^x -> {sym((a/b)^x), 1} + return (new lst(replace_with_symbol(power(n.op(0) / n.op(1), exponent), sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated); + + } else if (exponent.info(info_flags::negative)) { + + if (n.op(1).is_equal(_ex1())) { + + // a^-x -> {1, sym(a^x)} + return (new lst(_ex1(), replace_with_symbol(power(n.op(0), -exponent), sym_lst, repl_lst)))->setflag(status_flags::dynallocated); + + } else { + + // (a/b)^-x -> {sym((b/a)^x), 1} + return (new lst(replace_with_symbol(power(n.op(1) / n.op(0), -exponent), sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated); + } + + } else { // exponent not numeric + + // (a/b)^x -> {sym((a/b)^x, 1} + return (new lst(replace_with_symbol(power(n.op(0) / n.op(1), exponent), sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated); + } + } } -/** Implementation of ex::normal() for series. It normalizes each coefficient and +/** Implementation of ex::normal() for pseries. It normalizes each coefficient and * replaces the series by a temporary symbol. * @see ex::normal */ -ex series::normal(lst &sym_lst, lst &repl_lst, int level) const +ex pseries::normal(lst &sym_lst, lst &repl_lst, int level) const { - epvector new_seq; - new_seq.reserve(seq.size()); + epvector new_seq; + new_seq.reserve(seq.size()); - epvector::const_iterator it = seq.begin(), itend = seq.end(); - while (it != itend) { - new_seq.push_back(expair(it->rest.normal(), it->coeff)); - it++; - } + epvector::const_iterator it = seq.begin(), itend = seq.end(); + while (it != itend) { + new_seq.push_back(expair(it->rest.normal(), it->coeff)); + it++; + } + ex n = pseries(relational(var,point), new_seq); + return (new lst(replace_with_symbol(n, sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated); +} - ex n = series(var, point, new_seq); - return replace_with_symbol(n, sym_lst, repl_lst); + +/** Implementation of ex::normal() for relationals. It normalizes both sides. + * @see ex::normal */ +ex relational::normal(lst &sym_lst, lst &repl_lst, int level) const +{ + return (new lst(relational(lh.normal(), rh.normal(), o), _ex1()))->setflag(status_flags::dynallocated); } @@ -1466,8 +2083,8 @@ ex series::normal(lst &sym_lst, lst &repl_lst, int level) const * This function converts an expression to its normal form * "numerator/denominator", where numerator and denominator are (relatively * prime) polynomials. Any subexpressions which are not rational functions - * (like non-rational numbers, non-integer powers or functions like Sin(), - * Cos() etc.) are replaced by temporary symbols which are re-substituted by + * (like non-rational numbers, non-integer powers or functions like sin(), + * cos() etc.) are replaced by temporary symbols which are re-substituted by * the (normalized) subexpressions before normal() returns (this way, any * expression can be treated as a rational function). normal() is applied * recursively to arguments of functions etc. @@ -1476,12 +2093,148 @@ ex series::normal(lst &sym_lst, lst &repl_lst, int level) const * @return normalized expression */ ex ex::normal(int level) const { - lst sym_lst, repl_lst; - ex e = bp->normal(sym_lst, repl_lst, level); - if (sym_lst.nops() > 0) - return e.subs(sym_lst, repl_lst); - else - return e; + lst sym_lst, repl_lst; + + ex e = bp->normal(sym_lst, repl_lst, level); + GINAC_ASSERT(is_ex_of_type(e, lst)); + + // Re-insert replaced symbols + if (sym_lst.nops() > 0) + e = e.subs(sym_lst, repl_lst); + + // Convert {numerator, denominator} form back to fraction + return e.op(0) / e.op(1); +} + +/** Numerator of an expression. If the expression is not of the normal form + * "numerator/denominator", it is first converted to this form and then the + * numerator is returned. + * + * @see ex::normal + * @return numerator */ +ex ex::numer(void) const +{ + lst sym_lst, repl_lst; + + ex e = bp->normal(sym_lst, repl_lst, 0); + GINAC_ASSERT(is_ex_of_type(e, lst)); + + // Re-insert replaced symbols + if (sym_lst.nops() > 0) + return e.op(0).subs(sym_lst, repl_lst); + else + return e.op(0); +} + +/** Denominator of an expression. If the expression is not of the normal form + * "numerator/denominator", it is first converted to this form and then the + * denominator is returned. + * + * @see ex::normal + * @return denominator */ +ex ex::denom(void) const +{ + lst sym_lst, repl_lst; + + ex e = bp->normal(sym_lst, repl_lst, 0); + GINAC_ASSERT(is_ex_of_type(e, lst)); + + // Re-insert replaced symbols + if (sym_lst.nops() > 0) + return e.op(1).subs(sym_lst, repl_lst); + else + return e.op(1); } + +/** Default implementation of ex::to_rational(). It replaces the object with a + * temporary symbol. + * @see ex::to_rational */ +ex basic::to_rational(lst &repl_lst) const +{ + return replace_with_symbol(*this, repl_lst); +} + + +/** Implementation of ex::to_rational() for symbols. This returns the + * unmodified symbol. + * @see ex::to_rational */ +ex symbol::to_rational(lst &repl_lst) const +{ + return *this; +} + + +/** Implementation of ex::to_rational() for a numeric. It splits complex + * numbers into re+I*im and replaces I and non-rational real numbers with a + * temporary symbol. + * @see ex::to_rational */ +ex numeric::to_rational(lst &repl_lst) const +{ + if (is_real()) { + if (!is_rational()) + return replace_with_symbol(*this, repl_lst); + } else { // complex + numeric re = real(); + numeric im = imag(); + ex re_ex = re.is_rational() ? re : replace_with_symbol(re, repl_lst); + ex im_ex = im.is_rational() ? im : replace_with_symbol(im, repl_lst); + return re_ex + im_ex * replace_with_symbol(I, repl_lst); + } + return *this; +} + + +/** Implementation of ex::to_rational() for powers. It replaces non-integer + * powers by temporary symbols. + * @see ex::to_rational */ +ex power::to_rational(lst &repl_lst) const +{ + if (exponent.info(info_flags::integer)) + return power(basis.to_rational(repl_lst), exponent); + else + return replace_with_symbol(*this, repl_lst); +} + + +/** Implementation of ex::to_rational() for expairseqs. + * @see ex::to_rational */ +ex expairseq::to_rational(lst &repl_lst) const +{ + epvector s; + s.reserve(seq.size()); + for (epvector::const_iterator it=seq.begin(); it!=seq.end(); ++it) { + s.push_back(split_ex_to_pair(recombine_pair_to_ex(*it).to_rational(repl_lst))); + // s.push_back(combine_ex_with_coeff_to_pair((*it).rest.to_rational(repl_lst), + } + ex oc = overall_coeff.to_rational(repl_lst); + if (oc.info(info_flags::numeric)) + return thisexpairseq(s, overall_coeff); + else s.push_back(combine_ex_with_coeff_to_pair(oc,_ex1())); + return thisexpairseq(s, default_overall_coeff()); +} + + +/** Rationalization of non-rational functions. + * This function converts a general expression to a rational polynomial + * by replacing all non-rational subexpressions (like non-rational numbers, + * non-integer powers or functions like sin(), cos() etc.) to temporary + * symbols. This makes it possible to use functions like gcd() and divide() + * on non-rational functions by applying to_rational() on the arguments, + * calling the desired function and re-substituting the temporary symbols + * in the result. To make the last step possible, all temporary symbols and + * their associated expressions are collected in the list specified by the + * repl_lst parameter in the form {symbol == expression}, ready to be passed + * as an argument to ex::subs(). + * + * @param repl_lst collects a list of all temporary symbols and their replacements + * @return rationalized expression */ +ex ex::to_rational(lst &repl_lst) const +{ + return bp->to_rational(repl_lst); +} + + +#ifndef NO_NAMESPACE_GINAC } // namespace GiNaC +#endif // ndef NO_NAMESPACE_GINAC