X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fnormal.cpp;h=d88f3dde4925ead551a23a0362749fe68a4b7037;hp=067670ced9f380b7aff2623755bde19f72704293;hb=f7d46a20e8946e9a7a81208339596434dbcb745c;hpb=075877089921f3555f040cd953a6ce75d0d544d8 diff --git a/ginac/normal.cpp b/ginac/normal.cpp index 067670ce..d88f3dde 100644 --- a/ginac/normal.cpp +++ b/ginac/normal.cpp @@ -23,7 +23,6 @@ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ -#include #include #include @@ -34,21 +33,18 @@ #include "constant.h" #include "expairseq.h" #include "fail.h" -#include "indexed.h" #include "inifcns.h" #include "lst.h" #include "mul.h" -#include "ncmul.h" #include "numeric.h" #include "power.h" #include "relational.h" +#include "matrix.h" #include "pseries.h" #include "symbol.h" #include "utils.h" -#ifndef NO_NAMESPACE_GINAC namespace GiNaC { -#endif // ndef NO_NAMESPACE_GINAC // If comparing expressions (ex::compare()) is fast, you can set this to 1. // Some routines like quo(), rem() and gcd() will then return a quick answer @@ -78,10 +74,10 @@ static int heur_gcd_failed = 0; static struct _stat_print { _stat_print() {} ~_stat_print() { - cout << "gcd() called " << gcd_called << " times\n"; - cout << "sr_gcd() called " << sr_gcd_called << " times\n"; - cout << "heur_gcd() called " << heur_gcd_called << " times\n"; - cout << "heur_gcd() failed " << heur_gcd_failed << " times\n"; + std::cout << "gcd() called " << gcd_called << " times\n"; + std::cout << "sr_gcd() called " << sr_gcd_called << " times\n"; + std::cout << "heur_gcd() called " << heur_gcd_called << " times\n"; + std::cout << "heur_gcd() failed " << heur_gcd_failed << " times\n"; } } stat_print; #endif @@ -97,7 +93,7 @@ static struct _stat_print { static bool get_first_symbol(const ex &e, const symbol *&x) { if (is_ex_exactly_of_type(e, symbol)) { - x = static_cast(e.bp); + x = &ex_to(e); return true; } else if (is_ex_exactly_of_type(e, add) || is_ex_exactly_of_type(e, mul)) { for (unsigned i=0; i sym_desc_vec; // Add symbol the sym_desc_vec (used internally by get_symbol_stats()) static void add_symbol(const symbol *s, sym_desc_vec &v) { - sym_desc_vec::iterator it = v.begin(), itend = v.end(); + sym_desc_vec::const_iterator it = v.begin(), itend = v.end(); while (it != itend) { if (it->sym->compare(*s) == 0) // If it's already in there, don't add it a second time return; - it++; + ++it; } sym_desc d; d.sym = s; @@ -165,7 +170,7 @@ static void add_symbol(const symbol *s, sym_desc_vec &v) static void collect_symbols(const ex &e, sym_desc_vec &v) { if (is_ex_exactly_of_type(e, symbol)) { - add_symbol(static_cast(e.bp), v); + add_symbol(&ex_to(e), v); } else if (is_ex_exactly_of_type(e, add) || is_ex_exactly_of_type(e, mul)) { for (unsigned i=0; isym)); it->deg_a = deg_a; it->deg_b = deg_b; - it->max_deg = std::max(deg_a,deg_b); + it->max_deg = std::max(deg_a, deg_b); + it->max_lcnops = std::max(a.lcoeff(*(it->sym)).nops(), b.lcoeff(*(it->sym)).nops()); it->ldeg_a = a.ldegree(*(it->sym)); it->ldeg_b = b.ldegree(*(it->sym)); - it++; + ++it; } - sort(v.begin(), v.end()); + std::sort(v.begin(), v.end()); #if 0 std::clog << "Symbols:\n"; it = v.begin(); itend = v.end(); while (it != itend) { - std::clog << " " << *it->sym << ": deg_a=" << it->deg_a << ", deg_b=" << it->deg_b << ", ldeg_a=" << it->ldeg_a << ", ldeg_b=" << it->ldeg_b << ", max_deg=" << it->max_deg << endl; + std::clog << " " << *it->sym << ": deg_a=" << it->deg_a << ", deg_b=" << it->deg_b << ", ldeg_a=" << it->ldeg_a << ", ldeg_b=" << it->ldeg_b << ", max_deg=" << it->max_deg << ", max_lcnops=" << it->max_lcnops << endl; std::clog << " lcoeff_a=" << a.lcoeff(*(it->sym)) << ", lcoeff_b=" << b.lcoeff(*(it->sym)) << endl; - it++; + ++it; } #endif } @@ -223,19 +229,23 @@ static void get_symbol_stats(const ex &a, const ex &b, sym_desc_vec &v) static numeric lcmcoeff(const ex &e, const numeric &l) { if (e.info(info_flags::rational)) - return lcm(ex_to_numeric(e).denom(), l); + return lcm(ex_to(e).denom(), l); else if (is_ex_exactly_of_type(e, add)) { - numeric c = _num1(); + numeric c = _num1; for (unsigned i=0; i(e.op(1))); + } return l; } @@ -248,7 +258,7 @@ static numeric lcmcoeff(const ex &e, const numeric &l) * @return LCM of denominators of coefficients */ static numeric lcm_of_coefficients_denominators(const ex &e) { - return lcmcoeff(e, _num1()); + return lcmcoeff(e, _num1); } /** Bring polynomial from Q[X] to Z[X] by multiplying in the previously @@ -259,22 +269,27 @@ static numeric lcm_of_coefficients_denominators(const ex &e) static ex multiply_lcm(const ex &e, const numeric &lcm) { if (is_ex_exactly_of_type(e, mul)) { - ex c = _ex1(); - numeric lcm_accum = _num1(); + unsigned num = e.nops(); + exvector v; v.reserve(num + 1); + numeric lcm_accum = _num1; for (unsigned i=0; isetflag(status_flags::dynallocated); } else if (is_ex_exactly_of_type(e, add)) { - ex c = _ex0(); - for (unsigned i=0; isetflag(status_flags::dynallocated); } else if (is_ex_exactly_of_type(e, power)) { - return pow(multiply_lcm(e.op(0), lcm.power(ex_to_numeric(e.op(1)).inverse())), e.op(1)); + if (is_ex_exactly_of_type(e.op(0), symbol)) + return e * lcm; + else + return pow(multiply_lcm(e.op(0), lcm.power(ex_to(e.op(1)).inverse())), e.op(1)); } else return e * lcm; } @@ -293,7 +308,7 @@ numeric ex::integer_content(void) const numeric basic::integer_content(void) const { - return _num1(); + return _num1; } numeric numeric::integer_content(void) const @@ -305,15 +320,15 @@ numeric add::integer_content(void) const { epvector::const_iterator it = seq.begin(); epvector::const_iterator itend = seq.end(); - numeric c = _num0(); + numeric c = _num0; while (it != itend) { - GINAC_ASSERT(!is_ex_exactly_of_type(it->rest,numeric)); - GINAC_ASSERT(is_ex_exactly_of_type(it->coeff,numeric)); - c = gcd(ex_to_numeric(it->coeff), c); + GINAC_ASSERT(!is_exactly_a(it->rest)); + GINAC_ASSERT(is_exactly_a(it->coeff)); + c = gcd(ex_to(it->coeff), c); it++; } - GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); - c = gcd(ex_to_numeric(overall_coeff),c); + GINAC_ASSERT(is_exactly_a(overall_coeff)); + c = gcd(ex_to(overall_coeff),c); return c; } @@ -323,12 +338,12 @@ numeric mul::integer_content(void) const epvector::const_iterator it = seq.begin(); epvector::const_iterator itend = seq.end(); while (it != itend) { - GINAC_ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric)); + GINAC_ASSERT(!is_exactly_a(recombine_pair_to_ex(*it))); ++it; } #endif // def DO_GINAC_ASSERT - GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); - return abs(ex_to_numeric(overall_coeff)); + GINAC_ASSERT(is_exactly_a(overall_coeff)); + return abs(ex_to(overall_coeff)); } @@ -353,13 +368,12 @@ ex quo(const ex &a, const ex &b, const symbol &x, bool check_args) return a / b; #if FAST_COMPARE if (a.is_equal(b)) - return _ex1(); + return _ex1; #endif if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) throw(std::invalid_argument("quo: arguments must be polynomials over the rationals")); // Polynomial long division - ex q = _ex0(); ex r = a.expand(); if (r.is_zero()) return r; @@ -367,22 +381,23 @@ ex quo(const ex &a, const ex &b, const symbol &x, bool check_args) int rdeg = r.degree(x); ex blcoeff = b.expand().coeff(x, bdeg); bool blcoeff_is_numeric = is_ex_exactly_of_type(blcoeff, numeric); + exvector v; v.reserve(std::max(rdeg - bdeg + 1, 0)); while (rdeg >= bdeg) { ex term, rcoeff = r.coeff(x, rdeg); if (blcoeff_is_numeric) term = rcoeff / blcoeff; else { if (!divide(rcoeff, blcoeff, term, false)) - return *new ex(fail()); + return (new fail())->setflag(status_flags::dynallocated); } term *= power(x, rdeg - bdeg); - q += term; + v.push_back(term); r -= (term * b).expand(); if (r.is_zero()) break; rdeg = r.degree(x); } - return q; + return (new add(v))->setflag(status_flags::dynallocated); } @@ -401,13 +416,13 @@ ex rem(const ex &a, const ex &b, const symbol &x, bool check_args) throw(std::overflow_error("rem: division by zero")); if (is_ex_exactly_of_type(a, numeric)) { if (is_ex_exactly_of_type(b, numeric)) - return _ex0(); + return _ex0; else - return b; + return a; } #if FAST_COMPARE if (a.is_equal(b)) - return _ex0(); + return _ex0; #endif if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) throw(std::invalid_argument("rem: arguments must be polynomials over the rationals")); @@ -426,7 +441,7 @@ ex rem(const ex &a, const ex &b, const symbol &x, bool check_args) term = rcoeff / blcoeff; else { if (!divide(rcoeff, blcoeff, term, false)) - return *new ex(fail()); + return (new fail())->setflag(status_flags::dynallocated); } term *= power(x, rdeg - bdeg); r -= (term * b).expand(); @@ -438,6 +453,24 @@ ex rem(const ex &a, const ex &b, const symbol &x, bool check_args) } +/** Decompose rational function a(x)=N(x)/D(x) into P(x)+n(x)/D(x) + * with degree(n, x) < degree(D, x). + * + * @param a rational function in x + * @param x a is a function of x + * @return decomposed function. */ +ex decomp_rational(const ex &a, const symbol &x) +{ + ex nd = numer_denom(a); + ex numer = nd.op(0), denom = nd.op(1); + ex q = quo(numer, denom, x); + if (is_ex_exactly_of_type(q, fail)) + return a; + else + return q + rem(numer, denom, x) / denom; +} + + /** Pseudo-remainder of polynomials a(x) and b(x) in Z[x]. * * @param a first polynomial in x (dividend) @@ -452,7 +485,7 @@ ex prem(const ex &a, const ex &b, const symbol &x, bool check_args) throw(std::overflow_error("prem: division by zero")); if (is_ex_exactly_of_type(a, numeric)) { if (is_ex_exactly_of_type(b, numeric)) - return _ex0(); + return _ex0; else return b; } @@ -468,18 +501,18 @@ ex prem(const ex &a, const ex &b, const symbol &x, bool check_args) if (bdeg <= rdeg) { blcoeff = eb.coeff(x, bdeg); if (bdeg == 0) - eb = _ex0(); + eb = _ex0; else eb -= blcoeff * power(x, bdeg); } else - blcoeff = _ex1(); + blcoeff = _ex1; int delta = rdeg - bdeg + 1, i = 0; while (rdeg >= bdeg && !r.is_zero()) { ex rlcoeff = r.coeff(x, rdeg); ex term = (power(x, rdeg - bdeg) * eb * rlcoeff).expand(); if (rdeg == 0) - r = _ex0(); + r = _ex0; else r -= rlcoeff * power(x, rdeg); r = (blcoeff * r).expand() - term; @@ -498,14 +531,13 @@ ex prem(const ex &a, const ex &b, const symbol &x, bool check_args) * @param check_args check whether a and b are polynomials with rational * coefficients (defaults to "true") * @return sparse pseudo-remainder of a(x) and b(x) in Z[x] */ - ex sprem(const ex &a, const ex &b, const symbol &x, bool check_args) { if (b.is_zero()) throw(std::overflow_error("prem: division by zero")); if (is_ex_exactly_of_type(a, numeric)) { if (is_ex_exactly_of_type(b, numeric)) - return _ex0(); + return _ex0; else return b; } @@ -521,17 +553,17 @@ ex sprem(const ex &a, const ex &b, const symbol &x, bool check_args) if (bdeg <= rdeg) { blcoeff = eb.coeff(x, bdeg); if (bdeg == 0) - eb = _ex0(); + eb = _ex0; else eb -= blcoeff * power(x, bdeg); } else - blcoeff = _ex1(); + blcoeff = _ex1; while (rdeg >= bdeg && !r.is_zero()) { ex rlcoeff = r.coeff(x, rdeg); ex term = (power(x, rdeg - bdeg) * eb * rlcoeff).expand(); if (rdeg == 0) - r = _ex0(); + r = _ex0; else r -= rlcoeff * power(x, rdeg); r = (blcoeff * r).expand() - term; @@ -549,14 +581,15 @@ ex sprem(const ex &a, const ex &b, const symbol &x, bool check_args) * @param check_args check whether a and b are polynomials with rational * coefficients (defaults to "true") * @return "true" when exact division succeeds (quotient returned in q), - * "false" otherwise */ + * "false" otherwise (q left untouched) */ bool divide(const ex &a, const ex &b, ex &q, bool check_args) { - q = _ex0(); if (b.is_zero()) throw(std::overflow_error("divide: division by zero")); - if (a.is_zero()) + if (a.is_zero()) { + q = _ex0; return true; + } if (is_ex_exactly_of_type(b, numeric)) { q = a / b; return true; @@ -564,7 +597,7 @@ bool divide(const ex &a, const ex &b, ex &q, bool check_args) return false; #if FAST_COMPARE if (a.is_equal(b)) { - q = _ex1(); + q = _ex1; return true; } #endif @@ -579,12 +612,15 @@ bool divide(const ex &a, const ex &b, ex &q, bool check_args) // Polynomial long division (recursive) ex r = a.expand(); - if (r.is_zero()) + if (r.is_zero()) { + q = _ex0; return true; + } int bdeg = b.degree(*x); int rdeg = r.degree(*x); ex blcoeff = b.expand().coeff(*x, bdeg); bool blcoeff_is_numeric = is_ex_exactly_of_type(blcoeff, numeric); + exvector v; v.reserve(std::max(rdeg - bdeg + 1, 0)); while (rdeg >= bdeg) { ex term, rcoeff = r.coeff(*x, rdeg); if (blcoeff_is_numeric) @@ -593,10 +629,12 @@ bool divide(const ex &a, const ex &b, ex &q, bool check_args) if (!divide(rcoeff, blcoeff, term, false)) return false; term *= power(*x, rdeg - bdeg); - q += term; + v.push_back(term); r -= (term * b).expand(); - if (r.is_zero()) + if (r.is_zero()) { + q = (new add(v))->setflag(status_flags::dynallocated); return true; + } rdeg = r.degree(*x); } return false; @@ -612,9 +650,10 @@ typedef std::pair ex2; typedef std::pair exbool; struct ex2_less { - bool operator() (const ex2 p, const ex2 q) const + bool operator() (const ex2 &p, const ex2 &q) const { - return p.first.compare(q.first) < 0 || (!(q.first.compare(p.first) < 0) && p.second.compare(q.second) < 0); + int cmp = p.first.compare(q.first); + return ((cmp<0) || (!(cmp>0) && p.second.compare(q.second)<0)); } }; @@ -640,10 +679,10 @@ typedef std::map ex2_exbool_remember; * @see get_symbol_stats, heur_gcd */ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_iterator var) { - q = _ex0(); + q = _ex0; if (b.is_zero()) throw(std::overflow_error("divide_in_z: division by zero")); - if (b.is_equal(_ex1())) { + if (b.is_equal(_ex1)) { q = a; return true; } @@ -656,7 +695,7 @@ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_ite } #if FAST_COMPARE if (a.is_equal(b)) { - q = _ex1(); + q = _ex1; return true; } #endif @@ -687,24 +726,24 @@ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_ite // Compute values at evaluation points 0..adeg vector alpha; alpha.reserve(adeg + 1); exvector u; u.reserve(adeg + 1); - numeric point = _num0(); + numeric point = _num0; ex c; for (i=0; i<=adeg; i++) { ex bs = b.subs(*x == point); while (bs.is_zero()) { - point += _num1(); + point += _num1; bs = b.subs(*x == point); } if (!divide_in_z(a.subs(*x == point), bs, c, var+1)) return false; alpha.push_back(point); u.push_back(c); - point += _num1(); + point += _num1; } // Compute inverses vector rcp; rcp.reserve(adeg + 1); - rcp.push_back(_num0()); + rcp.push_back(_num0); for (k=1; k<=adeg; k++) { numeric product = alpha[k] - alpha[0]; for (i=1; i= bdeg) { ex term, rcoeff = r.coeff(*x, rdeg); if (!divide_in_z(rcoeff, blcoeff, term, var+1)) break; term = (term * power(*x, rdeg - bdeg)).expand(); - q += term; + v.push_back(term); r -= (term * eb).expand(); if (r.is_zero()) { + q = (new add(v))->setflag(status_flags::dynallocated); #if USE_REMEMBER dr_remember[ex2(a, b)] = exbool(q, true); #endif @@ -781,7 +822,7 @@ ex ex::unit(const symbol &x) const { ex c = expand().lcoeff(x); if (is_ex_exactly_of_type(c, numeric)) - return c < _ex0() ? _ex_1() : _ex1(); + return c < _ex0 ? _ex_1 : _ex1; else { const symbol *y; if (get_first_symbol(c, y)) @@ -802,12 +843,12 @@ ex ex::unit(const symbol &x) const ex ex::content(const symbol &x) const { if (is_zero()) - return _ex0(); + return _ex0; if (is_ex_exactly_of_type(*this, numeric)) return info(info_flags::negative) ? -*this : *this; ex e = expand(); if (e.is_zero()) - return _ex0(); + return _ex0; // First, try the integer content ex c = e.integer_content(); @@ -821,7 +862,7 @@ ex ex::content(const symbol &x) const int ldeg = e.ldegree(x); if (deg == ldeg) return e.lcoeff(x) / e.unit(x); - c = _ex0(); + c = _ex0; for (int i=ldeg; i<=deg; i++) c = gcd(e.coeff(x, i), c, NULL, NULL, false); return c; @@ -838,13 +879,13 @@ ex ex::content(const symbol &x) const ex ex::primpart(const symbol &x) const { if (is_zero()) - return _ex0(); + return _ex0; if (is_ex_exactly_of_type(*this, numeric)) - return _ex1(); + return _ex1; ex c = content(x); if (c.is_zero()) - return _ex0(); + return _ex0; ex u = unit(x); if (is_ex_exactly_of_type(c, numeric)) return *this / (c * u); @@ -863,11 +904,11 @@ ex ex::primpart(const symbol &x) const ex ex::primpart(const symbol &x, const ex &c) const { if (is_zero()) - return _ex0(); + return _ex0; if (c.is_zero()) - return _ex0(); + return _ex0; if (is_ex_exactly_of_type(*this, numeric)) - return _ex1(); + return _ex1; ex u = unit(x); if (is_ex_exactly_of_type(c, numeric)) @@ -1053,7 +1094,7 @@ static ex red_gcd(const ex &a, const ex &b, const symbol *x) d = d.primpart(*x, cont_d); // First element of divisor sequence - ex r, ri = _ex1(); + ex r, ri = _ex1; int delta = cdeg - ddeg; for (;;) { @@ -1127,7 +1168,7 @@ static ex sr_gcd(const ex &a, const ex &b, sym_desc_vec::const_iterator var) //std::clog << " content " << gamma << " removed, continuing with sr_gcd(" << c << "," << d << ")\n"; // First element of subresultant sequence - ex r = _ex0(), ri = _ex1(), psi = _ex1(); + ex r = _ex0, ri = _ex1, psi = _ex1; int delta = cdeg - ddeg; for (;;) { @@ -1174,9 +1215,11 @@ numeric ex::max_coefficient(void) const return bp->max_coefficient(); } +/** Implementation ex::max_coefficient(). + * @see heur_gcd */ numeric basic::max_coefficient(void) const { - return _num1(); + return _num1; } numeric numeric::max_coefficient(void) const @@ -1188,12 +1231,12 @@ numeric add::max_coefficient(void) const { epvector::const_iterator it = seq.begin(); epvector::const_iterator itend = seq.end(); - GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); - numeric cur_max = abs(ex_to_numeric(overall_coeff)); + GINAC_ASSERT(is_exactly_a(overall_coeff)); + numeric cur_max = abs(ex_to(overall_coeff)); while (it != itend) { numeric a; - GINAC_ASSERT(!is_ex_exactly_of_type(it->rest,numeric)); - a = abs(ex_to_numeric(it->coeff)); + GINAC_ASSERT(!is_exactly_a(it->rest)); + a = abs(ex_to(it->coeff)); if (a > cur_max) cur_max = a; it++; @@ -1207,28 +1250,21 @@ numeric mul::max_coefficient(void) const epvector::const_iterator it = seq.begin(); epvector::const_iterator itend = seq.end(); while (it != itend) { - GINAC_ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric)); + GINAC_ASSERT(!is_exactly_a(recombine_pair_to_ex(*it))); it++; } #endif // def DO_GINAC_ASSERT - GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); - return abs(ex_to_numeric(overall_coeff)); + GINAC_ASSERT(is_exactly_a(overall_coeff)); + return abs(ex_to(overall_coeff)); } -/** Apply symmetric modular homomorphism to a multivariate polynomial. - * This function is used internally by heur_gcd(). +/** Apply symmetric modular homomorphism to an expanded multivariate + * polynomial. This function is usually used internally by heur_gcd(). * - * @param e expanded multivariate polynomial * @param xi modulus * @return mapped polynomial * @see heur_gcd */ -ex ex::smod(const numeric &xi) const -{ - GINAC_ASSERT(bp!=0); - return bp->smod(xi); -} - ex basic::smod(const numeric &xi) const { return *this; @@ -1236,11 +1272,7 @@ ex basic::smod(const numeric &xi) const ex numeric::smod(const numeric &xi) const { -#ifndef NO_NAMESPACE_GINAC return GiNaC::smod(*this, xi); -#else // ndef NO_NAMESPACE_GINAC - return ::smod(*this, xi); -#endif // ndef NO_NAMESPACE_GINAC } ex add::smod(const numeric &xi) const @@ -1250,22 +1282,14 @@ ex add::smod(const numeric &xi) const epvector::const_iterator it = seq.begin(); epvector::const_iterator itend = seq.end(); while (it != itend) { - GINAC_ASSERT(!is_ex_exactly_of_type(it->rest,numeric)); -#ifndef NO_NAMESPACE_GINAC - numeric coeff = GiNaC::smod(ex_to_numeric(it->coeff), xi); -#else // ndef NO_NAMESPACE_GINAC - numeric coeff = ::smod(ex_to_numeric(it->coeff), xi); -#endif // ndef NO_NAMESPACE_GINAC + GINAC_ASSERT(!is_exactly_a(it->rest)); + numeric coeff = GiNaC::smod(ex_to(it->coeff), xi); if (!coeff.is_zero()) newseq.push_back(expair(it->rest, coeff)); it++; } - GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); -#ifndef NO_NAMESPACE_GINAC - numeric coeff = GiNaC::smod(ex_to_numeric(overall_coeff), xi); -#else // ndef NO_NAMESPACE_GINAC - numeric coeff = ::smod(ex_to_numeric(overall_coeff), xi); -#endif // ndef NO_NAMESPACE_GINAC + GINAC_ASSERT(is_exactly_a(overall_coeff)); + numeric coeff = GiNaC::smod(ex_to(overall_coeff), xi); return (new add(newseq,coeff))->setflag(status_flags::dynallocated); } @@ -1275,17 +1299,13 @@ ex mul::smod(const numeric &xi) const epvector::const_iterator it = seq.begin(); epvector::const_iterator itend = seq.end(); while (it != itend) { - GINAC_ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric)); + GINAC_ASSERT(!is_exactly_a(recombine_pair_to_ex(*it))); it++; } #endif // def DO_GINAC_ASSERT - mul * mulcopyp=new mul(*this); - GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); -#ifndef NO_NAMESPACE_GINAC - mulcopyp->overall_coeff = GiNaC::smod(ex_to_numeric(overall_coeff),xi); -#else // ndef NO_NAMESPACE_GINAC - mulcopyp->overall_coeff = ::smod(ex_to_numeric(overall_coeff),xi); -#endif // ndef NO_NAMESPACE_GINAC + mul * mulcopyp = new mul(*this); + GINAC_ASSERT(is_exactly_a(overall_coeff)); + mulcopyp->overall_coeff = GiNaC::smod(ex_to(overall_coeff),xi); mulcopyp->clearflag(status_flags::evaluated); mulcopyp->clearflag(status_flags::hash_calculated); return mulcopyp->setflag(status_flags::dynallocated); @@ -1293,17 +1313,17 @@ ex mul::smod(const numeric &xi) const /** xi-adic polynomial interpolation */ -static ex interpolate(const ex &gamma, const numeric &xi, const symbol &x) +static ex interpolate(const ex &gamma, const numeric &xi, const symbol &x, int degree_hint = 1) { - ex g = _ex0(); + exvector g; g.reserve(degree_hint); ex e = gamma; numeric rxi = xi.inverse(); for (int i=0; !e.is_zero(); i++) { ex gi = e.smod(xi); - g += gi * power(x, i); + g.push_back(gi * power(x, i)); e = (e - gi) * rxi; } - return g; + return (new add(g))->setflag(status_flags::dynallocated); } /** Exception thrown by heur_gcd() to signal failure. */ @@ -1331,17 +1351,17 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const heur_gcd_called++; #endif - // Algorithms only works for non-vanishing input polynomials + // Algorithm only works for non-vanishing input polynomials if (a.is_zero() || b.is_zero()) - return *new ex(fail()); + return (new fail())->setflag(status_flags::dynallocated); // GCD of two numeric values -> CLN if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) { - numeric g = gcd(ex_to_numeric(a), ex_to_numeric(b)); + numeric g = gcd(ex_to(a), ex_to(b)); if (ca) - *ca = ex_to_numeric(a) / g; + *ca = ex_to(a) / g; if (cb) - *cb = ex_to_numeric(b) / g; + *cb = ex_to(b) / g; return g; } @@ -1353,21 +1373,21 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const numeric rgc = gc.inverse(); ex p = a * rgc; ex q = b * rgc; - int maxdeg = std::max(p.degree(x),q.degree(x)); + int maxdeg = std::max(p.degree(x), q.degree(x)); // Find evaluation point numeric mp = p.max_coefficient(); numeric mq = q.max_coefficient(); numeric xi; if (mp > mq) - xi = mq * _num2() + _num2(); + xi = mq * _num2 + _num2; else - xi = mp * _num2() + _num2(); + xi = mp * _num2 + _num2; // 6 tries maximum for (int t=0; t<6; t++) { if (xi.int_length() * maxdeg > 100000) { -//std::clog << "giving up heur_gcd, xi.int_length = " << xi.int_length() << ", maxdeg = " << maxdeg << endl; +//std::clog << "giving up heur_gcd, xi.int_length = " << xi.int_length() << ", maxdeg = " << maxdeg << std::endl; throw gcdheu_failed(); } @@ -1377,7 +1397,7 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const if (!is_ex_exactly_of_type(gamma, fail)) { // Reconstruct polynomial from GCD of mapped polynomials - ex g = interpolate(gamma, xi, x); + ex g = interpolate(gamma, xi, x, maxdeg); // Remove integer content g /= g.integer_content(); @@ -1387,7 +1407,7 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const if (divide_in_z(p, g, ca ? *ca : dummy, var) && divide_in_z(q, g, cb ? *cb : dummy, var)) { g *= gc; ex lc = g.lcoeff(x); - if (is_ex_exactly_of_type(lc, numeric) && ex_to_numeric(lc).is_negative()) + if (is_ex_exactly_of_type(lc, numeric) && ex_to(lc).is_negative()) return -g; else return g; @@ -1400,7 +1420,7 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const if (ca) *ca = cp; ex lc = g.lcoeff(x); - if (is_ex_exactly_of_type(lc, numeric) && ex_to_numeric(lc).is_negative()) + if (is_ex_exactly_of_type(lc, numeric) && ex_to(lc).is_negative()) return -g; else return g; @@ -1413,7 +1433,7 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const if (cb) *cb = cq; ex lc = g.lcoeff(x); - if (is_ex_exactly_of_type(lc, numeric) && ex_to_numeric(lc).is_negative()) + if (is_ex_exactly_of_type(lc, numeric) && ex_to(lc).is_negative()) return -g; else return g; @@ -1425,7 +1445,7 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const // Next evaluation point xi = iquo(xi * isqrt(isqrt(xi)) * numeric(73794), numeric(27011)); } - return *new ex(fail()); + return (new fail())->setflag(status_flags::dynallocated); } @@ -1446,25 +1466,25 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args) // GCD of numerics -> CLN if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) { - numeric g = gcd(ex_to_numeric(a), ex_to_numeric(b)); + numeric g = gcd(ex_to(a), ex_to(b)); if (ca || cb) { if (g.is_zero()) { if (ca) - *ca = _ex0(); + *ca = _ex0; if (cb) - *cb = _ex0(); + *cb = _ex0; } else { if (ca) - *ca = ex_to_numeric(a) / g; + *ca = ex_to(a) / g; if (cb) - *cb = ex_to_numeric(b) / g; + *cb = ex_to(b) / g; } } return g; } // Check arguments - if (check_args && !a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)) { + if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) { throw(std::invalid_argument("gcd: arguments must be polynomials over the rationals")); } @@ -1473,38 +1493,40 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args) if (is_ex_exactly_of_type(b, mul) && b.nops() > a.nops()) goto factored_b; factored_a: - ex g = _ex1(); - ex acc_ca = _ex1(); + unsigned num = a.nops(); + exvector g; g.reserve(num); + exvector acc_ca; acc_ca.reserve(num); ex part_b = b; - for (unsigned i=0; isetflag(status_flags::dynallocated); if (cb) *cb = part_b; - return g; + return (new mul(g))->setflag(status_flags::dynallocated); } else if (is_ex_exactly_of_type(b, mul)) { if (is_ex_exactly_of_type(a, mul) && a.nops() > b.nops()) goto factored_a; factored_b: - ex g = _ex1(); - ex acc_cb = _ex1(); + unsigned num = b.nops(); + exvector g; g.reserve(num); + exvector acc_cb; acc_cb.reserve(num); ex part_a = a; - for (unsigned i=0; isetflag(status_flags::dynallocated); + return (new mul(g))->setflag(status_flags::dynallocated); } #if FAST_COMPARE @@ -1517,7 +1539,7 @@ factored_b: ex exp_a = a.op(1), exp_b = b.op(1); if (exp_a < exp_b) { if (ca) - *ca = _ex1(); + *ca = _ex1; if (cb) *cb = power(p, exp_b - exp_a); return power(p, exp_a); @@ -1525,7 +1547,7 @@ factored_b: if (ca) *ca = power(p, exp_a - exp_b); if (cb) - *cb = _ex1(); + *cb = _ex1; return power(p, exp_b); } } @@ -1535,7 +1557,7 @@ factored_b: if (ca) *ca = power(p, a.op(1) - 1); if (cb) - *cb = _ex1(); + *cb = _ex1; return p; } } @@ -1544,7 +1566,7 @@ factored_b: if (p.is_equal(a)) { // a = p, b = p^n, gcd = p if (ca) - *ca = _ex1(); + *ca = _ex1; if (cb) *cb = power(p, b.op(1) - 1); return p; @@ -1556,31 +1578,31 @@ factored_b: ex aex = a.expand(), bex = b.expand(); if (aex.is_zero()) { if (ca) - *ca = _ex0(); + *ca = _ex0; if (cb) - *cb = _ex1(); + *cb = _ex1; return b; } if (bex.is_zero()) { if (ca) - *ca = _ex1(); + *ca = _ex1; if (cb) - *cb = _ex0(); + *cb = _ex0; return a; } - if (aex.is_equal(_ex1()) || bex.is_equal(_ex1())) { + if (aex.is_equal(_ex1) || bex.is_equal(_ex1)) { if (ca) *ca = a; if (cb) *cb = b; - return _ex1(); + return _ex1; } #if FAST_COMPARE if (a.is_equal(b)) { if (ca) - *ca = _ex1(); + *ca = _ex1; if (cb) - *cb = _ex1(); + *cb = _ex1; return a; } #endif @@ -1599,20 +1621,20 @@ factored_b: int min_ldeg = std::min(ldeg_a,ldeg_b); if (min_ldeg > 0) { ex common = power(x, min_ldeg); -//std::clog << "trivial common factor " << common << endl; +//std::clog << "trivial common factor " << common << std::endl; return gcd((aex / common).expand(), (bex / common).expand(), ca, cb, false) * common; } // Try to eliminate variables if (var->deg_a == 0) { -//std::clog << "eliminating variable " << x << " from b" << endl; +//std::clog << "eliminating variable " << x << " from b" << std::endl; ex c = bex.content(x); ex g = gcd(aex, c, ca, cb, false); if (cb) *cb *= bex.unit(x) * bex.primpart(x, c); return g; } else if (var->deg_b == 0) { -//std::clog << "eliminating variable " << x << " from a" << endl; +//std::clog << "eliminating variable " << x << " from a" << std::endl; ex c = aex.content(x); ex g = gcd(c, bex, ca, cb, false); if (ca) @@ -1626,10 +1648,10 @@ factored_b: try { g = heur_gcd(aex, bex, ca, cb, var); } catch (gcdheu_failed) { - g = *new ex(fail()); + g = fail(); } if (is_ex_exactly_of_type(g, fail)) { -//std::clog << "heuristics failed" << endl; +//std::clog << "heuristics failed" << std::endl; #if STATISTICS heur_gcd_failed++; #endif @@ -1640,7 +1662,7 @@ factored_b: // g = peu_gcd(aex, bex, &x); // g = red_gcd(aex, bex, &x); g = sr_gcd(aex, bex, var); - if (g.is_equal(_ex1())) { + if (g.is_equal(_ex1)) { // Keep cofactors factored if possible if (ca) *ca = a; @@ -1654,7 +1676,7 @@ factored_b: } #if 1 } else { - if (g.is_equal(_ex1())) { + if (g.is_equal(_ex1)) { // Keep cofactors factored if possible if (ca) *ca = a; @@ -1677,8 +1699,8 @@ factored_b: ex lcm(const ex &a, const ex &b, bool check_args) { if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) - return lcm(ex_to_numeric(a), ex_to_numeric(b)); - if (check_args && !a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)) + return lcm(ex_to(a), ex_to(b)); + if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) throw(std::invalid_argument("lcm: arguments must be polynomials over the rationals")); ex ca, cb; @@ -1691,70 +1713,202 @@ ex lcm(const ex &a, const ex &b, bool check_args) * Square-free factorization */ -// Univariate GCD of polynomials in Q[x] (used internally by sqrfree()). -// a and b can be multivariate polynomials but they are treated as univariate polynomials in x. -static ex univariate_gcd(const ex &a, const ex &b, const symbol &x) +/** Compute square-free factorization of multivariate polynomial a(x) using + * Yun´s algorithm. Used internally by sqrfree(). + * + * @param a multivariate polynomial over Z[X], treated here as univariate + * polynomial in x. + * @param x variable to factor in + * @return vector of factors sorted in ascending degree */ +static exvector sqrfree_yun(const ex &a, const symbol &x) { - if (a.is_zero()) - return b; - if (b.is_zero()) + exvector res; + ex w = a; + ex z = w.diff(x); + ex g = gcd(w, z); + if (g.is_equal(_ex1)) { + res.push_back(a); + return res; + } + ex y; + do { + w = quo(w, g, x); + y = quo(z, g, x); + z = y - w.diff(x); + g = gcd(w, z); + res.push_back(g); + } while (!z.is_zero()); + return res; +} + +/** Compute a square-free factorization of a multivariate polynomial in Q[X]. + * + * @param a multivariate polynomial over Q[X] + * @param x lst of variables to factor in, may be left empty for autodetection + * @return a square-free factorization of \p a. + * + * \note + * A polynomial \f$p(X) \in C[X]\f$ is said square-free + * if, whenever any two polynomials \f$q(X)\f$ and \f$r(X)\f$ + * are such that + * \f[ + * p(X) = q(X)^2 r(X), + * \f] + * we have \f$q(X) \in C\f$. + * This means that \f$p(X)\f$ has no repeated factors, apart + * eventually from constants. + * Given a polynomial \f$p(X) \in C[X]\f$, we say that the + * decomposition + * \f[ + * p(X) = b \cdot p_1(X)^{a_1} \cdot p_2(X)^{a_2} \cdots p_r(X)^{a_r} + * \f] + * is a square-free factorization of \f$p(X)\f$ if the + * following conditions hold: + * -# \f$b \in C\f$ and \f$b \neq 0\f$; + * -# \f$a_i\f$ is a positive integer for \f$i = 1, \ldots, r\f$; + * -# the degree of the polynomial \f$p_i\f$ is strictly positive + * for \f$i = 1, \ldots, r\f$; + * -# the polynomial \f$\Pi_{i=1}^r p_i(X)\f$ is square-free. + * + * Square-free factorizations need not be unique. For example, if + * \f$a_i\f$ is even, we could change the polynomial \f$p_i(X)\f$ + * into \f$-p_i(X)\f$. + * Observe also that the factors \f$p_i(X)\f$ need not be irreducible + * polynomials. + */ +ex sqrfree(const ex &a, const lst &l) +{ + if (is_a(a) || // algorithm does not trap a==0 + is_a(a)) // shortcut return a; - if (a.is_equal(_ex1()) || b.is_equal(_ex1())) - return _ex1(); - if (is_ex_of_type(a, numeric) && is_ex_of_type(b, numeric)) - return gcd(ex_to_numeric(a), ex_to_numeric(b)); - if (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)) - throw(std::invalid_argument("univariate_gcd: arguments must be polynomials over the rationals")); - // Euclidean algorithm - ex c, d, r; - if (a.degree(x) >= b.degree(x)) { - c = a; - d = b; + // If no lst of variables to factorize in was specified we have to + // invent one now. Maybe one can optimize here by reversing the order + // or so, I don't know. + lst args; + if (l.nops()==0) { + sym_desc_vec sdv; + get_symbol_stats(a, _ex0, sdv); + sym_desc_vec::const_iterator it = sdv.begin(), itend = sdv.end(); + while (it != itend) { + args.append(*it->sym); + ++it; + } } else { - c = b; - d = a; + args = l; } - for (;;) { - r = rem(c, d, x, false); - if (r.is_zero()) - break; - c = d; - d = r; + + // Find the symbol to factor in at this stage + if (!is_ex_of_type(args.op(0), symbol)) + throw (std::runtime_error("sqrfree(): invalid factorization variable")); + const symbol &x = ex_to(args.op(0)); + + // convert the argument from something in Q[X] to something in Z[X] + const numeric lcm = lcm_of_coefficients_denominators(a); + const ex tmp = multiply_lcm(a,lcm); + + // find the factors + exvector factors = sqrfree_yun(tmp,x); + + // construct the next list of symbols with the first element popped + lst newargs = args; + newargs.remove_first(); + + // recurse down the factors in remaining variables + if (newargs.nops()>0) { + exvector::iterator i = factors.begin(); + while (i != factors.end()) { + *i = sqrfree(*i, newargs); + ++i; + } } - return d / d.lcoeff(x); -} + // Done with recursion, now construct the final result + ex result = _ex1; + exvector::const_iterator it = factors.begin(), itend = factors.end(); + for (int p = 1; it!=itend; ++it, ++p) + result *= power(*it, p); -/** Compute square-free factorization of multivariate polynomial a(x) using - * Yun´s algorithm. + // Yun's algorithm does not account for constant factors. (For univariate + // polynomials it works only in the monic case.) We can correct this by + // inserting what has been lost back into the result. For completeness + // we'll also have to recurse down that factor in the remaining variables. + if (newargs.nops()>0) + result *= sqrfree(quo(tmp, result, x), newargs); + else + result *= quo(tmp, result, x); + + // Put in the reational overall factor again and return + return result * lcm.inverse(); +} + +/** Compute square-free partial fraction decomposition of rational function + * a(x). * - * @param a multivariate polynomial - * @param x variable to factor in - * @return factored polynomial */ -ex sqrfree(const ex &a, const symbol &x) + * @param a rational function over Z[x], treated as univariate polynomial + * in x + * @param x variable to factor in + * @return decomposed rational function */ +ex sqrfree_parfrac(const ex & a, const symbol & x) { - int i = 1; - ex res = _ex1(); - ex b = a.diff(x); - ex c = univariate_gcd(a, b, x); - ex w; - if (c.is_equal(_ex1())) { - w = a; - } else { - w = quo(a, c, x); - ex y = quo(b, c, x); - ex z = y - w.diff(x); - while (!z.is_zero()) { - ex g = univariate_gcd(w, z, x); - res *= power(g, i); - w = quo(w, g, x); - y = quo(z, g, x); - z = y - w.diff(x); - i++; + // Find numerator and denominator + ex nd = numer_denom(a); + ex numer = nd.op(0), denom = nd.op(1); +//clog << "numer = " << numer << ", denom = " << denom << endl; + + // Convert N(x)/D(x) -> Q(x) + R(x)/D(x), so degree(R) < degree(D) + ex red_poly = quo(numer, denom, x), red_numer = rem(numer, denom, x).expand(); +//clog << "red_poly = " << red_poly << ", red_numer = " << red_numer << endl; + + // Factorize denominator and compute cofactors + exvector yun = sqrfree_yun(denom, x); +//clog << "yun factors: " << exprseq(yun) << endl; + unsigned num_yun = yun.size(); + exvector factor; factor.reserve(num_yun); + exvector cofac; cofac.reserve(num_yun); + for (unsigned i=0; isetflag(status_flags::dynallocated); + if (nops() == 0) + return (new lst(replace_with_symbol(*this, sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated); + else { + if (level == 1) + return (new lst(replace_with_symbol(*this, sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated); + else if (level == -max_recursion_level) + throw(std::runtime_error("max recursion level reached")); + else { + normal_map_function map_normal(level - 1); + return (new lst(replace_with_symbol(map(map_normal), sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated); + } + } } @@ -1826,7 +2000,7 @@ ex basic::normal(lst &sym_lst, lst &repl_lst, int level) const * @see ex::normal */ ex symbol::normal(lst &sym_lst, lst &repl_lst, int level) const { - return (new lst(*this, _ex1()))->setflag(status_flags::dynallocated); + return (new lst(*this, _ex1))->setflag(status_flags::dynallocated); } @@ -1862,13 +2036,17 @@ static ex frac_cancel(const ex &n, const ex &d) { ex num = n; ex den = d; - numeric pre_factor = _num1(); + numeric pre_factor = _num1; + +//std::clog << "frac_cancel num = " << num << ", den = " << den << std::endl; -//std::clog << "frac_cancel num = " << num << ", den = " << den << endl; + // Handle trivial case where denominator is 1 + if (den.is_equal(_ex1)) + return (new lst(num, den))->setflag(status_flags::dynallocated); // Handle special cases where numerator or denominator is 0 if (num.is_zero()) - return (new lst(_ex0(), _ex1()))->setflag(status_flags::dynallocated); + return (new lst(num, _ex1))->setflag(status_flags::dynallocated); if (den.expand().is_zero()) throw(std::overflow_error("frac_cancel: division by zero in frac_cancel")); @@ -1882,7 +2060,7 @@ static ex frac_cancel(const ex &n, const ex &d) // Cancel GCD from numerator and denominator ex cnum, cden; - if (gcd(num, den, &cnum, &cden, false) != _ex1()) { + if (gcd(num, den, &cnum, &cden, false) != _ex1) { num = cnum; den = cden; } @@ -1891,15 +2069,15 @@ static ex frac_cancel(const ex &n, const ex &d) // as defined by get_first_symbol() is made positive) const symbol *x; if (get_first_symbol(den, x)) { - GINAC_ASSERT(is_ex_exactly_of_type(den.unit(*x),numeric)); - if (ex_to_numeric(den.unit(*x)).is_negative()) { - num *= _ex_1(); - den *= _ex_1(); + GINAC_ASSERT(is_exactly_a(den.unit(*x))); + if (ex_to(den.unit(*x)).is_negative()) { + num *= _ex_1; + den *= _ex_1; } } // Return result as list -//std::clog << " returns num = " << num << ", den = " << den << ", pre_factor = " << pre_factor << endl; +//std::clog << " returns num = " << num << ", den = " << den << ", pre_factor = " << pre_factor << std::endl; return (new lst(num * pre_factor.numer(), den * pre_factor.denom()))->setflag(status_flags::dynallocated); } @@ -1910,65 +2088,53 @@ static ex frac_cancel(const ex &n, const ex &d) ex add::normal(lst &sym_lst, lst &repl_lst, int level) const { if (level == 1) - return (new lst(replace_with_symbol(*this, sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated); + return (new lst(replace_with_symbol(*this, sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated); else if (level == -max_recursion_level) throw(std::runtime_error("max recursion level reached")); - // Normalize and expand children, chop into summands and split each - // one into numerator and denominator + // Normalize children and split each one into numerator and denominator exvector nums, dens; nums.reserve(seq.size()+1); dens.reserve(seq.size()+1); epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { - - // Normalize and expand child - ex n = recombine_pair_to_ex(*it).bp->normal(sym_lst, repl_lst, level-1).expand(); - - // If numerator is a sum, chop into summands - if (is_ex_exactly_of_type(n.op(0), add)) { - epvector::const_iterator bit = ex_to_add(n.op(0)).seq.begin(), bitend = ex_to_add(n.op(0)).seq.end(); - while (bit != bitend) { - nums.push_back(recombine_pair_to_ex(*bit)); - dens.push_back(n.op(1)); - bit++; - } - - // The overall_coeff is already normalized (== rational), we just - // split it into numerator and denominator - GINAC_ASSERT(ex_to_numeric(ex_to_add(n.op(0)).overall_coeff).is_rational()); - numeric overall = ex_to_numeric(ex_to_add(n.op(0)).overall_coeff); - nums.push_back(overall.numer()); - dens.push_back(overall.denom() * n.op(1)); - } else { - nums.push_back(n.op(0)); - dens.push_back(n.op(1)); - } + ex n = ex_to(recombine_pair_to_ex(*it)).normal(sym_lst, repl_lst, level-1); + nums.push_back(n.op(0)); + dens.push_back(n.op(1)); it++; } - ex n = overall_coeff.bp->normal(sym_lst, repl_lst, level-1); + ex n = ex_to(overall_coeff).normal(sym_lst, repl_lst, level-1); nums.push_back(n.op(0)); dens.push_back(n.op(1)); GINAC_ASSERT(nums.size() == dens.size()); // Now, nums is a vector of all numerators and dens is a vector of // all denominators +//std::clog << "add::normal uses " << nums.size() << " summands:\n"; // Add fractions sequentially exvector::const_iterator num_it = nums.begin(), num_itend = nums.end(); exvector::const_iterator den_it = dens.begin(), den_itend = dens.end(); -//std::clog << "add::normal uses the following summands:\n"; -//std::clog << " num = " << *num_it << ", den = " << *den_it << endl; +//std::clog << " num = " << *num_it << ", den = " << *den_it << std::endl; ex num = *num_it++, den = *den_it++; while (num_it != num_itend) { -//std::clog << " num = " << *num_it << ", den = " << *den_it << endl; +//std::clog << " num = " << *num_it << ", den = " << *den_it << std::endl; + ex next_num = *num_it++, next_den = *den_it++; + + // Trivially add sequences of fractions with identical denominators + while ((den_it != den_itend) && next_den.is_equal(*den_it)) { + next_num += *num_it; + num_it++; den_it++; + } + + // Additiion of two fractions, taking advantage of the fact that + // the heuristic GCD algorithm computes the cofactors at no extra cost ex co_den1, co_den2; - ex g = gcd(den, *den_it, &co_den1, &co_den2, false); - num = (num * co_den2) + (*num_it * co_den1); - den *= co_den2; // this is the lcm(den, *den_it) - num_it++; den_it++; + ex g = gcd(den, next_den, &co_den1, &co_den2, false); + num = ((num * co_den2) + (next_num * co_den1)).expand(); + den *= co_den2; // this is the lcm(den, next_den) } -//std::clog << " common denominator = " << den << endl; +//std::clog << " common denominator = " << den << std::endl; // Cancel common factors from num/den return frac_cancel(num, den); @@ -1981,27 +2147,28 @@ ex add::normal(lst &sym_lst, lst &repl_lst, int level) const ex mul::normal(lst &sym_lst, lst &repl_lst, int level) const { if (level == 1) - return (new lst(replace_with_symbol(*this, sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated); + return (new lst(replace_with_symbol(*this, sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated); else if (level == -max_recursion_level) throw(std::runtime_error("max recursion level reached")); // Normalize children, separate into numerator and denominator - ex num = _ex1(); - ex den = _ex1(); + exvector num; num.reserve(seq.size()); + exvector den; den.reserve(seq.size()); ex n; epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { - n = recombine_pair_to_ex(*it).bp->normal(sym_lst, repl_lst, level-1); - num *= n.op(0); - den *= n.op(1); + n = ex_to(recombine_pair_to_ex(*it)).normal(sym_lst, repl_lst, level-1); + num.push_back(n.op(0)); + den.push_back(n.op(1)); it++; } - n = overall_coeff.bp->normal(sym_lst, repl_lst, level-1); - num *= n.op(0); - den *= n.op(1); + n = ex_to(overall_coeff).normal(sym_lst, repl_lst, level-1); + num.push_back(n.op(0)); + den.push_back(n.op(1)); // Perform fraction cancellation - return frac_cancel(num, den); + return frac_cancel((new mul(num))->setflag(status_flags::dynallocated), + (new mul(den))->setflag(status_flags::dynallocated)); } @@ -2012,78 +2179,72 @@ ex mul::normal(lst &sym_lst, lst &repl_lst, int level) const ex power::normal(lst &sym_lst, lst &repl_lst, int level) const { if (level == 1) - return (new lst(replace_with_symbol(*this, sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated); + return (new lst(replace_with_symbol(*this, sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated); else if (level == -max_recursion_level) throw(std::runtime_error("max recursion level reached")); - // Normalize basis - ex n = basis.bp->normal(sym_lst, repl_lst, level-1); + // Normalize basis and exponent (exponent gets reassembled) + ex n_basis = ex_to(basis).normal(sym_lst, repl_lst, level-1); + ex n_exponent = ex_to(exponent).normal(sym_lst, repl_lst, level-1); + n_exponent = n_exponent.op(0) / n_exponent.op(1); - if (exponent.info(info_flags::integer)) { + if (n_exponent.info(info_flags::integer)) { - if (exponent.info(info_flags::positive)) { + if (n_exponent.info(info_flags::positive)) { // (a/b)^n -> {a^n, b^n} - return (new lst(power(n.op(0), exponent), power(n.op(1), exponent)))->setflag(status_flags::dynallocated); + return (new lst(power(n_basis.op(0), n_exponent), power(n_basis.op(1), n_exponent)))->setflag(status_flags::dynallocated); - } else if (exponent.info(info_flags::negative)) { + } else if (n_exponent.info(info_flags::negative)) { // (a/b)^-n -> {b^n, a^n} - return (new lst(power(n.op(1), -exponent), power(n.op(0), -exponent)))->setflag(status_flags::dynallocated); + return (new lst(power(n_basis.op(1), -n_exponent), power(n_basis.op(0), -n_exponent)))->setflag(status_flags::dynallocated); } } else { - if (exponent.info(info_flags::positive)) { + if (n_exponent.info(info_flags::positive)) { // (a/b)^x -> {sym((a/b)^x), 1} - return (new lst(replace_with_symbol(power(n.op(0) / n.op(1), exponent), sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated); + return (new lst(replace_with_symbol(power(n_basis.op(0) / n_basis.op(1), n_exponent), sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated); - } else if (exponent.info(info_flags::negative)) { + } else if (n_exponent.info(info_flags::negative)) { - if (n.op(1).is_equal(_ex1())) { + if (n_basis.op(1).is_equal(_ex1)) { // a^-x -> {1, sym(a^x)} - return (new lst(_ex1(), replace_with_symbol(power(n.op(0), -exponent), sym_lst, repl_lst)))->setflag(status_flags::dynallocated); + return (new lst(_ex1, replace_with_symbol(power(n_basis.op(0), -n_exponent), sym_lst, repl_lst)))->setflag(status_flags::dynallocated); } else { // (a/b)^-x -> {sym((b/a)^x), 1} - return (new lst(replace_with_symbol(power(n.op(1) / n.op(0), -exponent), sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated); + return (new lst(replace_with_symbol(power(n_basis.op(1) / n_basis.op(0), -n_exponent), sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated); } - } else { // exponent not numeric + } else { // n_exponent not numeric // (a/b)^x -> {sym((a/b)^x, 1} - return (new lst(replace_with_symbol(power(n.op(0) / n.op(1), exponent), sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated); + return (new lst(replace_with_symbol(power(n_basis.op(0) / n_basis.op(1), n_exponent), sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated); } } } -/** Implementation of ex::normal() for pseries. It normalizes each coefficient and - * replaces the series by a temporary symbol. +/** Implementation of ex::normal() for pseries. It normalizes each coefficient + * and replaces the series by a temporary symbol. * @see ex::normal */ ex pseries::normal(lst &sym_lst, lst &repl_lst, int level) const { - epvector new_seq; - new_seq.reserve(seq.size()); - - epvector::const_iterator it = seq.begin(), itend = seq.end(); - while (it != itend) { - new_seq.push_back(expair(it->rest.normal(), it->coeff)); - it++; - } - ex n = pseries(relational(var,point), new_seq); - return (new lst(replace_with_symbol(n, sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated); -} - - -/** Implementation of ex::normal() for relationals. It normalizes both sides. - * @see ex::normal */ -ex relational::normal(lst &sym_lst, lst &repl_lst, int level) const -{ - return (new lst(relational(lh.normal(), rh.normal(), o), _ex1()))->setflag(status_flags::dynallocated); + epvector newseq; + epvector::const_iterator i = seq.begin(), end = seq.end(); + while (i != end) { + ex restexp = i->rest.normal(); + if (!restexp.is_zero()) + newseq.push_back(expair(restexp, i->coeff)); + ++i; + } + ex n = pseries(relational(var,point), newseq); + return (new lst(replace_with_symbol(n, sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated); } @@ -2104,7 +2265,7 @@ ex ex::normal(int level) const lst sym_lst, repl_lst; ex e = bp->normal(sym_lst, repl_lst, level); - GINAC_ASSERT(is_ex_of_type(e, lst)); + GINAC_ASSERT(is_a(e)); // Re-insert replaced symbols if (sym_lst.nops() > 0) @@ -2114,9 +2275,9 @@ ex ex::normal(int level) const return e.op(0) / e.op(1); } -/** Numerator of an expression. If the expression is not of the normal form - * "numerator/denominator", it is first converted to this form and then the - * numerator is returned. +/** Get numerator of an expression. If the expression is not of the normal + * form "numerator/denominator", it is first converted to this form and + * then the numerator is returned. * * @see ex::normal * @return numerator */ @@ -2125,7 +2286,7 @@ ex ex::numer(void) const lst sym_lst, repl_lst; ex e = bp->normal(sym_lst, repl_lst, 0); - GINAC_ASSERT(is_ex_of_type(e, lst)); + GINAC_ASSERT(is_a(e)); // Re-insert replaced symbols if (sym_lst.nops() > 0) @@ -2134,9 +2295,9 @@ ex ex::numer(void) const return e.op(0); } -/** Denominator of an expression. If the expression is not of the normal form - * "numerator/denominator", it is first converted to this form and then the - * denominator is returned. +/** Get denominator of an expression. If the expression is not of the normal + * form "numerator/denominator", it is first converted to this form and + * then the denominator is returned. * * @see ex::normal * @return denominator */ @@ -2145,7 +2306,7 @@ ex ex::denom(void) const lst sym_lst, repl_lst; ex e = bp->normal(sym_lst, repl_lst, 0); - GINAC_ASSERT(is_ex_of_type(e, lst)); + GINAC_ASSERT(is_a(e)); // Re-insert replaced symbols if (sym_lst.nops() > 0) @@ -2154,10 +2315,41 @@ ex ex::denom(void) const return e.op(1); } +/** Get numerator and denominator of an expression. If the expresison is not + * of the normal form "numerator/denominator", it is first converted to this + * form and then a list [numerator, denominator] is returned. + * + * @see ex::normal + * @return a list [numerator, denominator] */ +ex ex::numer_denom(void) const +{ + lst sym_lst, repl_lst; + + ex e = bp->normal(sym_lst, repl_lst, 0); + GINAC_ASSERT(is_a(e)); + + // Re-insert replaced symbols + if (sym_lst.nops() > 0) + return e.subs(sym_lst, repl_lst); + else + return e; +} + -/** Default implementation of ex::to_rational(). It replaces the object with a - * temporary symbol. - * @see ex::to_rational */ +/** Rationalization of non-rational functions. + * This function converts a general expression to a rational polynomial + * by replacing all non-rational subexpressions (like non-rational numbers, + * non-integer powers or functions like sin(), cos() etc.) to temporary + * symbols. This makes it possible to use functions like gcd() and divide() + * on non-rational functions by applying to_rational() on the arguments, + * calling the desired function and re-substituting the temporary symbols + * in the result. To make the last step possible, all temporary symbols and + * their associated expressions are collected in the list specified by the + * repl_lst parameter in the form {symbol == expression}, ready to be passed + * as an argument to ex::subs(). + * + * @param repl_lst collects a list of all temporary symbols and their replacements + * @return rationalized expression */ ex basic::to_rational(lst &repl_lst) const { return replace_with_symbol(*this, repl_lst); @@ -2165,8 +2357,7 @@ ex basic::to_rational(lst &repl_lst) const /** Implementation of ex::to_rational() for symbols. This returns the - * unmodified symbol. - * @see ex::to_rational */ + * unmodified symbol. */ ex symbol::to_rational(lst &repl_lst) const { return *this; @@ -2175,8 +2366,7 @@ ex symbol::to_rational(lst &repl_lst) const /** Implementation of ex::to_rational() for a numeric. It splits complex * numbers into re+I*im and replaces I and non-rational real numbers with a - * temporary symbol. - * @see ex::to_rational */ + * temporary symbol. */ ex numeric::to_rational(lst &repl_lst) const { if (is_real()) { @@ -2194,8 +2384,7 @@ ex numeric::to_rational(lst &repl_lst) const /** Implementation of ex::to_rational() for powers. It replaces non-integer - * powers by temporary symbols. - * @see ex::to_rational */ + * powers by temporary symbols. */ ex power::to_rational(lst &repl_lst) const { if (exponent.info(info_flags::integer)) @@ -2205,44 +2394,23 @@ ex power::to_rational(lst &repl_lst) const } -/** Implementation of ex::to_rational() for expairseqs. - * @see ex::to_rational */ +/** Implementation of ex::to_rational() for expairseqs. */ ex expairseq::to_rational(lst &repl_lst) const { epvector s; s.reserve(seq.size()); - for (epvector::const_iterator it=seq.begin(); it!=seq.end(); ++it) { - s.push_back(split_ex_to_pair(recombine_pair_to_ex(*it).to_rational(repl_lst))); - // s.push_back(combine_ex_with_coeff_to_pair((*it).rest.to_rational(repl_lst), + epvector::const_iterator i = seq.begin(), end = seq.end(); + while (i != end) { + s.push_back(split_ex_to_pair(recombine_pair_to_ex(*i).to_rational(repl_lst))); + ++i; } ex oc = overall_coeff.to_rational(repl_lst); if (oc.info(info_flags::numeric)) return thisexpairseq(s, overall_coeff); - else s.push_back(combine_ex_with_coeff_to_pair(oc,_ex1())); + else + s.push_back(combine_ex_with_coeff_to_pair(oc, _ex1)); return thisexpairseq(s, default_overall_coeff()); } -/** Rationalization of non-rational functions. - * This function converts a general expression to a rational polynomial - * by replacing all non-rational subexpressions (like non-rational numbers, - * non-integer powers or functions like sin(), cos() etc.) to temporary - * symbols. This makes it possible to use functions like gcd() and divide() - * on non-rational functions by applying to_rational() on the arguments, - * calling the desired function and re-substituting the temporary symbols - * in the result. To make the last step possible, all temporary symbols and - * their associated expressions are collected in the list specified by the - * repl_lst parameter in the form {symbol == expression}, ready to be passed - * as an argument to ex::subs(). - * - * @param repl_lst collects a list of all temporary symbols and their replacements - * @return rationalized expression */ -ex ex::to_rational(lst &repl_lst) const -{ - return bp->to_rational(repl_lst); -} - - -#ifndef NO_NAMESPACE_GINAC } // namespace GiNaC -#endif // ndef NO_NAMESPACE_GINAC