X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fnormal.cpp;h=a161f82133a7a448ede06ff831868e9bb31e91d2;hp=82fcaf848dd250ea14106dab40a9b0d87b40edf2;hb=7bb797bc41e31fe098c94f0b5e57ddbba6cd26b6;hpb=9eab44408b9213d8909b7a9e525f404ad06064dd diff --git a/ginac/normal.cpp b/ginac/normal.cpp index 82fcaf84..a161f821 100644 --- a/ginac/normal.cpp +++ b/ginac/normal.cpp @@ -3,11 +3,10 @@ * This file implements several functions that work on univariate and * multivariate polynomials and rational functions. * These functions include polynomial quotient and remainder, GCD and LCM - * computation, square-free factorization and rational function normalization. - */ + * computation, square-free factorization and rational function normalization. */ /* - * GiNaC Copyright (C) 1999 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -24,7 +23,6 @@ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ -#include #include #include @@ -35,16 +33,16 @@ #include "constant.h" #include "expairseq.h" #include "fail.h" -#include "indexed.h" #include "inifcns.h" #include "lst.h" #include "mul.h" -#include "ncmul.h" #include "numeric.h" #include "power.h" #include "relational.h" -#include "series.h" +#include "matrix.h" +#include "pseries.h" #include "symbol.h" +#include "utils.h" namespace GiNaC { @@ -54,7 +52,35 @@ namespace GiNaC { #define FAST_COMPARE 1 // Set this if you want divide_in_z() to use remembering -#define USE_REMEMBER 1 +#define USE_REMEMBER 0 + +// Set this if you want divide_in_z() to use trial division followed by +// polynomial interpolation (always slower except for completely dense +// polynomials) +#define USE_TRIAL_DIVISION 0 + +// Set this to enable some statistical output for the GCD routines +#define STATISTICS 0 + + +#if STATISTICS +// Statistics variables +static int gcd_called = 0; +static int sr_gcd_called = 0; +static int heur_gcd_called = 0; +static int heur_gcd_failed = 0; + +// Print statistics at end of program +static struct _stat_print { + _stat_print() {} + ~_stat_print() { + std::cout << "gcd() called " << gcd_called << " times\n"; + std::cout << "sr_gcd() called " << sr_gcd_called << " times\n"; + std::cout << "heur_gcd() called " << heur_gcd_called << " times\n"; + std::cout << "heur_gcd() failed " << heur_gcd_failed << " times\n"; + } +} stat_print; +#endif /** Return pointer to first symbol found in expression. Due to GiNaC´s @@ -64,21 +90,20 @@ namespace GiNaC { * @param e expression to search * @param x pointer to first symbol found (returned) * @return "false" if no symbol was found, "true" otherwise */ - static bool get_first_symbol(const ex &e, const symbol *&x) { - if (is_ex_exactly_of_type(e, symbol)) { - x = static_cast(e.bp); - return true; - } else if (is_ex_exactly_of_type(e, add) || is_ex_exactly_of_type(e, mul)) { - for (int i=0; i(e); + return true; + } else if (is_ex_exactly_of_type(e, add) || is_ex_exactly_of_type(e, mul)) { + for (unsigned i=0; i sym_desc_vec; +typedef std::vector sym_desc_vec; // Add symbol the sym_desc_vec (used internally by get_symbol_stats()) static void add_symbol(const symbol *s, sym_desc_vec &v) { - sym_desc_vec::iterator it = v.begin(), itend = v.end(); - while (it != itend) { - if (it->sym->compare(*s) == 0) // If it's already in there, don't add it a second time - return; - it++; - } - sym_desc d; - d.sym = s; - v.push_back(d); + sym_desc_vec::const_iterator it = v.begin(), itend = v.end(); + while (it != itend) { + if (it->sym->compare(*s) == 0) // If it's already in there, don't add it a second time + return; + ++it; + } + sym_desc d; + d.sym = s; + v.push_back(d); } // Collect all symbols of an expression (used internally by get_symbol_stats()) static void collect_symbols(const ex &e, sym_desc_vec &v) { - if (is_ex_exactly_of_type(e, symbol)) { - add_symbol(static_cast(e.bp), v); - } else if (is_ex_exactly_of_type(e, add) || is_ex_exactly_of_type(e, mul)) { - for (int i=0; i(e), v); + } else if (is_ex_exactly_of_type(e, add) || is_ex_exactly_of_type(e, mul)) { + for (unsigned i=0; isym)); - int deg_b = b.degree(*(it->sym)); - it->deg_a = deg_a; - it->deg_b = deg_b; - it->min_deg = min(deg_a, deg_b); - it->ldeg_a = a.ldegree(*(it->sym)); - it->ldeg_b = b.ldegree(*(it->sym)); - it++; - } - sort(v.begin(), v.end()); + collect_symbols(a.eval(), v); // eval() to expand assigned symbols + collect_symbols(b.eval(), v); + sym_desc_vec::iterator it = v.begin(), itend = v.end(); + while (it != itend) { + int deg_a = a.degree(*(it->sym)); + int deg_b = b.degree(*(it->sym)); + it->deg_a = deg_a; + it->deg_b = deg_b; + it->max_deg = std::max(deg_a, deg_b); + it->max_lcnops = std::max(a.lcoeff(*(it->sym)).nops(), b.lcoeff(*(it->sym)).nops()); + it->ldeg_a = a.ldegree(*(it->sym)); + it->ldeg_b = b.ldegree(*(it->sym)); + ++it; + } + std::sort(v.begin(), v.end()); +#if 0 + std::clog << "Symbols:\n"; + it = v.begin(); itend = v.end(); + while (it != itend) { + std::clog << " " << *it->sym << ": deg_a=" << it->deg_a << ", deg_b=" << it->deg_b << ", ldeg_a=" << it->ldeg_a << ", ldeg_b=" << it->ldeg_b << ", max_deg=" << it->max_deg << ", max_lcnops=" << it->max_lcnops << endl; + std::clog << " lcoeff_a=" << a.lcoeff(*(it->sym)) << ", lcoeff_b=" << b.lcoeff(*(it->sym)) << endl; + ++it; + } +#endif } @@ -185,30 +228,70 @@ static void get_symbol_stats(const ex &a, const ex &b, sym_desc_vec &v) // expression recursively (used internally by lcm_of_coefficients_denominators()) static numeric lcmcoeff(const ex &e, const numeric &l) { - if (e.info(info_flags::rational)) - return lcm(ex_to_numeric(e).denom(), l); - else if (is_ex_exactly_of_type(e, add) || is_ex_exactly_of_type(e, mul)) { - numeric c = numONE(); - for (int i=0; i(e).denom(), l); + else if (is_ex_exactly_of_type(e, add)) { + numeric c = _num1; + for (unsigned i=0; i(e.op(1))); + } + return l; } /** Compute LCM of denominators of coefficients of a polynomial. * Given a polynomial with rational coefficients, this function computes * the LCM of the denominators of all coefficients. This can be used - * To bring a polynomial from Q[X] to Z[X]. + * to bring a polynomial from Q[X] to Z[X]. * - * @param e multivariate polynomial + * @param e multivariate polynomial (need not be expanded) * @return LCM of denominators of coefficients */ - static numeric lcm_of_coefficients_denominators(const ex &e) { - return lcmcoeff(e.expand(), numONE()); + return lcmcoeff(e, _num1); +} + +/** Bring polynomial from Q[X] to Z[X] by multiplying in the previously + * determined LCM of the coefficient's denominators. + * + * @param e multivariate polynomial (need not be expanded) + * @param lcm LCM to multiply in */ +static ex multiply_lcm(const ex &e, const numeric &lcm) +{ + if (is_ex_exactly_of_type(e, mul)) { + unsigned num = e.nops(); + exvector v; v.reserve(num + 1); + numeric lcm_accum = _num1; + for (unsigned i=0; isetflag(status_flags::dynallocated); + } else if (is_ex_exactly_of_type(e, add)) { + unsigned num = e.nops(); + exvector v; v.reserve(num); + for (unsigned i=0; isetflag(status_flags::dynallocated); + } else if (is_ex_exactly_of_type(e, power)) { + if (is_ex_exactly_of_type(e.op(0), symbol)) + return e * lcm; + else + return pow(multiply_lcm(e.op(0), lcm.power(ex_to(e.op(1)).inverse())), e.op(1)); + } else + return e * lcm; } @@ -217,51 +300,50 @@ static numeric lcm_of_coefficients_denominators(const ex &e) * * @param e expanded polynomial * @return integer content */ - numeric ex::integer_content(void) const { - ASSERT(bp!=0); - return bp->integer_content(); + GINAC_ASSERT(bp!=0); + return bp->integer_content(); } numeric basic::integer_content(void) const { - return numONE(); + return _num1; } numeric numeric::integer_content(void) const { - return abs(*this); + return abs(*this); } numeric add::integer_content(void) const { - epvector::const_iterator it = seq.begin(); - epvector::const_iterator itend = seq.end(); - numeric c = numZERO(); - while (it != itend) { - ASSERT(!is_ex_exactly_of_type(it->rest,numeric)); - ASSERT(is_ex_exactly_of_type(it->coeff,numeric)); - c = gcd(ex_to_numeric(it->coeff), c); - it++; - } - ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); - c = gcd(ex_to_numeric(overall_coeff),c); - return c; + epvector::const_iterator it = seq.begin(); + epvector::const_iterator itend = seq.end(); + numeric c = _num0; + while (it != itend) { + GINAC_ASSERT(!is_exactly_a(it->rest)); + GINAC_ASSERT(is_exactly_a(it->coeff)); + c = gcd(ex_to(it->coeff), c); + it++; + } + GINAC_ASSERT(is_exactly_a(overall_coeff)); + c = gcd(ex_to(overall_coeff),c); + return c; } numeric mul::integer_content(void) const { -#ifdef DOASSERT - epvector::const_iterator it = seq.begin(); - epvector::const_iterator itend = seq.end(); - while (it != itend) { - ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric)); - ++it; - } -#endif // def DOASSERT - ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); - return abs(ex_to_numeric(overall_coeff)); +#ifdef DO_GINAC_ASSERT + epvector::const_iterator it = seq.begin(); + epvector::const_iterator itend = seq.end(); + while (it != itend) { + GINAC_ASSERT(!is_exactly_a(recombine_pair_to_ex(*it))); + ++it; + } +#endif // def DO_GINAC_ASSERT + GINAC_ASSERT(is_exactly_a(overall_coeff)); + return abs(ex_to(overall_coeff)); } @@ -278,45 +360,44 @@ numeric mul::integer_content(void) const * @param check_args check whether a and b are polynomials with rational * coefficients (defaults to "true") * @return quotient of a and b in Q[x] */ - ex quo(const ex &a, const ex &b, const symbol &x, bool check_args) { - if (b.is_zero()) - throw(std::overflow_error("quo: division by zero")); - if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) - return a / b; + if (b.is_zero()) + throw(std::overflow_error("quo: division by zero")); + if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) + return a / b; #if FAST_COMPARE - if (a.is_equal(b)) - return exONE(); + if (a.is_equal(b)) + return _ex1; #endif - if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) - throw(std::invalid_argument("quo: arguments must be polynomials over the rationals")); - - // Polynomial long division - ex q = exZERO(); - ex r = a.expand(); - if (r.is_zero()) - return r; - int bdeg = b.degree(x); - int rdeg = r.degree(x); - ex blcoeff = b.expand().coeff(x, bdeg); - bool blcoeff_is_numeric = is_ex_exactly_of_type(blcoeff, numeric); - while (rdeg >= bdeg) { - ex term, rcoeff = r.coeff(x, rdeg); - if (blcoeff_is_numeric) - term = rcoeff / blcoeff; - else { - if (!divide(rcoeff, blcoeff, term, false)) - return *new ex(fail()); - } - term *= power(x, rdeg - bdeg); - q += term; - r -= (term * b).expand(); - if (r.is_zero()) - break; - rdeg = r.degree(x); - } - return q; + if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) + throw(std::invalid_argument("quo: arguments must be polynomials over the rationals")); + + // Polynomial long division + ex r = a.expand(); + if (r.is_zero()) + return r; + int bdeg = b.degree(x); + int rdeg = r.degree(x); + ex blcoeff = b.expand().coeff(x, bdeg); + bool blcoeff_is_numeric = is_ex_exactly_of_type(blcoeff, numeric); + exvector v; v.reserve(rdeg - bdeg + 1); + while (rdeg >= bdeg) { + ex term, rcoeff = r.coeff(x, rdeg); + if (blcoeff_is_numeric) + term = rcoeff / blcoeff; + else { + if (!divide(rcoeff, blcoeff, term, false)) + return (new fail())->setflag(status_flags::dynallocated); + } + term *= power(x, rdeg - bdeg); + v.push_back(term); + r -= (term * b).expand(); + if (r.is_zero()) + break; + rdeg = r.degree(x); + } + return (new add(v))->setflag(status_flags::dynallocated); } @@ -329,47 +410,64 @@ ex quo(const ex &a, const ex &b, const symbol &x, bool check_args) * @param check_args check whether a and b are polynomials with rational * coefficients (defaults to "true") * @return remainder of a(x) and b(x) in Q[x] */ - ex rem(const ex &a, const ex &b, const symbol &x, bool check_args) { - if (b.is_zero()) - throw(std::overflow_error("rem: division by zero")); - if (is_ex_exactly_of_type(a, numeric)) { - if (is_ex_exactly_of_type(b, numeric)) - return exZERO(); - else - return b; - } + if (b.is_zero()) + throw(std::overflow_error("rem: division by zero")); + if (is_ex_exactly_of_type(a, numeric)) { + if (is_ex_exactly_of_type(b, numeric)) + return _ex0; + else + return a; + } #if FAST_COMPARE - if (a.is_equal(b)) - return exZERO(); + if (a.is_equal(b)) + return _ex0; #endif - if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) - throw(std::invalid_argument("rem: arguments must be polynomials over the rationals")); - - // Polynomial long division - ex r = a.expand(); - if (r.is_zero()) - return r; - int bdeg = b.degree(x); - int rdeg = r.degree(x); - ex blcoeff = b.expand().coeff(x, bdeg); - bool blcoeff_is_numeric = is_ex_exactly_of_type(blcoeff, numeric); - while (rdeg >= bdeg) { - ex term, rcoeff = r.coeff(x, rdeg); - if (blcoeff_is_numeric) - term = rcoeff / blcoeff; - else { - if (!divide(rcoeff, blcoeff, term, false)) - return *new ex(fail()); - } - term *= power(x, rdeg - bdeg); - r -= (term * b).expand(); - if (r.is_zero()) - break; - rdeg = r.degree(x); - } - return r; + if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) + throw(std::invalid_argument("rem: arguments must be polynomials over the rationals")); + + // Polynomial long division + ex r = a.expand(); + if (r.is_zero()) + return r; + int bdeg = b.degree(x); + int rdeg = r.degree(x); + ex blcoeff = b.expand().coeff(x, bdeg); + bool blcoeff_is_numeric = is_ex_exactly_of_type(blcoeff, numeric); + while (rdeg >= bdeg) { + ex term, rcoeff = r.coeff(x, rdeg); + if (blcoeff_is_numeric) + term = rcoeff / blcoeff; + else { + if (!divide(rcoeff, blcoeff, term, false)) + return (new fail())->setflag(status_flags::dynallocated); + } + term *= power(x, rdeg - bdeg); + r -= (term * b).expand(); + if (r.is_zero()) + break; + rdeg = r.degree(x); + } + return r; +} + + +/** Decompose rational function a(x)=N(x)/D(x) into P(x)+n(x)/D(x) + * with degree(n, x) < degree(D, x). + * + * @param a rational function in x + * @param x a is a function of x + * @return decomposed function. */ +ex decomp_rational(const ex &a, const symbol &x) +{ + ex nd = numer_denom(a); + ex numer = nd.op(0), denom = nd.op(1); + ex q = quo(numer, denom, x); + if (is_ex_exactly_of_type(q, fail)) + return a; + else + return q + rem(numer, denom, x) / denom; } @@ -381,48 +479,97 @@ ex rem(const ex &a, const ex &b, const symbol &x, bool check_args) * @param check_args check whether a and b are polynomials with rational * coefficients (defaults to "true") * @return pseudo-remainder of a(x) and b(x) in Z[x] */ - ex prem(const ex &a, const ex &b, const symbol &x, bool check_args) { - if (b.is_zero()) - throw(std::overflow_error("prem: division by zero")); - if (is_ex_exactly_of_type(a, numeric)) { - if (is_ex_exactly_of_type(b, numeric)) - return exZERO(); - else - return b; - } - if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) - throw(std::invalid_argument("prem: arguments must be polynomials over the rationals")); - - // Polynomial long division - ex r = a.expand(); - ex eb = b.expand(); - int rdeg = r.degree(x); - int bdeg = eb.degree(x); - ex blcoeff; - if (bdeg <= rdeg) { - blcoeff = eb.coeff(x, bdeg); - if (bdeg == 0) - eb = exZERO(); - else - eb -= blcoeff * power(x, bdeg); - } else - blcoeff = exONE(); - - int delta = rdeg - bdeg + 1, i = 0; - while (rdeg >= bdeg && !r.is_zero()) { - ex rlcoeff = r.coeff(x, rdeg); - ex term = (power(x, rdeg - bdeg) * eb * rlcoeff).expand(); - if (rdeg == 0) - r = exZERO(); - else - r -= rlcoeff * power(x, rdeg); - r = (blcoeff * r).expand() - term; - rdeg = r.degree(x); - i++; - } - return power(blcoeff, delta - i) * r; + if (b.is_zero()) + throw(std::overflow_error("prem: division by zero")); + if (is_ex_exactly_of_type(a, numeric)) { + if (is_ex_exactly_of_type(b, numeric)) + return _ex0; + else + return b; + } + if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) + throw(std::invalid_argument("prem: arguments must be polynomials over the rationals")); + + // Polynomial long division + ex r = a.expand(); + ex eb = b.expand(); + int rdeg = r.degree(x); + int bdeg = eb.degree(x); + ex blcoeff; + if (bdeg <= rdeg) { + blcoeff = eb.coeff(x, bdeg); + if (bdeg == 0) + eb = _ex0; + else + eb -= blcoeff * power(x, bdeg); + } else + blcoeff = _ex1; + + int delta = rdeg - bdeg + 1, i = 0; + while (rdeg >= bdeg && !r.is_zero()) { + ex rlcoeff = r.coeff(x, rdeg); + ex term = (power(x, rdeg - bdeg) * eb * rlcoeff).expand(); + if (rdeg == 0) + r = _ex0; + else + r -= rlcoeff * power(x, rdeg); + r = (blcoeff * r).expand() - term; + rdeg = r.degree(x); + i++; + } + return power(blcoeff, delta - i) * r; +} + + +/** Sparse pseudo-remainder of polynomials a(x) and b(x) in Z[x]. + * + * @param a first polynomial in x (dividend) + * @param b second polynomial in x (divisor) + * @param x a and b are polynomials in x + * @param check_args check whether a and b are polynomials with rational + * coefficients (defaults to "true") + * @return sparse pseudo-remainder of a(x) and b(x) in Z[x] */ +ex sprem(const ex &a, const ex &b, const symbol &x, bool check_args) +{ + if (b.is_zero()) + throw(std::overflow_error("prem: division by zero")); + if (is_ex_exactly_of_type(a, numeric)) { + if (is_ex_exactly_of_type(b, numeric)) + return _ex0; + else + return b; + } + if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) + throw(std::invalid_argument("prem: arguments must be polynomials over the rationals")); + + // Polynomial long division + ex r = a.expand(); + ex eb = b.expand(); + int rdeg = r.degree(x); + int bdeg = eb.degree(x); + ex blcoeff; + if (bdeg <= rdeg) { + blcoeff = eb.coeff(x, bdeg); + if (bdeg == 0) + eb = _ex0; + else + eb -= blcoeff * power(x, bdeg); + } else + blcoeff = _ex1; + + while (rdeg >= bdeg && !r.is_zero()) { + ex rlcoeff = r.coeff(x, rdeg); + ex term = (power(x, rdeg - bdeg) * eb * rlcoeff).expand(); + if (rdeg == 0) + r = _ex0; + else + r -= rlcoeff * power(x, rdeg); + r = (blcoeff * r).expand() - term; + rdeg = r.degree(x); + } + return r; } @@ -434,55 +581,63 @@ ex prem(const ex &a, const ex &b, const symbol &x, bool check_args) * @param check_args check whether a and b are polynomials with rational * coefficients (defaults to "true") * @return "true" when exact division succeeds (quotient returned in q), - * "false" otherwise */ - + * "false" otherwise (q left untouched) */ bool divide(const ex &a, const ex &b, ex &q, bool check_args) { - q = exZERO(); - if (b.is_zero()) - throw(std::overflow_error("divide: division by zero")); - if (is_ex_exactly_of_type(b, numeric)) { - q = a / b; - return true; - } else if (is_ex_exactly_of_type(a, numeric)) - return false; + if (b.is_zero()) + throw(std::overflow_error("divide: division by zero")); + if (a.is_zero()) { + q = _ex0; + return true; + } + if (is_ex_exactly_of_type(b, numeric)) { + q = a / b; + return true; + } else if (is_ex_exactly_of_type(a, numeric)) + return false; #if FAST_COMPARE - if (a.is_equal(b)) { - q = exONE(); - return true; - } + if (a.is_equal(b)) { + q = _ex1; + return true; + } #endif - if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) - throw(std::invalid_argument("divide: arguments must be polynomials over the rationals")); - - // Find first symbol - const symbol *x; - if (!get_first_symbol(a, x) && !get_first_symbol(b, x)) - throw(std::invalid_argument("invalid expression in divide()")); - - // Polynomial long division (recursive) - ex r = a.expand(); - if (r.is_zero()) - return true; - int bdeg = b.degree(*x); - int rdeg = r.degree(*x); - ex blcoeff = b.expand().coeff(*x, bdeg); - bool blcoeff_is_numeric = is_ex_exactly_of_type(blcoeff, numeric); - while (rdeg >= bdeg) { - ex term, rcoeff = r.coeff(*x, rdeg); - if (blcoeff_is_numeric) - term = rcoeff / blcoeff; - else - if (!divide(rcoeff, blcoeff, term, false)) - return false; - term *= power(*x, rdeg - bdeg); - q += term; - r -= (term * b).expand(); - if (r.is_zero()) - return true; - rdeg = r.degree(*x); - } - return false; + if (check_args && (!a.info(info_flags::rational_polynomial) || + !b.info(info_flags::rational_polynomial))) + throw(std::invalid_argument("divide: arguments must be polynomials over the rationals")); + + // Find first symbol + const symbol *x; + if (!get_first_symbol(a, x) && !get_first_symbol(b, x)) + throw(std::invalid_argument("invalid expression in divide()")); + + // Polynomial long division (recursive) + ex r = a.expand(); + if (r.is_zero()) { + q = _ex0; + return true; + } + int bdeg = b.degree(*x); + int rdeg = r.degree(*x); + ex blcoeff = b.expand().coeff(*x, bdeg); + bool blcoeff_is_numeric = is_ex_exactly_of_type(blcoeff, numeric); + exvector v; v.reserve(rdeg - bdeg + 1); + while (rdeg >= bdeg) { + ex term, rcoeff = r.coeff(*x, rdeg); + if (blcoeff_is_numeric) + term = rcoeff / blcoeff; + else + if (!divide(rcoeff, blcoeff, term, false)) + return false; + term *= power(*x, rdeg - bdeg); + v.push_back(term); + r -= (term * b).expand(); + if (r.is_zero()) { + q = (new add(v))->setflag(status_flags::dynallocated); + return true; + } + rdeg = r.degree(*x); + } + return false; } @@ -491,17 +646,18 @@ bool divide(const ex &a, const ex &b, ex &q, bool check_args) * Remembering */ -typedef pair ex2; -typedef pair exbool; +typedef std::pair ex2; +typedef std::pair exbool; struct ex2_less { - bool operator() (const ex2 p, const ex2 q) const - { - return p.first.compare(q.first) < 0 || (!(q.first.compare(p.first) < 0) && p.second.compare(q.second) < 0); - } + bool operator() (const ex2 &p, const ex2 &q) const + { + int cmp = p.first.compare(q.first); + return ((cmp<0) || (!(cmp>0) && p.second.compare(q.second)<0)); + } }; -typedef map ex2_exbool_remember; +typedef std::map ex2_exbool_remember; #endif @@ -523,127 +679,130 @@ typedef map ex2_exbool_remember; * @see get_symbol_stats, heur_gcd */ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_iterator var) { - q = exZERO(); - if (b.is_zero()) - throw(std::overflow_error("divide_in_z: division by zero")); - if (b.is_equal(exONE())) { - q = a; - return true; - } - if (is_ex_exactly_of_type(a, numeric)) { - if (is_ex_exactly_of_type(b, numeric)) { - q = a / b; - return q.info(info_flags::integer); - } else - return false; - } + q = _ex0; + if (b.is_zero()) + throw(std::overflow_error("divide_in_z: division by zero")); + if (b.is_equal(_ex1)) { + q = a; + return true; + } + if (is_ex_exactly_of_type(a, numeric)) { + if (is_ex_exactly_of_type(b, numeric)) { + q = a / b; + return q.info(info_flags::integer); + } else + return false; + } #if FAST_COMPARE - if (a.is_equal(b)) { - q = exONE(); - return true; - } + if (a.is_equal(b)) { + q = _ex1; + return true; + } #endif #if USE_REMEMBER - // Remembering - static ex2_exbool_remember dr_remember; - ex2_exbool_remember::const_iterator remembered = dr_remember.find(ex2(a, b)); - if (remembered != dr_remember.end()) { - q = remembered->second.first; - return remembered->second.second; - } + // Remembering + static ex2_exbool_remember dr_remember; + ex2_exbool_remember::const_iterator remembered = dr_remember.find(ex2(a, b)); + if (remembered != dr_remember.end()) { + q = remembered->second.first; + return remembered->second.second; + } #endif - // Main symbol - const symbol *x = var->sym; + // Main symbol + const symbol *x = var->sym; + + // Compare degrees + int adeg = a.degree(*x), bdeg = b.degree(*x); + if (bdeg > adeg) + return false; + +#if USE_TRIAL_DIVISION + + // Trial division with polynomial interpolation + int i, k; + + // Compute values at evaluation points 0..adeg + vector alpha; alpha.reserve(adeg + 1); + exvector u; u.reserve(adeg + 1); + numeric point = _num0; + ex c; + for (i=0; i<=adeg; i++) { + ex bs = b.subs(*x == point); + while (bs.is_zero()) { + point += _num1; + bs = b.subs(*x == point); + } + if (!divide_in_z(a.subs(*x == point), bs, c, var+1)) + return false; + alpha.push_back(point); + u.push_back(c); + point += _num1; + } - // Compare degrees - int adeg = a.degree(*x), bdeg = b.degree(*x); - if (bdeg > adeg) - return false; + // Compute inverses + vector rcp; rcp.reserve(adeg + 1); + rcp.push_back(_num0); + for (k=1; k<=adeg; k++) { + numeric product = alpha[k] - alpha[0]; + for (i=1; i=0; i--) + temp = temp * (alpha[k] - alpha[i]) + v[i]; + v.push_back((u[k] - temp) * rcp[k]); + } + + // Convert from Newton form to standard form + c = v[adeg]; + for (k=adeg-1; k>=0; k--) + c = c * (*x - alpha[k]) + v[k]; - // Polynomial long division (recursive) - ex r = a.expand(); - if (r.is_zero()) - return true; - int rdeg = adeg; - ex eb = b.expand(); - ex blcoeff = eb.coeff(*x, bdeg); - while (rdeg >= bdeg) { - ex term, rcoeff = r.coeff(*x, rdeg); - if (!divide_in_z(rcoeff, blcoeff, term, var+1)) - break; - term = (term * power(*x, rdeg - bdeg)).expand(); - q += term; - r -= (term * eb).expand(); - if (r.is_zero()) { + if (c.degree(*x) == (adeg - bdeg)) { + q = c.expand(); + return true; + } else + return false; + +#else + + // Polynomial long division (recursive) + ex r = a.expand(); + if (r.is_zero()) + return true; + int rdeg = adeg; + ex eb = b.expand(); + ex blcoeff = eb.coeff(*x, bdeg); + exvector v; v.reserve(rdeg - bdeg + 1); + while (rdeg >= bdeg) { + ex term, rcoeff = r.coeff(*x, rdeg); + if (!divide_in_z(rcoeff, blcoeff, term, var+1)) + break; + term = (term * power(*x, rdeg - bdeg)).expand(); + v.push_back(term); + r -= (term * eb).expand(); + if (r.is_zero()) { + q = (new add(v))->setflag(status_flags::dynallocated); #if USE_REMEMBER - dr_remember[ex2(a, b)] = exbool(q, true); + dr_remember[ex2(a, b)] = exbool(q, true); #endif - return true; - } - rdeg = r.degree(*x); - } + return true; + } + rdeg = r.degree(*x); + } #if USE_REMEMBER - dr_remember[ex2(a, b)] = exbool(q, false); + dr_remember[ex2(a, b)] = exbool(q, false); #endif - return false; + return false; -#else - - // Trial division using polynomial interpolation - int i, k; - - // Compute values at evaluation points 0..adeg - vector alpha; alpha.reserve(adeg + 1); - exvector u; u.reserve(adeg + 1); - numeric point = numZERO(); - ex c; - for (i=0; i<=adeg; i++) { - ex bs = b.subs(*x == point); - while (bs.is_zero()) { - point += numONE(); - bs = b.subs(*x == point); - } - if (!divide_in_z(a.subs(*x == point), bs, c, var+1)) - return false; - alpha.push_back(point); - u.push_back(c); - point += numONE(); - } - - // Compute inverses - vector rcp; rcp.reserve(adeg + 1); - rcp.push_back(0); - for (k=1; k<=adeg; k++) { - numeric product = alpha[k] - alpha[0]; - for (i=1; i=0; i--) - temp = temp * (alpha[k] - alpha[i]) + v[i]; - v.push_back((u[k] - temp) * rcp[k]); - } - - // Convert from Newton form to standard form - c = v[adeg]; - for (k=adeg-1; k>=0; k--) - c = c * (*x - alpha[k]) + v[k]; - - if (c.degree(*x) == (adeg - bdeg)) { - q = c.expand(); - return true; - } else - return false; #endif } @@ -661,16 +820,16 @@ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_ite * @see ex::content, ex::primpart */ ex ex::unit(const symbol &x) const { - ex c = expand().lcoeff(x); - if (is_ex_exactly_of_type(c, numeric)) - return c < exZERO() ? exMINUSONE() : exONE(); - else { - const symbol *y; - if (get_first_symbol(c, y)) - return c.unit(*y); - else - throw(std::invalid_argument("invalid expression in unit()")); - } + ex c = expand().lcoeff(x); + if (is_ex_exactly_of_type(c, numeric)) + return c < _ex0 ? _ex_1 : _ex1; + else { + const symbol *y; + if (get_first_symbol(c, y)) + return c.unit(*y); + else + throw(std::invalid_argument("invalid expression in unit()")); + } } @@ -683,30 +842,30 @@ ex ex::unit(const symbol &x) const * @see ex::unit, ex::primpart */ ex ex::content(const symbol &x) const { - if (is_zero()) - return exZERO(); - if (is_ex_exactly_of_type(*this, numeric)) - return info(info_flags::negative) ? -*this : *this; - ex e = expand(); - if (e.is_zero()) - return exZERO(); - - // First, try the integer content - ex c = e.integer_content(); - ex r = e / c; - ex lcoeff = r.lcoeff(x); - if (lcoeff.info(info_flags::integer)) - return c; - - // GCD of all coefficients - int deg = e.degree(x); - int ldeg = e.ldegree(x); - if (deg == ldeg) - return e.lcoeff(x) / e.unit(x); - c = exZERO(); - for (int i=ldeg; i<=deg; i++) - c = gcd(e.coeff(x, i), c, NULL, NULL, false); - return c; + if (is_zero()) + return _ex0; + if (is_ex_exactly_of_type(*this, numeric)) + return info(info_flags::negative) ? -*this : *this; + ex e = expand(); + if (e.is_zero()) + return _ex0; + + // First, try the integer content + ex c = e.integer_content(); + ex r = e / c; + ex lcoeff = r.lcoeff(x); + if (lcoeff.info(info_flags::integer)) + return c; + + // GCD of all coefficients + int deg = e.degree(x); + int ldeg = e.ldegree(x); + if (deg == ldeg) + return e.lcoeff(x) / e.unit(x); + c = _ex0; + for (int i=ldeg; i<=deg; i++) + c = gcd(e.coeff(x, i), c, NULL, NULL, false); + return c; } @@ -719,19 +878,19 @@ ex ex::content(const symbol &x) const * @see ex::unit, ex::content */ ex ex::primpart(const symbol &x) const { - if (is_zero()) - return exZERO(); - if (is_ex_exactly_of_type(*this, numeric)) - return exONE(); - - ex c = content(x); - if (c.is_zero()) - return exZERO(); - ex u = unit(x); - if (is_ex_exactly_of_type(c, numeric)) - return *this / (c * u); - else - return quo(*this, c * u, x, false); + if (is_zero()) + return _ex0; + if (is_ex_exactly_of_type(*this, numeric)) + return _ex1; + + ex c = content(x); + if (c.is_zero()) + return _ex0; + ex u = unit(x); + if (is_ex_exactly_of_type(c, numeric)) + return *this / (c * u); + else + return quo(*this, c * u, x, false); } @@ -742,21 +901,20 @@ ex ex::primpart(const symbol &x) const * @param x variable in which to compute the primitive part * @param c previously computed content part * @return primitive part */ - ex ex::primpart(const symbol &x, const ex &c) const { - if (is_zero()) - return exZERO(); - if (c.is_zero()) - return exZERO(); - if (is_ex_exactly_of_type(*this, numeric)) - return exONE(); - - ex u = unit(x); - if (is_ex_exactly_of_type(c, numeric)) - return *this / (c * u); - else - return quo(*this, c * u, x, false); + if (is_zero()) + return _ex0; + if (c.is_zero()) + return _ex0; + if (is_ex_exactly_of_type(*this, numeric)) + return _ex1; + + ex u = unit(x); + if (is_ex_exactly_of_type(c, numeric)) + return *this / (c * u); + else + return quo(*this, c * u, x, false); } @@ -764,8 +922,141 @@ ex ex::primpart(const symbol &x, const ex &c) const * GCD of multivariate polynomials */ -/** Compute GCD of multivariate polynomials using the subresultant PRS - * algorithm. This function is used internally gy gcd(). +/** Compute GCD of polynomials in Q[X] using the Euclidean algorithm (not + * really suited for multivariate GCDs). This function is only provided for + * testing purposes. + * + * @param a first multivariate polynomial + * @param b second multivariate polynomial + * @param x pointer to symbol (main variable) in which to compute the GCD in + * @return the GCD as a new expression + * @see gcd */ + +static ex eu_gcd(const ex &a, const ex &b, const symbol *x) +{ +//std::clog << "eu_gcd(" << a << "," << b << ")\n"; + + // Sort c and d so that c has higher degree + ex c, d; + int adeg = a.degree(*x), bdeg = b.degree(*x); + if (adeg >= bdeg) { + c = a; + d = b; + } else { + c = b; + d = a; + } + + // Normalize in Q[x] + c = c / c.lcoeff(*x); + d = d / d.lcoeff(*x); + + // Euclidean algorithm + ex r; + for (;;) { +//std::clog << " d = " << d << endl; + r = rem(c, d, *x, false); + if (r.is_zero()) + return d / d.lcoeff(*x); + c = d; + d = r; + } +} + + +/** Compute GCD of multivariate polynomials using the Euclidean PRS algorithm + * with pseudo-remainders ("World's Worst GCD Algorithm", staying in Z[X]). + * This function is only provided for testing purposes. + * + * @param a first multivariate polynomial + * @param b second multivariate polynomial + * @param x pointer to symbol (main variable) in which to compute the GCD in + * @return the GCD as a new expression + * @see gcd */ + +static ex euprem_gcd(const ex &a, const ex &b, const symbol *x) +{ +//std::clog << "euprem_gcd(" << a << "," << b << ")\n"; + + // Sort c and d so that c has higher degree + ex c, d; + int adeg = a.degree(*x), bdeg = b.degree(*x); + if (adeg >= bdeg) { + c = a; + d = b; + } else { + c = b; + d = a; + } + + // Calculate GCD of contents + ex gamma = gcd(c.content(*x), d.content(*x), NULL, NULL, false); + + // Euclidean algorithm with pseudo-remainders + ex r; + for (;;) { +//std::clog << " d = " << d << endl; + r = prem(c, d, *x, false); + if (r.is_zero()) + return d.primpart(*x) * gamma; + c = d; + d = r; + } +} + + +/** Compute GCD of multivariate polynomials using the primitive Euclidean + * PRS algorithm (complete content removal at each step). This function is + * only provided for testing purposes. + * + * @param a first multivariate polynomial + * @param b second multivariate polynomial + * @param x pointer to symbol (main variable) in which to compute the GCD in + * @return the GCD as a new expression + * @see gcd */ + +static ex peu_gcd(const ex &a, const ex &b, const symbol *x) +{ +//std::clog << "peu_gcd(" << a << "," << b << ")\n"; + + // Sort c and d so that c has higher degree + ex c, d; + int adeg = a.degree(*x), bdeg = b.degree(*x); + int ddeg; + if (adeg >= bdeg) { + c = a; + d = b; + ddeg = bdeg; + } else { + c = b; + d = a; + ddeg = adeg; + } + + // Remove content from c and d, to be attached to GCD later + ex cont_c = c.content(*x); + ex cont_d = d.content(*x); + ex gamma = gcd(cont_c, cont_d, NULL, NULL, false); + if (ddeg == 0) + return gamma; + c = c.primpart(*x, cont_c); + d = d.primpart(*x, cont_d); + + // Euclidean algorithm with content removal + ex r; + for (;;) { +//std::clog << " d = " << d << endl; + r = prem(c, d, *x, false); + if (r.is_zero()) + return gamma * d; + c = d; + d = r.primpart(*x); + } +} + + +/** Compute GCD of multivariate polynomials using the reduced PRS algorithm. + * This function is only provided for testing purposes. * * @param a first multivariate polynomial * @param b second multivariate polynomial @@ -773,62 +1064,142 @@ ex ex::primpart(const symbol &x, const ex &c) const * @return the GCD as a new expression * @see gcd */ -static ex sr_gcd(const ex &a, const ex &b, const symbol *x) +static ex red_gcd(const ex &a, const ex &b, const symbol *x) +{ +//std::clog << "red_gcd(" << a << "," << b << ")\n"; + + // Sort c and d so that c has higher degree + ex c, d; + int adeg = a.degree(*x), bdeg = b.degree(*x); + int cdeg, ddeg; + if (adeg >= bdeg) { + c = a; + d = b; + cdeg = adeg; + ddeg = bdeg; + } else { + c = b; + d = a; + cdeg = bdeg; + ddeg = adeg; + } + + // Remove content from c and d, to be attached to GCD later + ex cont_c = c.content(*x); + ex cont_d = d.content(*x); + ex gamma = gcd(cont_c, cont_d, NULL, NULL, false); + if (ddeg == 0) + return gamma; + c = c.primpart(*x, cont_c); + d = d.primpart(*x, cont_d); + + // First element of divisor sequence + ex r, ri = _ex1; + int delta = cdeg - ddeg; + + for (;;) { + // Calculate polynomial pseudo-remainder +//std::clog << " d = " << d << endl; + r = prem(c, d, *x, false); + if (r.is_zero()) + return gamma * d.primpart(*x); + c = d; + cdeg = ddeg; + + if (!divide(r, pow(ri, delta), d, false)) + throw(std::runtime_error("invalid expression in red_gcd(), division failed")); + ddeg = d.degree(*x); + if (ddeg == 0) { + if (is_ex_exactly_of_type(r, numeric)) + return gamma; + else + return gamma * r.primpart(*x); + } + + ri = c.expand().lcoeff(*x); + delta = cdeg - ddeg; + } +} + + +/** Compute GCD of multivariate polynomials using the subresultant PRS + * algorithm. This function is used internally by gcd(). + * + * @param a first multivariate polynomial + * @param b second multivariate polynomial + * @param var iterator to first element of vector of sym_desc structs + * @return the GCD as a new expression + * @see gcd */ + +static ex sr_gcd(const ex &a, const ex &b, sym_desc_vec::const_iterator var) { - // Sort c and d so that c has higher degree - ex c, d; - int adeg = a.degree(*x), bdeg = b.degree(*x); - int cdeg, ddeg; - if (adeg >= bdeg) { - c = a; - d = b; - cdeg = adeg; - ddeg = bdeg; - } else { - c = b; - d = a; - cdeg = bdeg; - ddeg = adeg; - } - - // Remove content from c and d, to be attached to GCD later - ex cont_c = c.content(*x); - ex cont_d = d.content(*x); - ex gamma = gcd(cont_c, cont_d, NULL, NULL, false); - if (ddeg == 0) - return gamma; - c = c.primpart(*x, cont_c); - d = d.primpart(*x, cont_d); - - // First element of subresultant sequence - ex r = exZERO(), ri = exONE(), psi = exONE(); - int delta = cdeg - ddeg; - - for (;;) { - // Calculate polynomial pseudo-remainder - r = prem(c, d, *x, false); - if (r.is_zero()) - return gamma * d.primpart(*x); - c = d; - cdeg = ddeg; - if (!divide(r, ri * power(psi, delta), d, false)) - throw(std::runtime_error("invalid expression in sr_gcd(), division failed")); - ddeg = d.degree(*x); - if (ddeg == 0) { - if (is_ex_exactly_of_type(r, numeric)) - return gamma; - else - return gamma * r.primpart(*x); - } - - // Next element of subresultant sequence - ri = c.expand().lcoeff(*x); - if (delta == 1) - psi = ri; - else if (delta) - divide(power(ri, delta), power(psi, delta-1), psi, false); - delta = cdeg - ddeg; - } +//std::clog << "sr_gcd(" << a << "," << b << ")\n"; +#if STATISTICS + sr_gcd_called++; +#endif + + // The first symbol is our main variable + const symbol &x = *(var->sym); + + // Sort c and d so that c has higher degree + ex c, d; + int adeg = a.degree(x), bdeg = b.degree(x); + int cdeg, ddeg; + if (adeg >= bdeg) { + c = a; + d = b; + cdeg = adeg; + ddeg = bdeg; + } else { + c = b; + d = a; + cdeg = bdeg; + ddeg = adeg; + } + + // Remove content from c and d, to be attached to GCD later + ex cont_c = c.content(x); + ex cont_d = d.content(x); + ex gamma = gcd(cont_c, cont_d, NULL, NULL, false); + if (ddeg == 0) + return gamma; + c = c.primpart(x, cont_c); + d = d.primpart(x, cont_d); +//std::clog << " content " << gamma << " removed, continuing with sr_gcd(" << c << "," << d << ")\n"; + + // First element of subresultant sequence + ex r = _ex0, ri = _ex1, psi = _ex1; + int delta = cdeg - ddeg; + + for (;;) { + // Calculate polynomial pseudo-remainder +//std::clog << " start of loop, psi = " << psi << ", calculating pseudo-remainder...\n"; +//std::clog << " d = " << d << endl; + r = prem(c, d, x, false); + if (r.is_zero()) + return gamma * d.primpart(x); + c = d; + cdeg = ddeg; +//std::clog << " dividing...\n"; + if (!divide_in_z(r, ri * pow(psi, delta), d, var)) + throw(std::runtime_error("invalid expression in sr_gcd(), division failed")); + ddeg = d.degree(x); + if (ddeg == 0) { + if (is_ex_exactly_of_type(r, numeric)) + return gamma; + else + return gamma * r.primpart(x); + } + + // Next element of subresultant sequence +//std::clog << " calculating next subresultant...\n"; + ri = c.expand().lcoeff(x); + if (delta == 1) + psi = ri; + else if (delta) + divide_in_z(pow(ri, delta), pow(psi, delta-1), psi, var+1); + delta = cdeg - ddeg; + } } @@ -838,117 +1209,124 @@ static ex sr_gcd(const ex &a, const ex &b, const symbol *x) * @param e expanded multivariate polynomial * @return maximum coefficient * @see heur_gcd */ - numeric ex::max_coefficient(void) const { - ASSERT(bp!=0); - return bp->max_coefficient(); + GINAC_ASSERT(bp!=0); + return bp->max_coefficient(); } +/** Implementation ex::max_coefficient(). + * @see heur_gcd */ numeric basic::max_coefficient(void) const { - return numONE(); + return _num1; } numeric numeric::max_coefficient(void) const { - return abs(*this); + return abs(*this); } numeric add::max_coefficient(void) const { - epvector::const_iterator it = seq.begin(); - epvector::const_iterator itend = seq.end(); - ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); - numeric cur_max = abs(ex_to_numeric(overall_coeff)); - while (it != itend) { - numeric a; - ASSERT(!is_ex_exactly_of_type(it->rest,numeric)); - a = abs(ex_to_numeric(it->coeff)); - if (a > cur_max) - cur_max = a; - it++; - } - return cur_max; + epvector::const_iterator it = seq.begin(); + epvector::const_iterator itend = seq.end(); + GINAC_ASSERT(is_exactly_a(overall_coeff)); + numeric cur_max = abs(ex_to(overall_coeff)); + while (it != itend) { + numeric a; + GINAC_ASSERT(!is_exactly_a(it->rest)); + a = abs(ex_to(it->coeff)); + if (a > cur_max) + cur_max = a; + it++; + } + return cur_max; } numeric mul::max_coefficient(void) const { -#ifdef DOASSERT - epvector::const_iterator it = seq.begin(); - epvector::const_iterator itend = seq.end(); - while (it != itend) { - ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric)); - it++; - } -#endif // def DOASSERT - ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); - return abs(ex_to_numeric(overall_coeff)); +#ifdef DO_GINAC_ASSERT + epvector::const_iterator it = seq.begin(); + epvector::const_iterator itend = seq.end(); + while (it != itend) { + GINAC_ASSERT(!is_exactly_a(recombine_pair_to_ex(*it))); + it++; + } +#endif // def DO_GINAC_ASSERT + GINAC_ASSERT(is_exactly_a(overall_coeff)); + return abs(ex_to(overall_coeff)); } -/** Apply symmetric modular homomorphism to a multivariate polynomial. - * This function is used internally by heur_gcd(). +/** Apply symmetric modular homomorphism to an expanded multivariate + * polynomial. This function is usually used internally by heur_gcd(). * - * @param e expanded multivariate polynomial * @param xi modulus * @return mapped polynomial * @see heur_gcd */ - -ex ex::smod(const numeric &xi) const -{ - ASSERT(bp!=0); - return bp->smod(xi); -} - ex basic::smod(const numeric &xi) const { - return *this; + return *this; } ex numeric::smod(const numeric &xi) const { - return GiNaC::smod(*this, xi); + return GiNaC::smod(*this, xi); } ex add::smod(const numeric &xi) const { - epvector newseq; - newseq.reserve(seq.size()+1); - epvector::const_iterator it = seq.begin(); - epvector::const_iterator itend = seq.end(); - while (it != itend) { - ASSERT(!is_ex_exactly_of_type(it->rest,numeric)); - numeric coeff = GiNaC::smod(ex_to_numeric(it->coeff), xi); - if (!coeff.is_zero()) - newseq.push_back(expair(it->rest, coeff)); - it++; - } - ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); - numeric coeff = GiNaC::smod(ex_to_numeric(overall_coeff), xi); - return (new add(newseq,coeff))->setflag(status_flags::dynallocated); + epvector newseq; + newseq.reserve(seq.size()+1); + epvector::const_iterator it = seq.begin(); + epvector::const_iterator itend = seq.end(); + while (it != itend) { + GINAC_ASSERT(!is_exactly_a(it->rest)); + numeric coeff = GiNaC::smod(ex_to(it->coeff), xi); + if (!coeff.is_zero()) + newseq.push_back(expair(it->rest, coeff)); + it++; + } + GINAC_ASSERT(is_exactly_a(overall_coeff)); + numeric coeff = GiNaC::smod(ex_to(overall_coeff), xi); + return (new add(newseq,coeff))->setflag(status_flags::dynallocated); } ex mul::smod(const numeric &xi) const { -#ifdef DOASSERT - epvector::const_iterator it = seq.begin(); - epvector::const_iterator itend = seq.end(); - while (it != itend) { - ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric)); - it++; - } -#endif // def DOASSERT - mul * mulcopyp=new mul(*this); - ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); - mulcopyp->overall_coeff = GiNaC::smod(ex_to_numeric(overall_coeff),xi); - mulcopyp->clearflag(status_flags::evaluated); - mulcopyp->clearflag(status_flags::hash_calculated); - return mulcopyp->setflag(status_flags::dynallocated); +#ifdef DO_GINAC_ASSERT + epvector::const_iterator it = seq.begin(); + epvector::const_iterator itend = seq.end(); + while (it != itend) { + GINAC_ASSERT(!is_exactly_a(recombine_pair_to_ex(*it))); + it++; + } +#endif // def DO_GINAC_ASSERT + mul * mulcopyp = new mul(*this); + GINAC_ASSERT(is_exactly_a(overall_coeff)); + mulcopyp->overall_coeff = GiNaC::smod(ex_to(overall_coeff),xi); + mulcopyp->clearflag(status_flags::evaluated); + mulcopyp->clearflag(status_flags::hash_calculated); + return mulcopyp->setflag(status_flags::dynallocated); } -/** Exception thrown by heur_gcd() to signal failure */ +/** xi-adic polynomial interpolation */ +static ex interpolate(const ex &gamma, const numeric &xi, const symbol &x, int degree_hint = 1) +{ + exvector g; g.reserve(degree_hint); + ex e = gamma; + numeric rxi = xi.inverse(); + for (int i=0; !e.is_zero(); i++) { + ex gi = e.smod(xi); + g.push_back(gi * power(x, i)); + e = (e - gi) * rxi; + } + return (new add(g))->setflag(status_flags::dynallocated); +} + +/** Exception thrown by heur_gcd() to signal failure. */ class gcdheu_failed {}; /** Compute GCD of multivariate polynomials using the heuristic GCD algorithm. @@ -966,75 +1344,108 @@ class gcdheu_failed {}; * @return the GCD as a new expression * @see gcd * @exception gcdheu_failed() */ - static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const_iterator var) { - if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) { - numeric g = gcd(ex_to_numeric(a), ex_to_numeric(b)); - numeric rg; - if (ca || cb) - rg = g.inverse(); - if (ca) - *ca = ex_to_numeric(a).mul(rg); - if (cb) - *cb = ex_to_numeric(b).mul(rg); - return g; - } - - // The first symbol is our main variable - const symbol *x = var->sym; - - // Remove integer content - numeric gc = gcd(a.integer_content(), b.integer_content()); - numeric rgc = gc.inverse(); - ex p = a * rgc; - ex q = b * rgc; - int maxdeg = max(p.degree(*x), q.degree(*x)); - - // Find evaluation point - numeric mp = p.max_coefficient(), mq = q.max_coefficient(); - numeric xi; - if (mp > mq) - xi = mq * numTWO() + numTWO(); - else - xi = mp * numTWO() + numTWO(); - - // 6 tries maximum - for (int t=0; t<6; t++) { - if (xi.int_length() * maxdeg > 50000) - throw gcdheu_failed(); - - // Apply evaluation homomorphism and calculate GCD - ex gamma = heur_gcd(p.subs(*x == xi), q.subs(*x == xi), NULL, NULL, var+1).expand(); - if (!is_ex_exactly_of_type(gamma, fail)) { - - // Reconstruct polynomial from GCD of mapped polynomials - ex g = exZERO(); - numeric rxi = xi.inverse(); - for (int i=0; !gamma.is_zero(); i++) { - ex gi = gamma.smod(xi); - g += gi * power(*x, i); - gamma = (gamma - gi) * rxi; - } - // Remove integer content - g /= g.integer_content(); - - // If the calculated polynomial divides both a and b, this is the GCD - ex dummy; - if (divide_in_z(p, g, ca ? *ca : dummy, var) && divide_in_z(q, g, cb ? *cb : dummy, var)) { - g *= gc; - ex lc = g.lcoeff(*x); - if (is_ex_exactly_of_type(lc, numeric) && lc.compare(exZERO()) < 0) - return -g; - else - return g; - } - } - - // Next evaluation point - xi = iquo(xi * isqrt(isqrt(xi)) * numeric(73794), numeric(27011)); - } - return *new ex(fail()); +//std::clog << "heur_gcd(" << a << "," << b << ")\n"; +#if STATISTICS + heur_gcd_called++; +#endif + + // Algorithm only works for non-vanishing input polynomials + if (a.is_zero() || b.is_zero()) + return (new fail())->setflag(status_flags::dynallocated); + + // GCD of two numeric values -> CLN + if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) { + numeric g = gcd(ex_to(a), ex_to(b)); + if (ca) + *ca = ex_to(a) / g; + if (cb) + *cb = ex_to(b) / g; + return g; + } + + // The first symbol is our main variable + const symbol &x = *(var->sym); + + // Remove integer content + numeric gc = gcd(a.integer_content(), b.integer_content()); + numeric rgc = gc.inverse(); + ex p = a * rgc; + ex q = b * rgc; + int maxdeg = std::max(p.degree(x), q.degree(x)); + + // Find evaluation point + numeric mp = p.max_coefficient(); + numeric mq = q.max_coefficient(); + numeric xi; + if (mp > mq) + xi = mq * _num2 + _num2; + else + xi = mp * _num2 + _num2; + + // 6 tries maximum + for (int t=0; t<6; t++) { + if (xi.int_length() * maxdeg > 100000) { +//std::clog << "giving up heur_gcd, xi.int_length = " << xi.int_length() << ", maxdeg = " << maxdeg << std::endl; + throw gcdheu_failed(); + } + + // Apply evaluation homomorphism and calculate GCD + ex cp, cq; + ex gamma = heur_gcd(p.subs(x == xi), q.subs(x == xi), &cp, &cq, var+1).expand(); + if (!is_ex_exactly_of_type(gamma, fail)) { + + // Reconstruct polynomial from GCD of mapped polynomials + ex g = interpolate(gamma, xi, x, maxdeg); + + // Remove integer content + g /= g.integer_content(); + + // If the calculated polynomial divides both p and q, this is the GCD + ex dummy; + if (divide_in_z(p, g, ca ? *ca : dummy, var) && divide_in_z(q, g, cb ? *cb : dummy, var)) { + g *= gc; + ex lc = g.lcoeff(x); + if (is_ex_exactly_of_type(lc, numeric) && ex_to(lc).is_negative()) + return -g; + else + return g; + } +#if 0 + cp = interpolate(cp, xi, x); + if (divide_in_z(cp, p, g, var)) { + if (divide_in_z(g, q, cb ? *cb : dummy, var)) { + g *= gc; + if (ca) + *ca = cp; + ex lc = g.lcoeff(x); + if (is_ex_exactly_of_type(lc, numeric) && ex_to(lc).is_negative()) + return -g; + else + return g; + } + } + cq = interpolate(cq, xi, x); + if (divide_in_z(cq, q, g, var)) { + if (divide_in_z(g, p, ca ? *ca : dummy, var)) { + g *= gc; + if (cb) + *cb = cq; + ex lc = g.lcoeff(x); + if (is_ex_exactly_of_type(lc, numeric) && ex_to(lc).is_negative()) + return -g; + else + return g; + } + } +#endif + } + + // Next evaluation point + xi = iquo(xi * isqrt(isqrt(xi)) * numeric(73794), numeric(27011)); + } + return (new fail())->setflag(status_flags::dynallocated); } @@ -1046,105 +1457,235 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const * @param check_args check whether a and b are polynomials with rational * coefficients (defaults to "true") * @return the GCD as a new expression */ - ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args) { - // Some trivial cases - if (a.is_zero()) { - if (ca) - *ca = exZERO(); - if (cb) - *cb = exONE(); - return b; - } - if (b.is_zero()) { - if (ca) - *ca = exONE(); - if (cb) - *cb = exZERO(); - return a; - } - if (a.is_equal(exONE()) || b.is_equal(exONE())) { - if (ca) - *ca = a; - if (cb) - *cb = b; - return exONE(); - } +//std::clog << "gcd(" << a << "," << b << ")\n"; +#if STATISTICS + gcd_called++; +#endif + + // GCD of numerics -> CLN + if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) { + numeric g = gcd(ex_to(a), ex_to(b)); + if (ca || cb) { + if (g.is_zero()) { + if (ca) + *ca = _ex0; + if (cb) + *cb = _ex0; + } else { + if (ca) + *ca = ex_to(a) / g; + if (cb) + *cb = ex_to(b) / g; + } + } + return g; + } + + // Check arguments + if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) { + throw(std::invalid_argument("gcd: arguments must be polynomials over the rationals")); + } + + // Partially factored cases (to avoid expanding large expressions) + if (is_ex_exactly_of_type(a, mul)) { + if (is_ex_exactly_of_type(b, mul) && b.nops() > a.nops()) + goto factored_b; +factored_a: + unsigned num = a.nops(); + exvector g; g.reserve(num); + exvector acc_ca; acc_ca.reserve(num); + ex part_b = b; + for (unsigned i=0; isetflag(status_flags::dynallocated); + if (cb) + *cb = part_b; + return (new mul(g))->setflag(status_flags::dynallocated); + } else if (is_ex_exactly_of_type(b, mul)) { + if (is_ex_exactly_of_type(a, mul) && a.nops() > b.nops()) + goto factored_a; +factored_b: + unsigned num = b.nops(); + exvector g; g.reserve(num); + exvector acc_cb; acc_cb.reserve(num); + ex part_a = a; + for (unsigned i=0; isetflag(status_flags::dynallocated); + return (new mul(g))->setflag(status_flags::dynallocated); + } + #if FAST_COMPARE - if (a.is_equal(b)) { - if (ca) - *ca = exONE(); - if (cb) - *cb = exONE(); - return a; - } + // Input polynomials of the form poly^n are sometimes also trivial + if (is_ex_exactly_of_type(a, power)) { + ex p = a.op(0); + if (is_ex_exactly_of_type(b, power)) { + if (p.is_equal(b.op(0))) { + // a = p^n, b = p^m, gcd = p^min(n, m) + ex exp_a = a.op(1), exp_b = b.op(1); + if (exp_a < exp_b) { + if (ca) + *ca = _ex1; + if (cb) + *cb = power(p, exp_b - exp_a); + return power(p, exp_a); + } else { + if (ca) + *ca = power(p, exp_a - exp_b); + if (cb) + *cb = _ex1; + return power(p, exp_b); + } + } + } else { + if (p.is_equal(b)) { + // a = p^n, b = p, gcd = p + if (ca) + *ca = power(p, a.op(1) - 1); + if (cb) + *cb = _ex1; + return p; + } + } + } else if (is_ex_exactly_of_type(b, power)) { + ex p = b.op(0); + if (p.is_equal(a)) { + // a = p, b = p^n, gcd = p + if (ca) + *ca = _ex1; + if (cb) + *cb = power(p, b.op(1) - 1); + return p; + } + } +#endif + + // Some trivial cases + ex aex = a.expand(), bex = b.expand(); + if (aex.is_zero()) { + if (ca) + *ca = _ex0; + if (cb) + *cb = _ex1; + return b; + } + if (bex.is_zero()) { + if (ca) + *ca = _ex1; + if (cb) + *cb = _ex0; + return a; + } + if (aex.is_equal(_ex1) || bex.is_equal(_ex1)) { + if (ca) + *ca = a; + if (cb) + *cb = b; + return _ex1; + } +#if FAST_COMPARE + if (a.is_equal(b)) { + if (ca) + *ca = _ex1; + if (cb) + *cb = _ex1; + return a; + } +#endif + + // Gather symbol statistics + sym_desc_vec sym_stats; + get_symbol_stats(a, b, sym_stats); + + // The symbol with least degree is our main variable + sym_desc_vec::const_iterator var = sym_stats.begin(); + const symbol &x = *(var->sym); + + // Cancel trivial common factor + int ldeg_a = var->ldeg_a; + int ldeg_b = var->ldeg_b; + int min_ldeg = std::min(ldeg_a,ldeg_b); + if (min_ldeg > 0) { + ex common = power(x, min_ldeg); +//std::clog << "trivial common factor " << common << std::endl; + return gcd((aex / common).expand(), (bex / common).expand(), ca, cb, false) * common; + } + + // Try to eliminate variables + if (var->deg_a == 0) { +//std::clog << "eliminating variable " << x << " from b" << std::endl; + ex c = bex.content(x); + ex g = gcd(aex, c, ca, cb, false); + if (cb) + *cb *= bex.unit(x) * bex.primpart(x, c); + return g; + } else if (var->deg_b == 0) { +//std::clog << "eliminating variable " << x << " from a" << std::endl; + ex c = aex.content(x); + ex g = gcd(c, bex, ca, cb, false); + if (ca) + *ca *= aex.unit(x) * aex.primpart(x, c); + return g; + } + + ex g; +#if 1 + // Try heuristic algorithm first, fall back to PRS if that failed + try { + g = heur_gcd(aex, bex, ca, cb, var); + } catch (gcdheu_failed) { + g = fail(); + } + if (is_ex_exactly_of_type(g, fail)) { +//std::clog << "heuristics failed" << std::endl; +#if STATISTICS + heur_gcd_failed++; #endif - if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) { - numeric g = gcd(ex_to_numeric(a), ex_to_numeric(b)); - if (ca) - *ca = ex_to_numeric(a) / g; - if (cb) - *cb = ex_to_numeric(b) / g; - return g; - } - if (check_args && !a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)) { - cerr << "a=" << a << endl; - cerr << "b=" << b << endl; - throw(std::invalid_argument("gcd: arguments must be polynomials over the rationals")); - } - - // Gather symbol statistics - sym_desc_vec sym_stats; - get_symbol_stats(a, b, sym_stats); - - // The symbol with least degree is our main variable - sym_desc_vec::const_iterator var = sym_stats.begin(); - const symbol *x = var->sym; - - // Cancel trivial common factor - int ldeg_a = var->ldeg_a; - int ldeg_b = var->ldeg_b; - int min_ldeg = min(ldeg_a, ldeg_b); - if (min_ldeg > 0) { - ex common = power(*x, min_ldeg); -//clog << "trivial common factor " << common << endl; - return gcd((a / common).expand(), (b / common).expand(), ca, cb, false) * common; - } - - // Try to eliminate variables - if (var->deg_a == 0) { -//clog << "eliminating variable " << *x << " from b" << endl; - ex c = b.content(*x); - ex g = gcd(a, c, ca, cb, false); - if (cb) - *cb *= b.unit(*x) * b.primpart(*x, c); - return g; - } else if (var->deg_b == 0) { -//clog << "eliminating variable " << *x << " from a" << endl; - ex c = a.content(*x); - ex g = gcd(c, b, ca, cb, false); - if (ca) - *ca *= a.unit(*x) * a.primpart(*x, c); - return g; - } - - // Try heuristic algorithm first, fall back to PRS if that failed - ex g; - try { - g = heur_gcd(a.expand(), b.expand(), ca, cb, var); - } catch (gcdheu_failed) { - g = *new ex(fail()); - } - if (is_ex_exactly_of_type(g, fail)) { -//clog << "heuristics failed\n"; - g = sr_gcd(a, b, x); - if (ca) - divide(a, g, *ca, false); - if (cb) - divide(b, g, *cb, false); - } - return g; +#endif +// g = heur_gcd(aex, bex, ca, cb, var); +// g = eu_gcd(aex, bex, &x); +// g = euprem_gcd(aex, bex, &x); +// g = peu_gcd(aex, bex, &x); +// g = red_gcd(aex, bex, &x); + g = sr_gcd(aex, bex, var); + if (g.is_equal(_ex1)) { + // Keep cofactors factored if possible + if (ca) + *ca = a; + if (cb) + *cb = b; + } else { + if (ca) + divide(aex, g, *ca, false); + if (cb) + divide(bex, g, *cb, false); + } +#if 1 + } else { + if (g.is_equal(_ex1)) { + // Keep cofactors factored if possible + if (ca) + *ca = a; + if (cb) + *cb = b; + } + } +#endif + return g; } @@ -1157,14 +1698,14 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args) * @return the LCM as a new expression */ ex lcm(const ex &a, const ex &b, bool check_args) { - if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) - return gcd(ex_to_numeric(a), ex_to_numeric(b)); - if (check_args && !a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)) - throw(std::invalid_argument("lcm: arguments must be polynomials over the rationals")); - - ex ca, cb; - ex g = gcd(a, b, &ca, &cb, false); - return ca * cb * g; + if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) + return lcm(ex_to(a), ex_to(b)); + if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) + throw(std::invalid_argument("lcm: arguments must be polynomials over the rationals")); + + ex ca, cb; + ex g = gcd(a, b, &ca, &cb, false); + return ca * cb * g; } @@ -1172,70 +1713,172 @@ ex lcm(const ex &a, const ex &b, bool check_args) * Square-free factorization */ -// Univariate GCD of polynomials in Q[x] (used internally by sqrfree()). -// a and b can be multivariate polynomials but they are treated as univariate polynomials in x. -static ex univariate_gcd(const ex &a, const ex &b, const symbol &x) +/** Compute square-free factorization of multivariate polynomial a(x) using + * Yun´s algorithm. Used internally by sqrfree(). + * + * @param a multivariate polynomial over Z[X], treated here as univariate + * polynomial in x. + * @param x variable to factor in + * @return vector of factors sorted in ascending degree */ +static exvector sqrfree_yun(const ex &a, const symbol &x) { - if (a.is_zero()) - return b; - if (b.is_zero()) - return a; - if (a.is_equal(exONE()) || b.is_equal(exONE())) - return exONE(); - if (is_ex_of_type(a, numeric) && is_ex_of_type(b, numeric)) - return gcd(ex_to_numeric(a), ex_to_numeric(b)); - if (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)) - throw(std::invalid_argument("univariate_gcd: arguments must be polynomials over the rationals")); - - // Euclidean algorithm - ex c, d, r; - if (a.degree(x) >= b.degree(x)) { - c = a; - d = b; - } else { - c = b; - d = a; - } - for (;;) { - r = rem(c, d, x, false); - if (r.is_zero()) - break; - c = d; - d = r; - } - return d / d.lcoeff(x); + exvector res; + ex w = a; + ex z = w.diff(x); + ex g = gcd(w, z); + if (g.is_equal(_ex1)) { + res.push_back(a); + return res; + } + ex y; + do { + w = quo(w, g, x); + y = quo(z, g, x); + z = y - w.diff(x); + g = gcd(w, z); + res.push_back(g); + } while (!z.is_zero()); + return res; } +/** Compute square-free factorization of multivariate polynomial in Q[X]. + * + * @param a multivariate polynomial over Q[X] + * @param x lst of variables to factor in, may be left empty for autodetection + * @return polynomial a in square-free factored form. */ +ex sqrfree(const ex &a, const lst &l) +{ + if (is_a(a) || // algorithm does not trap a==0 + is_a(a)) // shortcut + return a; + + // If no lst of variables to factorize in was specified we have to + // invent one now. Maybe one can optimize here by reversing the order + // or so, I don't know. + lst args; + if (l.nops()==0) { + sym_desc_vec sdv; + get_symbol_stats(a, _ex0, sdv); + sym_desc_vec::const_iterator it = sdv.begin(), itend = sdv.end(); + while (it != itend) { + args.append(*it->sym); + ++it; + } + } else { + args = l; + } -/** Compute square-free factorization of multivariate polynomial a(x) using - * Yun´s algorithm. + // Find the symbol to factor in at this stage + if (!is_ex_of_type(args.op(0), symbol)) + throw (std::runtime_error("sqrfree(): invalid factorization variable")); + const symbol &x = ex_to(args.op(0)); + + // convert the argument from something in Q[X] to something in Z[X] + const numeric lcm = lcm_of_coefficients_denominators(a); + const ex tmp = multiply_lcm(a,lcm); + + // find the factors + exvector factors = sqrfree_yun(tmp,x); + + // construct the next list of symbols with the first element popped + lst newargs = args; + newargs.remove_first(); + + // recurse down the factors in remaining variables + if (newargs.nops()>0) { + exvector::iterator i = factors.begin(); + while (i != factors.end()) { + *i = sqrfree(*i, newargs); + ++i; + } + } + + // Done with recursion, now construct the final result + ex result = _ex1; + exvector::const_iterator it = factors.begin(), itend = factors.end(); + for (int p = 1; it!=itend; ++it, ++p) + result *= power(*it, p); + + // Yun's algorithm does not account for constant factors. (For univariate + // polynomials it works only in the monic case.) We can correct this by + // inserting what has been lost back into the result. For completeness + // we'll also have to recurse down that factor in the remaining variables. + if (newargs.nops()>0) + result *= sqrfree(quo(tmp, result, x), newargs); + else + result *= quo(tmp, result, x); + + // Put in the reational overall factor again and return + return result * lcm.inverse(); +} + +/** Compute square-free partial fraction decomposition of rational function + * a(x). * - * @param a multivariate polynomial - * @param x variable to factor in - * @return factored polynomial */ -ex sqrfree(const ex &a, const symbol &x) + * @param a rational function over Z[x], treated as univariate polynomial + * in x + * @param x variable to factor in + * @return decomposed rational function */ +ex sqrfree_parfrac(const ex & a, const symbol & x) { - int i = 1; - ex res = exONE(); - ex b = a.diff(x); - ex c = univariate_gcd(a, b, x); - ex w; - if (c.is_equal(exONE())) { - w = a; - } else { - w = quo(a, c, x); - ex y = quo(b, c, x); - ex z = y - w.diff(x); - while (!z.is_zero()) { - ex g = univariate_gcd(w, z, x); - res *= power(g, i); - w = quo(w, g, x); - y = quo(z, g, x); - z = y - w.diff(x); - i++; - } - } - return res * power(w, i); + // Find numerator and denominator + ex nd = numer_denom(a); + ex numer = nd.op(0), denom = nd.op(1); +//clog << "numer = " << numer << ", denom = " << denom << endl; + + // Convert N(x)/D(x) -> Q(x) + R(x)/D(x), so degree(R) < degree(D) + ex red_poly = quo(numer, denom, x), red_numer = rem(numer, denom, x).expand(); +//clog << "red_poly = " << red_poly << ", red_numer = " << red_numer << endl; + + // Factorize denominator and compute cofactors + exvector yun = sqrfree_yun(denom, x); +//clog << "yun factors: " << exprseq(yun) << endl; + unsigned num_yun = yun.size(); + exvector factor; factor.reserve(num_yun); + exvector cofac; cofac.reserve(num_yun); + for (unsigned i=0; isetflag(status_flags::dynallocated); + else { + if (level == 1) + return (new lst(replace_with_symbol(*this, sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated); + else if (level == -max_recursion_level) + throw(std::runtime_error("max recursion level reached")); + else { + normal_map_function map_normal(level - 1); + return (new lst(replace_with_symbol(map(map_normal), sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated); + } + } } -/** Implementation of ex::normal() for symbols. This returns the unmodifies symbol. +/** Implementation of ex::normal() for symbols. This returns the unmodified symbol. * @see ex::normal */ ex symbol::normal(lst &sym_lst, lst &repl_lst, int level) const { - return *this; + return (new lst(*this, _ex1))->setflag(status_flags::dynallocated); } @@ -1288,53 +1980,57 @@ ex symbol::normal(lst &sym_lst, lst &repl_lst, int level) const * @see ex::normal */ ex numeric::normal(lst &sym_lst, lst &repl_lst, int level) const { - if (is_real()) - if (is_rational()) - return *this; - else - return replace_with_symbol(*this, sym_lst, repl_lst); - else { // complex - numeric re = real(), im = imag(); + numeric num = numer(); + ex numex = num; + + if (num.is_real()) { + if (!num.is_integer()) + numex = replace_with_symbol(numex, sym_lst, repl_lst); + } else { // complex + numeric re = num.real(), im = num.imag(); ex re_ex = re.is_rational() ? re : replace_with_symbol(re, sym_lst, repl_lst); ex im_ex = im.is_rational() ? im : replace_with_symbol(im, sym_lst, repl_lst); - return re_ex + im_ex * replace_with_symbol(I, sym_lst, repl_lst); + numex = re_ex + im_ex * replace_with_symbol(I, sym_lst, repl_lst); } -} + // Denominator is always a real integer (see numeric::denom()) + return (new lst(numex, denom()))->setflag(status_flags::dynallocated); +} -/* - * Helper function for fraction cancellation (returns cancelled fraction n/d) - */ +/** Fraction cancellation. + * @param n numerator + * @param d denominator + * @return cancelled fraction {n, d} as a list */ static ex frac_cancel(const ex &n, const ex &d) { - ex num = n; - ex den = d; - ex pre_factor = exONE(); - - // Handle special cases where numerator or denominator is 0 - if (num.is_zero()) - return exZERO(); - if (den.expand().is_zero()) - throw(std::overflow_error("frac_cancel: division by zero in frac_cancel")); - - // More special cases - if (is_ex_exactly_of_type(den, numeric)) - return num / den; - if (num.is_zero()) - return exZERO(); - - // Bring numerator and denominator to Z[X] by multiplying with - // LCM of all coefficients' denominators - ex num_lcm = lcm_of_coefficients_denominators(num); - ex den_lcm = lcm_of_coefficients_denominators(den); - num *= num_lcm; - den *= den_lcm; - pre_factor = den_lcm / num_lcm; - - // Cancel GCD from numerator and denominator - ex cnum, cden; - if (gcd(num, den, &cnum, &cden, false) != exONE()) { + ex num = n; + ex den = d; + numeric pre_factor = _num1; + +//std::clog << "frac_cancel num = " << num << ", den = " << den << std::endl; + + // Handle trivial case where denominator is 1 + if (den.is_equal(_ex1)) + return (new lst(num, den))->setflag(status_flags::dynallocated); + + // Handle special cases where numerator or denominator is 0 + if (num.is_zero()) + return (new lst(num, _ex1))->setflag(status_flags::dynallocated); + if (den.expand().is_zero()) + throw(std::overflow_error("frac_cancel: division by zero in frac_cancel")); + + // Bring numerator and denominator to Z[X] by multiplying with + // LCM of all coefficients' denominators + numeric num_lcm = lcm_of_coefficients_denominators(num); + numeric den_lcm = lcm_of_coefficients_denominators(den); + num = multiply_lcm(num, num_lcm); + den = multiply_lcm(den, den_lcm); + pre_factor = den_lcm / num_lcm; + + // Cancel GCD from numerator and denominator + ex cnum, cden; + if (gcd(num, den, &cnum, &cden, false) != _ex1) { num = cnum; den = cden; } @@ -1343,12 +2039,16 @@ static ex frac_cancel(const ex &n, const ex &d) // as defined by get_first_symbol() is made positive) const symbol *x; if (get_first_symbol(den, x)) { - if (den.unit(*x).compare(exZERO()) < 0) { - num *= exMINUSONE(); - den *= exMINUSONE(); + GINAC_ASSERT(is_exactly_a(den.unit(*x))); + if (ex_to(den.unit(*x)).is_negative()) { + num *= _ex_1; + den *= _ex_1; } } - return pre_factor * num / den; + + // Return result as list +//std::clog << " returns num = " << num << ", den = " << den << ", pre_factor = " << pre_factor << std::endl; + return (new lst(num * pre_factor.numer(), den * pre_factor.denom()))->setflag(status_flags::dynallocated); } @@ -1357,51 +2057,57 @@ static ex frac_cancel(const ex &n, const ex &d) * @see ex::normal */ ex add::normal(lst &sym_lst, lst &repl_lst, int level) const { - // Normalize and expand children - exvector o; - o.reserve(seq.size()+1); - epvector::const_iterator it = seq.begin(), itend = seq.end(); - while (it != itend) { - ex n = recombine_pair_to_ex(*it).bp->normal(sym_lst, repl_lst, level-1).expand(); - if (is_ex_exactly_of_type(n, add)) { - epvector::const_iterator bit = (static_cast(n.bp))->seq.begin(), bitend = (static_cast(n.bp))->seq.end(); - while (bit != bitend) { - o.push_back(recombine_pair_to_ex(*bit)); - bit++; - } - o.push_back((static_cast(n.bp))->overall_coeff); - } else - o.push_back(n); - it++; - } - o.push_back(overall_coeff.bp->normal(sym_lst, repl_lst, level-1)); - - // Determine common denominator - ex den = exONE(); - exvector::const_iterator ait = o.begin(), aitend = o.end(); - while (ait != aitend) { - den = lcm((*ait).denom(false), den, false); - ait++; - } - - // Add fractions - if (den.is_equal(exONE())) - return (new add(o))->setflag(status_flags::dynallocated); - else { - exvector num_seq; - for (ait=o.begin(); ait!=aitend; ait++) { - ex q; - if (!divide(den, (*ait).denom(false), q, false)) { - // should not happen - throw(std::runtime_error("invalid expression in add::normal, division failed")); - } - num_seq.push_back((*ait).numer(false) * q); - } - ex num = add(num_seq); - - // Cancel common factors from num/den - return frac_cancel(num, den); - } + if (level == 1) + return (new lst(replace_with_symbol(*this, sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated); + else if (level == -max_recursion_level) + throw(std::runtime_error("max recursion level reached")); + + // Normalize children and split each one into numerator and denominator + exvector nums, dens; + nums.reserve(seq.size()+1); + dens.reserve(seq.size()+1); + epvector::const_iterator it = seq.begin(), itend = seq.end(); + while (it != itend) { + ex n = ex_to(recombine_pair_to_ex(*it)).normal(sym_lst, repl_lst, level-1); + nums.push_back(n.op(0)); + dens.push_back(n.op(1)); + it++; + } + ex n = ex_to(overall_coeff).normal(sym_lst, repl_lst, level-1); + nums.push_back(n.op(0)); + dens.push_back(n.op(1)); + GINAC_ASSERT(nums.size() == dens.size()); + + // Now, nums is a vector of all numerators and dens is a vector of + // all denominators +//std::clog << "add::normal uses " << nums.size() << " summands:\n"; + + // Add fractions sequentially + exvector::const_iterator num_it = nums.begin(), num_itend = nums.end(); + exvector::const_iterator den_it = dens.begin(), den_itend = dens.end(); +//std::clog << " num = " << *num_it << ", den = " << *den_it << std::endl; + ex num = *num_it++, den = *den_it++; + while (num_it != num_itend) { +//std::clog << " num = " << *num_it << ", den = " << *den_it << std::endl; + ex next_num = *num_it++, next_den = *den_it++; + + // Trivially add sequences of fractions with identical denominators + while ((den_it != den_itend) && next_den.is_equal(*den_it)) { + next_num += *num_it; + num_it++; den_it++; + } + + // Additiion of two fractions, taking advantage of the fact that + // the heuristic GCD algorithm computes the cofactors at no extra cost + ex co_den1, co_den2; + ex g = gcd(den, next_den, &co_den1, &co_den2, false); + num = ((num * co_den2) + (next_num * co_den1)).expand(); + den *= co_den2; // this is the lcm(den, next_den) + } +//std::clog << " common denominator = " << den << std::endl; + + // Cancel common factors from num/den + return frac_cancel(num, den); } @@ -1410,17 +2116,29 @@ ex add::normal(lst &sym_lst, lst &repl_lst, int level) const * @see ex::normal() */ ex mul::normal(lst &sym_lst, lst &repl_lst, int level) const { - // Normalize children - exvector o; - o.reserve(seq.size()+1); - epvector::const_iterator it = seq.begin(), itend = seq.end(); - while (it != itend) { - o.push_back(recombine_pair_to_ex(*it).bp->normal(sym_lst, repl_lst, level-1)); - it++; - } - o.push_back(overall_coeff.bp->normal(sym_lst, repl_lst, level-1)); - ex n = (new mul(o))->setflag(status_flags::dynallocated); - return frac_cancel(n.numer(false), n.denom(false)); + if (level == 1) + return (new lst(replace_with_symbol(*this, sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated); + else if (level == -max_recursion_level) + throw(std::runtime_error("max recursion level reached")); + + // Normalize children, separate into numerator and denominator + exvector num; num.reserve(seq.size()); + exvector den; den.reserve(seq.size()); + ex n; + epvector::const_iterator it = seq.begin(), itend = seq.end(); + while (it != itend) { + n = ex_to(recombine_pair_to_ex(*it)).normal(sym_lst, repl_lst, level-1); + num.push_back(n.op(0)); + den.push_back(n.op(1)); + it++; + } + n = ex_to(overall_coeff).normal(sym_lst, repl_lst, level-1); + num.push_back(n.op(0)); + den.push_back(n.op(1)); + + // Perform fraction cancellation + return frac_cancel((new mul(num))->setflag(status_flags::dynallocated), + (new mul(den))->setflag(status_flags::dynallocated)); } @@ -1430,36 +2148,73 @@ ex mul::normal(lst &sym_lst, lst &repl_lst, int level) const * @see ex::normal */ ex power::normal(lst &sym_lst, lst &repl_lst, int level) const { - if (exponent.info(info_flags::integer)) { - // Integer powers are distributed - ex n = basis.bp->normal(sym_lst, repl_lst, level-1); - ex num = n.numer(false); - ex den = n.denom(false); - return power(num, exponent) / power(den, exponent); - } else { - // Non-integer powers are replaced by temporary symbol (after normalizing basis) - ex n = power(basis.bp->normal(sym_lst, repl_lst, level-1), exponent); - return replace_with_symbol(n, sym_lst, repl_lst); - } + if (level == 1) + return (new lst(replace_with_symbol(*this, sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated); + else if (level == -max_recursion_level) + throw(std::runtime_error("max recursion level reached")); + + // Normalize basis and exponent (exponent gets reassembled) + ex n_basis = ex_to(basis).normal(sym_lst, repl_lst, level-1); + ex n_exponent = ex_to(exponent).normal(sym_lst, repl_lst, level-1); + n_exponent = n_exponent.op(0) / n_exponent.op(1); + + if (n_exponent.info(info_flags::integer)) { + + if (n_exponent.info(info_flags::positive)) { + + // (a/b)^n -> {a^n, b^n} + return (new lst(power(n_basis.op(0), n_exponent), power(n_basis.op(1), n_exponent)))->setflag(status_flags::dynallocated); + + } else if (n_exponent.info(info_flags::negative)) { + + // (a/b)^-n -> {b^n, a^n} + return (new lst(power(n_basis.op(1), -n_exponent), power(n_basis.op(0), -n_exponent)))->setflag(status_flags::dynallocated); + } + + } else { + + if (n_exponent.info(info_flags::positive)) { + + // (a/b)^x -> {sym((a/b)^x), 1} + return (new lst(replace_with_symbol(power(n_basis.op(0) / n_basis.op(1), n_exponent), sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated); + + } else if (n_exponent.info(info_flags::negative)) { + + if (n_basis.op(1).is_equal(_ex1)) { + + // a^-x -> {1, sym(a^x)} + return (new lst(_ex1, replace_with_symbol(power(n_basis.op(0), -n_exponent), sym_lst, repl_lst)))->setflag(status_flags::dynallocated); + + } else { + + // (a/b)^-x -> {sym((b/a)^x), 1} + return (new lst(replace_with_symbol(power(n_basis.op(1) / n_basis.op(0), -n_exponent), sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated); + } + + } else { // n_exponent not numeric + + // (a/b)^x -> {sym((a/b)^x, 1} + return (new lst(replace_with_symbol(power(n_basis.op(0) / n_basis.op(1), n_exponent), sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated); + } + } } -/** Implementation of ex::normal() for series. It normalizes each coefficient and - * replaces the series by a temporary symbol. +/** Implementation of ex::normal() for pseries. It normalizes each coefficient + * and replaces the series by a temporary symbol. * @see ex::normal */ -ex series::normal(lst &sym_lst, lst &repl_lst, int level) const +ex pseries::normal(lst &sym_lst, lst &repl_lst, int level) const { - epvector new_seq; - new_seq.reserve(seq.size()); - - epvector::const_iterator it = seq.begin(), itend = seq.end(); - while (it != itend) { - new_seq.push_back(expair(it->rest.normal(), it->coeff)); - it++; - } - - ex n = series(var, point, new_seq); - return replace_with_symbol(n, sym_lst, repl_lst); + epvector newseq; + epvector::const_iterator i = seq.begin(), end = seq.end(); + while (i != end) { + ex restexp = i->rest.normal(); + if (!restexp.is_zero()) + newseq.push_back(expair(restexp, i->coeff)); + ++i; + } + ex n = pseries(relational(var,point), newseq); + return (new lst(replace_with_symbol(n, sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated); } @@ -1467,8 +2222,8 @@ ex series::normal(lst &sym_lst, lst &repl_lst, int level) const * This function converts an expression to its normal form * "numerator/denominator", where numerator and denominator are (relatively * prime) polynomials. Any subexpressions which are not rational functions - * (like non-rational numbers, non-integer powers or functions like Sin(), - * Cos() etc.) are replaced by temporary symbols which are re-substituted by + * (like non-rational numbers, non-integer powers or functions like sin(), + * cos() etc.) are replaced by temporary symbols which are re-substituted by * the (normalized) subexpressions before normal() returns (this way, any * expression can be treated as a rational function). normal() is applied * recursively to arguments of functions etc. @@ -1477,12 +2232,155 @@ ex series::normal(lst &sym_lst, lst &repl_lst, int level) const * @return normalized expression */ ex ex::normal(int level) const { - lst sym_lst, repl_lst; - ex e = bp->normal(sym_lst, repl_lst, level); - if (sym_lst.nops() > 0) - return e.subs(sym_lst, repl_lst); - else - return e; + lst sym_lst, repl_lst; + + ex e = bp->normal(sym_lst, repl_lst, level); + GINAC_ASSERT(is_a(e)); + + // Re-insert replaced symbols + if (sym_lst.nops() > 0) + e = e.subs(sym_lst, repl_lst); + + // Convert {numerator, denominator} form back to fraction + return e.op(0) / e.op(1); +} + +/** Get numerator of an expression. If the expression is not of the normal + * form "numerator/denominator", it is first converted to this form and + * then the numerator is returned. + * + * @see ex::normal + * @return numerator */ +ex ex::numer(void) const +{ + lst sym_lst, repl_lst; + + ex e = bp->normal(sym_lst, repl_lst, 0); + GINAC_ASSERT(is_a(e)); + + // Re-insert replaced symbols + if (sym_lst.nops() > 0) + return e.op(0).subs(sym_lst, repl_lst); + else + return e.op(0); +} + +/** Get denominator of an expression. If the expression is not of the normal + * form "numerator/denominator", it is first converted to this form and + * then the denominator is returned. + * + * @see ex::normal + * @return denominator */ +ex ex::denom(void) const +{ + lst sym_lst, repl_lst; + + ex e = bp->normal(sym_lst, repl_lst, 0); + GINAC_ASSERT(is_a(e)); + + // Re-insert replaced symbols + if (sym_lst.nops() > 0) + return e.op(1).subs(sym_lst, repl_lst); + else + return e.op(1); +} + +/** Get numerator and denominator of an expression. If the expresison is not + * of the normal form "numerator/denominator", it is first converted to this + * form and then a list [numerator, denominator] is returned. + * + * @see ex::normal + * @return a list [numerator, denominator] */ +ex ex::numer_denom(void) const +{ + lst sym_lst, repl_lst; + + ex e = bp->normal(sym_lst, repl_lst, 0); + GINAC_ASSERT(is_a(e)); + + // Re-insert replaced symbols + if (sym_lst.nops() > 0) + return e.subs(sym_lst, repl_lst); + else + return e; +} + + +/** Rationalization of non-rational functions. + * This function converts a general expression to a rational polynomial + * by replacing all non-rational subexpressions (like non-rational numbers, + * non-integer powers or functions like sin(), cos() etc.) to temporary + * symbols. This makes it possible to use functions like gcd() and divide() + * on non-rational functions by applying to_rational() on the arguments, + * calling the desired function and re-substituting the temporary symbols + * in the result. To make the last step possible, all temporary symbols and + * their associated expressions are collected in the list specified by the + * repl_lst parameter in the form {symbol == expression}, ready to be passed + * as an argument to ex::subs(). + * + * @param repl_lst collects a list of all temporary symbols and their replacements + * @return rationalized expression */ +ex basic::to_rational(lst &repl_lst) const +{ + return replace_with_symbol(*this, repl_lst); +} + + +/** Implementation of ex::to_rational() for symbols. This returns the + * unmodified symbol. */ +ex symbol::to_rational(lst &repl_lst) const +{ + return *this; +} + + +/** Implementation of ex::to_rational() for a numeric. It splits complex + * numbers into re+I*im and replaces I and non-rational real numbers with a + * temporary symbol. */ +ex numeric::to_rational(lst &repl_lst) const +{ + if (is_real()) { + if (!is_rational()) + return replace_with_symbol(*this, repl_lst); + } else { // complex + numeric re = real(); + numeric im = imag(); + ex re_ex = re.is_rational() ? re : replace_with_symbol(re, repl_lst); + ex im_ex = im.is_rational() ? im : replace_with_symbol(im, repl_lst); + return re_ex + im_ex * replace_with_symbol(I, repl_lst); + } + return *this; } + +/** Implementation of ex::to_rational() for powers. It replaces non-integer + * powers by temporary symbols. */ +ex power::to_rational(lst &repl_lst) const +{ + if (exponent.info(info_flags::integer)) + return power(basis.to_rational(repl_lst), exponent); + else + return replace_with_symbol(*this, repl_lst); +} + + +/** Implementation of ex::to_rational() for expairseqs. */ +ex expairseq::to_rational(lst &repl_lst) const +{ + epvector s; + s.reserve(seq.size()); + epvector::const_iterator i = seq.begin(), end = seq.end(); + while (i != end) { + s.push_back(split_ex_to_pair(recombine_pair_to_ex(*i).to_rational(repl_lst))); + ++i; + } + ex oc = overall_coeff.to_rational(repl_lst); + if (oc.info(info_flags::numeric)) + return thisexpairseq(s, overall_coeff); + else + s.push_back(combine_ex_with_coeff_to_pair(oc, _ex1)); + return thisexpairseq(s, default_overall_coeff()); +} + + } // namespace GiNaC