X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fnormal.cpp;h=9e24b99bc12e68bb2a5cdcbe263d4637bd9c64ea;hp=82fcaf848dd250ea14106dab40a9b0d87b40edf2;hb=fc80c36140aaf126150b2dea811177d8af35dac3;hpb=9eab44408b9213d8909b7a9e525f404ad06064dd diff --git a/ginac/normal.cpp b/ginac/normal.cpp index 82fcaf84..9e24b99b 100644 --- a/ginac/normal.cpp +++ b/ginac/normal.cpp @@ -3,11 +3,10 @@ * This file implements several functions that work on univariate and * multivariate polynomials and rational functions. * These functions include polynomial quotient and remainder, GCD and LCM - * computation, square-free factorization and rational function normalization. - */ + * computation, square-free factorization and rational function normalization. */ /* - * GiNaC Copyright (C) 1999 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2000 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -43,10 +42,13 @@ #include "numeric.h" #include "power.h" #include "relational.h" -#include "series.h" +#include "pseries.h" #include "symbol.h" +#include "utils.h" +#ifndef NO_NAMESPACE_GINAC namespace GiNaC { +#endif // ndef NO_NAMESPACE_GINAC // If comparing expressions (ex::compare()) is fast, you can set this to 1. // Some routines like quo(), rem() and gcd() will then return a quick answer @@ -54,7 +56,34 @@ namespace GiNaC { #define FAST_COMPARE 1 // Set this if you want divide_in_z() to use remembering -#define USE_REMEMBER 1 +#define USE_REMEMBER 0 + +// Set this if you want divide_in_z() to use trial division followed by +// polynomial interpolation (usually slower except for very large problems) +#define USE_TRIAL_DIVISION 0 + +// Set this to enable some statistical output for the GCD routines +#define STATISTICS 0 + + +#if STATISTICS +// Statistics variables +static int gcd_called = 0; +static int sr_gcd_called = 0; +static int heur_gcd_called = 0; +static int heur_gcd_failed = 0; + +// Print statistics at end of program +static struct _stat_print { + _stat_print() {} + ~_stat_print() { + cout << "gcd() called " << gcd_called << " times\n"; + cout << "sr_gcd() called " << sr_gcd_called << " times\n"; + cout << "heur_gcd() called " << heur_gcd_called << " times\n"; + cout << "heur_gcd() failed " << heur_gcd_failed << " times\n"; + } +} stat_print; +#endif /** Return pointer to first symbol found in expression. Due to GiNaCĀ“s @@ -71,7 +100,7 @@ static bool get_first_symbol(const ex &e, const symbol *&x) x = static_cast(e.bp); return true; } else if (is_ex_exactly_of_type(e, add) || is_ex_exactly_of_type(e, mul)) { - for (int i=0; i(e.bp), v); } else if (is_ex_exactly_of_type(e, add) || is_ex_exactly_of_type(e, mul)) { - for (int i=0; isym)); it->deg_a = deg_a; it->deg_b = deg_b; - it->min_deg = min(deg_a, deg_b); + it->max_deg = max(deg_a, deg_b); it->ldeg_a = a.ldegree(*(it->sym)); it->ldeg_b = b.ldegree(*(it->sym)); it++; } sort(v.begin(), v.end()); +#if 0 + clog << "Symbols:\n"; + it = v.begin(); itend = v.end(); + while (it != itend) { + clog << " " << *it->sym << ": deg_a=" << it->deg_a << ", deg_b=" << it->deg_b << ", ldeg_a=" << it->ldeg_a << ", ldeg_b=" << it->ldeg_b << ", max_deg=" << it->max_deg << endl; + clog << " lcoeff_a=" << a.lcoeff(*(it->sym)) << ", lcoeff_b=" << b.lcoeff(*(it->sym)) << endl; + it++; + } +#endif } @@ -187,28 +225,61 @@ static numeric lcmcoeff(const ex &e, const numeric &l) { if (e.info(info_flags::rational)) return lcm(ex_to_numeric(e).denom(), l); - else if (is_ex_exactly_of_type(e, add) || is_ex_exactly_of_type(e, mul)) { - numeric c = numONE(); - for (int i=0; iinteger_content(); } numeric basic::integer_content(void) const { - return numONE(); + return _num1(); } numeric numeric::integer_content(void) const @@ -238,29 +309,29 @@ numeric add::integer_content(void) const { epvector::const_iterator it = seq.begin(); epvector::const_iterator itend = seq.end(); - numeric c = numZERO(); + numeric c = _num0(); while (it != itend) { - ASSERT(!is_ex_exactly_of_type(it->rest,numeric)); - ASSERT(is_ex_exactly_of_type(it->coeff,numeric)); + GINAC_ASSERT(!is_ex_exactly_of_type(it->rest,numeric)); + GINAC_ASSERT(is_ex_exactly_of_type(it->coeff,numeric)); c = gcd(ex_to_numeric(it->coeff), c); it++; } - ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); + GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); c = gcd(ex_to_numeric(overall_coeff),c); return c; } numeric mul::integer_content(void) const { -#ifdef DOASSERT +#ifdef DO_GINAC_ASSERT epvector::const_iterator it = seq.begin(); epvector::const_iterator itend = seq.end(); while (it != itend) { - ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric)); + GINAC_ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric)); ++it; } -#endif // def DOASSERT - ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); +#endif // def DO_GINAC_ASSERT + GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); return abs(ex_to_numeric(overall_coeff)); } @@ -287,13 +358,13 @@ ex quo(const ex &a, const ex &b, const symbol &x, bool check_args) return a / b; #if FAST_COMPARE if (a.is_equal(b)) - return exONE(); + return _ex1(); #endif if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) throw(std::invalid_argument("quo: arguments must be polynomials over the rationals")); // Polynomial long division - ex q = exZERO(); + ex q = _ex0(); ex r = a.expand(); if (r.is_zero()) return r; @@ -336,13 +407,13 @@ ex rem(const ex &a, const ex &b, const symbol &x, bool check_args) throw(std::overflow_error("rem: division by zero")); if (is_ex_exactly_of_type(a, numeric)) { if (is_ex_exactly_of_type(b, numeric)) - return exZERO(); + return _ex0(); else return b; } #if FAST_COMPARE if (a.is_equal(b)) - return exZERO(); + return _ex0(); #endif if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) throw(std::invalid_argument("rem: arguments must be polynomials over the rationals")); @@ -388,7 +459,7 @@ ex prem(const ex &a, const ex &b, const symbol &x, bool check_args) throw(std::overflow_error("prem: division by zero")); if (is_ex_exactly_of_type(a, numeric)) { if (is_ex_exactly_of_type(b, numeric)) - return exZERO(); + return _ex0(); else return b; } @@ -404,18 +475,18 @@ ex prem(const ex &a, const ex &b, const symbol &x, bool check_args) if (bdeg <= rdeg) { blcoeff = eb.coeff(x, bdeg); if (bdeg == 0) - eb = exZERO(); + eb = _ex0(); else eb -= blcoeff * power(x, bdeg); } else - blcoeff = exONE(); + blcoeff = _ex1(); int delta = rdeg - bdeg + 1, i = 0; while (rdeg >= bdeg && !r.is_zero()) { ex rlcoeff = r.coeff(x, rdeg); ex term = (power(x, rdeg - bdeg) * eb * rlcoeff).expand(); if (rdeg == 0) - r = exZERO(); + r = _ex0(); else r -= rlcoeff * power(x, rdeg); r = (blcoeff * r).expand() - term; @@ -438,9 +509,11 @@ ex prem(const ex &a, const ex &b, const symbol &x, bool check_args) bool divide(const ex &a, const ex &b, ex &q, bool check_args) { - q = exZERO(); + q = _ex0(); if (b.is_zero()) throw(std::overflow_error("divide: division by zero")); + if (a.is_zero()) + return true; if (is_ex_exactly_of_type(b, numeric)) { q = a / b; return true; @@ -448,7 +521,7 @@ bool divide(const ex &a, const ex &b, ex &q, bool check_args) return false; #if FAST_COMPARE if (a.is_equal(b)) { - q = exONE(); + q = _ex1(); return true; } #endif @@ -523,10 +596,10 @@ typedef map ex2_exbool_remember; * @see get_symbol_stats, heur_gcd */ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_iterator var) { - q = exZERO(); + q = _ex0(); if (b.is_zero()) throw(std::overflow_error("divide_in_z: division by zero")); - if (b.is_equal(exONE())) { + if (b.is_equal(_ex1())) { q = a; return true; } @@ -539,7 +612,7 @@ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_ite } #if FAST_COMPARE if (a.is_equal(b)) { - q = exONE(); + q = _ex1(); return true; } #endif @@ -562,61 +635,32 @@ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_ite if (bdeg > adeg) return false; -#if 1 +#if USE_TRIAL_DIVISION - // Polynomial long division (recursive) - ex r = a.expand(); - if (r.is_zero()) - return true; - int rdeg = adeg; - ex eb = b.expand(); - ex blcoeff = eb.coeff(*x, bdeg); - while (rdeg >= bdeg) { - ex term, rcoeff = r.coeff(*x, rdeg); - if (!divide_in_z(rcoeff, blcoeff, term, var+1)) - break; - term = (term * power(*x, rdeg - bdeg)).expand(); - q += term; - r -= (term * eb).expand(); - if (r.is_zero()) { -#if USE_REMEMBER - dr_remember[ex2(a, b)] = exbool(q, true); -#endif - return true; - } - rdeg = r.degree(*x); - } -#if USE_REMEMBER - dr_remember[ex2(a, b)] = exbool(q, false); -#endif - return false; - -#else - - // Trial division using polynomial interpolation + // Trial division with polynomial interpolation int i, k; // Compute values at evaluation points 0..adeg vector alpha; alpha.reserve(adeg + 1); exvector u; u.reserve(adeg + 1); - numeric point = numZERO(); + numeric point = _num0(); ex c; for (i=0; i<=adeg; i++) { ex bs = b.subs(*x == point); while (bs.is_zero()) { - point += numONE(); + point += _num1(); bs = b.subs(*x == point); } if (!divide_in_z(a.subs(*x == point), bs, c, var+1)) return false; alpha.push_back(point); u.push_back(c); - point += numONE(); + point += _num1(); } // Compute inverses vector rcp; rcp.reserve(adeg + 1); - rcp.push_back(0); + rcp.push_back(_num0()); for (k=1; k<=adeg; k++) { numeric product = alpha[k] - alpha[0]; for (i=1; i= bdeg) { + ex term, rcoeff = r.coeff(*x, rdeg); + if (!divide_in_z(rcoeff, blcoeff, term, var+1)) + break; + term = (term * power(*x, rdeg - bdeg)).expand(); + q += term; + r -= (term * eb).expand(); + if (r.is_zero()) { +#if USE_REMEMBER + dr_remember[ex2(a, b)] = exbool(q, true); +#endif + return true; + } + rdeg = r.degree(*x); + } +#if USE_REMEMBER + dr_remember[ex2(a, b)] = exbool(q, false); +#endif + return false; + #endif } @@ -663,7 +737,7 @@ ex ex::unit(const symbol &x) const { ex c = expand().lcoeff(x); if (is_ex_exactly_of_type(c, numeric)) - return c < exZERO() ? exMINUSONE() : exONE(); + return c < _ex0() ? _ex_1() : _ex1(); else { const symbol *y; if (get_first_symbol(c, y)) @@ -684,12 +758,12 @@ ex ex::unit(const symbol &x) const ex ex::content(const symbol &x) const { if (is_zero()) - return exZERO(); + return _ex0(); if (is_ex_exactly_of_type(*this, numeric)) return info(info_flags::negative) ? -*this : *this; ex e = expand(); if (e.is_zero()) - return exZERO(); + return _ex0(); // First, try the integer content ex c = e.integer_content(); @@ -703,7 +777,7 @@ ex ex::content(const symbol &x) const int ldeg = e.ldegree(x); if (deg == ldeg) return e.lcoeff(x) / e.unit(x); - c = exZERO(); + c = _ex0(); for (int i=ldeg; i<=deg; i++) c = gcd(e.coeff(x, i), c, NULL, NULL, false); return c; @@ -720,13 +794,13 @@ ex ex::content(const symbol &x) const ex ex::primpart(const symbol &x) const { if (is_zero()) - return exZERO(); + return _ex0(); if (is_ex_exactly_of_type(*this, numeric)) - return exONE(); + return _ex1(); ex c = content(x); if (c.is_zero()) - return exZERO(); + return _ex0(); ex u = unit(x); if (is_ex_exactly_of_type(c, numeric)) return *this / (c * u); @@ -746,11 +820,11 @@ ex ex::primpart(const symbol &x) const ex ex::primpart(const symbol &x, const ex &c) const { if (is_zero()) - return exZERO(); + return _ex0(); if (c.is_zero()) - return exZERO(); + return _ex0(); if (is_ex_exactly_of_type(*this, numeric)) - return exONE(); + return _ex1(); ex u = unit(x); if (is_ex_exactly_of_type(c, numeric)) @@ -764,8 +838,201 @@ ex ex::primpart(const symbol &x, const ex &c) const * GCD of multivariate polynomials */ +/** Compute GCD of multivariate polynomials using the Euclidean PRS algorithm + * (not really suited for multivariate GCDs). This function is only provided + * for testing purposes. + * + * @param a first multivariate polynomial + * @param b second multivariate polynomial + * @param x pointer to symbol (main variable) in which to compute the GCD in + * @return the GCD as a new expression + * @see gcd */ + +static ex eu_gcd(const ex &a, const ex &b, const symbol *x) +{ +//clog << "eu_gcd(" << a << "," << b << ")\n"; + + // Sort c and d so that c has higher degree + ex c, d; + int adeg = a.degree(*x), bdeg = b.degree(*x); + if (adeg >= bdeg) { + c = a; + d = b; + } else { + c = b; + d = a; + } + + // Euclidean algorithm + ex r; + for (;;) { +//clog << " d = " << d << endl; + r = rem(c, d, *x, false); + if (r.is_zero()) + return d.primpart(*x); + c = d; + d = r; + } +} + + +/** Compute GCD of multivariate polynomials using the Euclidean PRS algorithm + * with pseudo-remainders ("World's Worst GCD Algorithm", staying in Z[X]). + * This function is only provided for testing purposes. + * + * @param a first multivariate polynomial + * @param b second multivariate polynomial + * @param x pointer to symbol (main variable) in which to compute the GCD in + * @return the GCD as a new expression + * @see gcd */ + +static ex euprem_gcd(const ex &a, const ex &b, const symbol *x) +{ +//clog << "euprem_gcd(" << a << "," << b << ")\n"; + + // Sort c and d so that c has higher degree + ex c, d; + int adeg = a.degree(*x), bdeg = b.degree(*x); + if (adeg >= bdeg) { + c = a; + d = b; + } else { + c = b; + d = a; + } + + // Euclidean algorithm with pseudo-remainders + ex r; + for (;;) { +//clog << " d = " << d << endl; + r = prem(c, d, *x, false); + if (r.is_zero()) + return d.primpart(*x); + c = d; + d = r; + } +} + + +/** Compute GCD of multivariate polynomials using the primitive Euclidean + * PRS algorithm (complete content removal at each step). This function is + * only provided for testing purposes. + * + * @param a first multivariate polynomial + * @param b second multivariate polynomial + * @param x pointer to symbol (main variable) in which to compute the GCD in + * @return the GCD as a new expression + * @see gcd */ + +static ex peu_gcd(const ex &a, const ex &b, const symbol *x) +{ +//clog << "peu_gcd(" << a << "," << b << ")\n"; + + // Sort c and d so that c has higher degree + ex c, d; + int adeg = a.degree(*x), bdeg = b.degree(*x); + int ddeg; + if (adeg >= bdeg) { + c = a; + d = b; + ddeg = bdeg; + } else { + c = b; + d = a; + ddeg = adeg; + } + + // Remove content from c and d, to be attached to GCD later + ex cont_c = c.content(*x); + ex cont_d = d.content(*x); + ex gamma = gcd(cont_c, cont_d, NULL, NULL, false); + if (ddeg == 0) + return gamma; + c = c.primpart(*x, cont_c); + d = d.primpart(*x, cont_d); + + // Euclidean algorithm with content removal + ex r; + for (;;) { +//clog << " d = " << d << endl; + r = prem(c, d, *x, false); + if (r.is_zero()) + return gamma * d; + c = d; + d = r.primpart(*x); + } +} + + +/** Compute GCD of multivariate polynomials using the reduced PRS algorithm. + * This function is only provided for testing purposes. + * + * @param a first multivariate polynomial + * @param b second multivariate polynomial + * @param x pointer to symbol (main variable) in which to compute the GCD in + * @return the GCD as a new expression + * @see gcd */ + +static ex red_gcd(const ex &a, const ex &b, const symbol *x) +{ +//clog << "red_gcd(" << a << "," << b << ")\n"; + + // Sort c and d so that c has higher degree + ex c, d; + int adeg = a.degree(*x), bdeg = b.degree(*x); + int cdeg, ddeg; + if (adeg >= bdeg) { + c = a; + d = b; + cdeg = adeg; + ddeg = bdeg; + } else { + c = b; + d = a; + cdeg = bdeg; + ddeg = adeg; + } + + // Remove content from c and d, to be attached to GCD later + ex cont_c = c.content(*x); + ex cont_d = d.content(*x); + ex gamma = gcd(cont_c, cont_d, NULL, NULL, false); + if (ddeg == 0) + return gamma; + c = c.primpart(*x, cont_c); + d = d.primpart(*x, cont_d); + + // First element of subresultant sequence + ex r, ri = _ex1(); + int delta = cdeg - ddeg; + + for (;;) { + // Calculate polynomial pseudo-remainder +//clog << " d = " << d << endl; + r = prem(c, d, *x, false); + if (r.is_zero()) + return gamma * d.primpart(*x); + c = d; + cdeg = ddeg; + + if (!divide(r, pow(ri, delta), d, false)) + throw(std::runtime_error("invalid expression in red_gcd(), division failed")); + ddeg = d.degree(*x); + if (ddeg == 0) { + if (is_ex_exactly_of_type(r, numeric)) + return gamma; + else + return gamma * r.primpart(*x); + } + + ri = c.expand().lcoeff(*x); + delta = cdeg - ddeg; + } +} + + /** Compute GCD of multivariate polynomials using the subresultant PRS - * algorithm. This function is used internally gy gcd(). + * algorithm. This function is used internally by gcd(). * * @param a first multivariate polynomial * @param b second multivariate polynomial @@ -775,6 +1042,11 @@ ex ex::primpart(const symbol &x, const ex &c) const static ex sr_gcd(const ex &a, const ex &b, const symbol *x) { +//clog << "sr_gcd(" << a << "," << b << ")\n"; +#if STATISTICS + sr_gcd_called++; +#endif + // Sort c and d so that c has higher degree ex c, d; int adeg = a.degree(*x), bdeg = b.degree(*x); @@ -799,19 +1071,23 @@ static ex sr_gcd(const ex &a, const ex &b, const symbol *x) return gamma; c = c.primpart(*x, cont_c); d = d.primpart(*x, cont_d); +//clog << " content " << gamma << " removed, continuing with sr_gcd(" << c << "," << d << ")\n"; // First element of subresultant sequence - ex r = exZERO(), ri = exONE(), psi = exONE(); + ex r = _ex0(), ri = _ex1(), psi = _ex1(); int delta = cdeg - ddeg; for (;;) { // Calculate polynomial pseudo-remainder +//clog << " start of loop, psi = " << psi << ", calculating pseudo-remainder...\n"; +//clog << " d = " << d << endl; r = prem(c, d, *x, false); if (r.is_zero()) return gamma * d.primpart(*x); c = d; cdeg = ddeg; - if (!divide(r, ri * power(psi, delta), d, false)) +//clog << " dividing...\n"; + if (!divide(r, ri * pow(psi, delta), d, false)) throw(std::runtime_error("invalid expression in sr_gcd(), division failed")); ddeg = d.degree(*x); if (ddeg == 0) { @@ -822,11 +1098,12 @@ static ex sr_gcd(const ex &a, const ex &b, const symbol *x) } // Next element of subresultant sequence +//clog << " calculating next subresultant...\n"; ri = c.expand().lcoeff(*x); if (delta == 1) psi = ri; else if (delta) - divide(power(ri, delta), power(psi, delta-1), psi, false); + divide(pow(ri, delta), pow(psi, delta-1), psi, false); delta = cdeg - ddeg; } } @@ -841,13 +1118,13 @@ static ex sr_gcd(const ex &a, const ex &b, const symbol *x) numeric ex::max_coefficient(void) const { - ASSERT(bp!=0); + GINAC_ASSERT(bp!=0); return bp->max_coefficient(); } numeric basic::max_coefficient(void) const { - return numONE(); + return _num1(); } numeric numeric::max_coefficient(void) const @@ -859,11 +1136,11 @@ numeric add::max_coefficient(void) const { epvector::const_iterator it = seq.begin(); epvector::const_iterator itend = seq.end(); - ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); + GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); numeric cur_max = abs(ex_to_numeric(overall_coeff)); while (it != itend) { numeric a; - ASSERT(!is_ex_exactly_of_type(it->rest,numeric)); + GINAC_ASSERT(!is_ex_exactly_of_type(it->rest,numeric)); a = abs(ex_to_numeric(it->coeff)); if (a > cur_max) cur_max = a; @@ -874,15 +1151,15 @@ numeric add::max_coefficient(void) const numeric mul::max_coefficient(void) const { -#ifdef DOASSERT +#ifdef DO_GINAC_ASSERT epvector::const_iterator it = seq.begin(); epvector::const_iterator itend = seq.end(); while (it != itend) { - ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric)); + GINAC_ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric)); it++; } -#endif // def DOASSERT - ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); +#endif // def DO_GINAC_ASSERT + GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); return abs(ex_to_numeric(overall_coeff)); } @@ -897,7 +1174,7 @@ numeric mul::max_coefficient(void) const ex ex::smod(const numeric &xi) const { - ASSERT(bp!=0); + GINAC_ASSERT(bp!=0); return bp->smod(xi); } @@ -908,7 +1185,11 @@ ex basic::smod(const numeric &xi) const ex numeric::smod(const numeric &xi) const { +#ifndef NO_NAMESPACE_GINAC return GiNaC::smod(*this, xi); +#else // ndef NO_NAMESPACE_GINAC + return ::smod(*this, xi); +#endif // ndef NO_NAMESPACE_GINAC } ex add::smod(const numeric &xi) const @@ -918,37 +1199,49 @@ ex add::smod(const numeric &xi) const epvector::const_iterator it = seq.begin(); epvector::const_iterator itend = seq.end(); while (it != itend) { - ASSERT(!is_ex_exactly_of_type(it->rest,numeric)); + GINAC_ASSERT(!is_ex_exactly_of_type(it->rest,numeric)); +#ifndef NO_NAMESPACE_GINAC numeric coeff = GiNaC::smod(ex_to_numeric(it->coeff), xi); +#else // ndef NO_NAMESPACE_GINAC + numeric coeff = ::smod(ex_to_numeric(it->coeff), xi); +#endif // ndef NO_NAMESPACE_GINAC if (!coeff.is_zero()) newseq.push_back(expair(it->rest, coeff)); it++; } - ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); + GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); +#ifndef NO_NAMESPACE_GINAC numeric coeff = GiNaC::smod(ex_to_numeric(overall_coeff), xi); +#else // ndef NO_NAMESPACE_GINAC + numeric coeff = ::smod(ex_to_numeric(overall_coeff), xi); +#endif // ndef NO_NAMESPACE_GINAC return (new add(newseq,coeff))->setflag(status_flags::dynallocated); } ex mul::smod(const numeric &xi) const { -#ifdef DOASSERT +#ifdef DO_GINAC_ASSERT epvector::const_iterator it = seq.begin(); epvector::const_iterator itend = seq.end(); while (it != itend) { - ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric)); + GINAC_ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric)); it++; } -#endif // def DOASSERT +#endif // def DO_GINAC_ASSERT mul * mulcopyp=new mul(*this); - ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); + GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); +#ifndef NO_NAMESPACE_GINAC mulcopyp->overall_coeff = GiNaC::smod(ex_to_numeric(overall_coeff),xi); +#else // ndef NO_NAMESPACE_GINAC + mulcopyp->overall_coeff = ::smod(ex_to_numeric(overall_coeff),xi); +#endif // ndef NO_NAMESPACE_GINAC mulcopyp->clearflag(status_flags::evaluated); mulcopyp->clearflag(status_flags::hash_calculated); return mulcopyp->setflag(status_flags::dynallocated); } -/** Exception thrown by heur_gcd() to signal failure */ +/** Exception thrown by heur_gcd() to signal failure. */ class gcdheu_failed {}; /** Compute GCD of multivariate polynomials using the heuristic GCD algorithm. @@ -969,6 +1262,12 @@ class gcdheu_failed {}; static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const_iterator var) { +//clog << "heur_gcd(" << a << "," << b << ")\n"; +#if STATISTICS + heur_gcd_called++; +#endif + + // GCD of two numeric values -> CLN if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) { numeric g = gcd(ex_to_numeric(a), ex_to_numeric(b)); numeric rg; @@ -995,21 +1294,23 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const numeric mp = p.max_coefficient(), mq = q.max_coefficient(); numeric xi; if (mp > mq) - xi = mq * numTWO() + numTWO(); + xi = mq * _num2() + _num2(); else - xi = mp * numTWO() + numTWO(); + xi = mp * _num2() + _num2(); // 6 tries maximum for (int t=0; t<6; t++) { - if (xi.int_length() * maxdeg > 50000) + if (xi.int_length() * maxdeg > 100000) { +//clog << "giving up heur_gcd, xi.int_length = " << xi.int_length() << ", maxdeg = " << maxdeg << endl; throw gcdheu_failed(); + } // Apply evaluation homomorphism and calculate GCD ex gamma = heur_gcd(p.subs(*x == xi), q.subs(*x == xi), NULL, NULL, var+1).expand(); if (!is_ex_exactly_of_type(gamma, fail)) { // Reconstruct polynomial from GCD of mapped polynomials - ex g = exZERO(); + ex g = _ex0(); numeric rxi = xi.inverse(); for (int i=0; !gamma.is_zero(); i++) { ex gi = gamma.smod(xi); @@ -1024,7 +1325,7 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const if (divide_in_z(p, g, ca ? *ca : dummy, var) && divide_in_z(q, g, cb ? *cb : dummy, var)) { g *= gc; ex lc = g.lcoeff(*x); - if (is_ex_exactly_of_type(lc, numeric) && lc.compare(exZERO()) < 0) + if (is_ex_exactly_of_type(lc, numeric) && ex_to_numeric(lc).is_negative()) return -g; else return g; @@ -1049,50 +1350,142 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args) { +//clog << "gcd(" << a << "," << b << ")\n"; +#if STATISTICS + gcd_called++; +#endif + + // GCD of numerics -> CLN + if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) { + numeric g = gcd(ex_to_numeric(a), ex_to_numeric(b)); + if (ca) + *ca = ex_to_numeric(a) / g; + if (cb) + *cb = ex_to_numeric(b) / g; + return g; + } + + // Check arguments + if (check_args && !a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)) { + throw(std::invalid_argument("gcd: arguments must be polynomials over the rationals")); + } + + // Partially factored cases (to avoid expanding large expressions) + if (is_ex_exactly_of_type(a, mul)) { + if (is_ex_exactly_of_type(b, mul) && b.nops() > a.nops()) + goto factored_b; +factored_a: + ex g = _ex1(); + ex acc_ca = _ex1(); + ex part_b = b; + for (unsigned i=0; i b.nops()) + goto factored_a; +factored_b: + ex g = _ex1(); + ex acc_cb = _ex1(); + ex part_a = a; + for (unsigned i=0; i 0) { ex common = power(*x, min_ldeg); //clog << "trivial common factor " << common << endl; - return gcd((a / common).expand(), (b / common).expand(), ca, cb, false) * common; + return gcd((aex / common).expand(), (bex / common).expand(), ca, cb, false) * common; } // Try to eliminate variables if (var->deg_a == 0) { //clog << "eliminating variable " << *x << " from b" << endl; - ex c = b.content(*x); - ex g = gcd(a, c, ca, cb, false); + ex c = bex.content(*x); + ex g = gcd(aex, c, ca, cb, false); if (cb) - *cb *= b.unit(*x) * b.primpart(*x, c); + *cb *= bex.unit(*x) * bex.primpart(*x, c); return g; } else if (var->deg_b == 0) { //clog << "eliminating variable " << *x << " from a" << endl; - ex c = a.content(*x); - ex g = gcd(c, b, ca, cb, false); + ex c = aex.content(*x); + ex g = gcd(c, bex, ca, cb, false); if (ca) - *ca *= a.unit(*x) * a.primpart(*x, c); + *ca *= aex.unit(*x) * aex.primpart(*x, c); return g; } - // Try heuristic algorithm first, fall back to PRS if that failed ex g; +#if 1 + // Try heuristic algorithm first, fall back to PRS if that failed try { - g = heur_gcd(a.expand(), b.expand(), ca, cb, var); + g = heur_gcd(aex, bex, ca, cb, var); } catch (gcdheu_failed) { g = *new ex(fail()); } if (is_ex_exactly_of_type(g, fail)) { -//clog << "heuristics failed\n"; - g = sr_gcd(a, b, x); - if (ca) - divide(a, g, *ca, false); - if (cb) - divide(b, g, *cb, false); - } +//clog << "heuristics failed" << endl; +#if STATISTICS + heur_gcd_failed++; +#endif +#endif +// g = heur_gcd(aex, bex, ca, cb, var); +// g = eu_gcd(aex, bex, x); +// g = euprem_gcd(aex, bex, x); +// g = peu_gcd(aex, bex, x); +// g = red_gcd(aex, bex, x); + g = sr_gcd(aex, bex, x); + if (g.is_equal(_ex1())) { + // Keep cofactors factored if possible + if (ca) + *ca = a; + if (cb) + *cb = b; + } else { + if (ca) + divide(aex, g, *ca, false); + if (cb) + divide(bex, g, *cb, false); + } +#if 1 + } else { + if (g.is_equal(_ex1())) { + // Keep cofactors factored if possible + if (ca) + *ca = a; + if (cb) + *cb = b; + } + } +#endif return g; } @@ -1158,7 +1579,7 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args) ex lcm(const ex &a, const ex &b, bool check_args) { if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) - return gcd(ex_to_numeric(a), ex_to_numeric(b)); + return lcm(ex_to_numeric(a), ex_to_numeric(b)); if (check_args && !a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)) throw(std::invalid_argument("lcm: arguments must be polynomials over the rationals")); @@ -1180,8 +1601,8 @@ static ex univariate_gcd(const ex &a, const ex &b, const symbol &x) return b; if (b.is_zero()) return a; - if (a.is_equal(exONE()) || b.is_equal(exONE())) - return exONE(); + if (a.is_equal(_ex1()) || b.is_equal(_ex1())) + return _ex1(); if (is_ex_of_type(a, numeric) && is_ex_of_type(b, numeric)) return gcd(ex_to_numeric(a), ex_to_numeric(b)); if (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)) @@ -1216,11 +1637,11 @@ static ex univariate_gcd(const ex &a, const ex &b, const symbol &x) ex sqrfree(const ex &a, const symbol &x) { int i = 1; - ex res = exONE(); + ex res = _ex1(); ex b = a.diff(x); ex c = univariate_gcd(a, b, x); ex w; - if (c.is_equal(exONE())) { + if (c.is_equal(_ex1())) { w = a; } else { w = quo(a, c, x); @@ -1243,13 +1664,22 @@ ex sqrfree(const ex &a, const symbol &x) * Normal form of rational functions */ -// Create a symbol for replacing the expression "e" (or return a previously -// assigned symbol). The symbol is appended to sym_list and returned, the -// expression is appended to repl_list. +/* + * Note: The internal normal() functions (= basic::normal() and overloaded + * functions) all return lists of the form {numerator, denominator}. This + * is to get around mul::eval()'s automatic expansion of numeric coefficients. + * E.g. (a+b)/3 is automatically converted to a/3+b/3 but we want to keep + * the information that (a+b) is the numerator and 3 is the denominator. + */ + +/** Create a symbol for replacing the expression "e" (or return a previously + * assigned symbol). The symbol is appended to sym_lst and returned, the + * expression is appended to repl_lst. + * @see ex::normal */ static ex replace_with_symbol(const ex &e, lst &sym_lst, lst &repl_lst) { // Expression already in repl_lst? Then return the assigned symbol - for (int i=0; isetflag(status_flags::dynallocated); } -/** Implementation of ex::normal() for symbols. This returns the unmodifies symbol. +/** Implementation of ex::normal() for symbols. This returns the unmodified symbol. * @see ex::normal */ ex symbol::normal(lst &sym_lst, lst &repl_lst, int level) const { - return *this; + return (new lst(*this, _ex1()))->setflag(status_flags::dynallocated); } @@ -1288,53 +1738,53 @@ ex symbol::normal(lst &sym_lst, lst &repl_lst, int level) const * @see ex::normal */ ex numeric::normal(lst &sym_lst, lst &repl_lst, int level) const { - if (is_real()) - if (is_rational()) - return *this; - else - return replace_with_symbol(*this, sym_lst, repl_lst); - else { // complex - numeric re = real(), im = imag(); - ex re_ex = re.is_rational() ? re : replace_with_symbol(re, sym_lst, repl_lst); - ex im_ex = im.is_rational() ? im : replace_with_symbol(im, sym_lst, repl_lst); - return re_ex + im_ex * replace_with_symbol(I, sym_lst, repl_lst); - } -} + numeric num = numer(); + ex numex = num; + + if (num.is_real()) { + if (!num.is_integer()) + numex = replace_with_symbol(numex, sym_lst, repl_lst); + } else { // complex + numeric re = num.real(), im = num.imag(); + ex re_ex = re.is_rational() ? re : replace_with_symbol(re, sym_lst, repl_lst); + ex im_ex = im.is_rational() ? im : replace_with_symbol(im, sym_lst, repl_lst); + numex = re_ex + im_ex * replace_with_symbol(I, sym_lst, repl_lst); + } + // Denominator is always a real integer (see numeric::denom()) + return (new lst(numex, denom()))->setflag(status_flags::dynallocated); +} -/* - * Helper function for fraction cancellation (returns cancelled fraction n/d) - */ +/** Fraction cancellation. + * @param n numerator + * @param d denominator + * @return cancelled fraction {n, d} as a list */ static ex frac_cancel(const ex &n, const ex &d) { ex num = n; ex den = d; - ex pre_factor = exONE(); + numeric pre_factor = _num1(); + +//clog << "frac_cancel num = " << num << ", den = " << den << endl; // Handle special cases where numerator or denominator is 0 if (num.is_zero()) - return exZERO(); + return (new lst(_ex0(), _ex1()))->setflag(status_flags::dynallocated); if (den.expand().is_zero()) throw(std::overflow_error("frac_cancel: division by zero in frac_cancel")); - // More special cases - if (is_ex_exactly_of_type(den, numeric)) - return num / den; - if (num.is_zero()) - return exZERO(); - // Bring numerator and denominator to Z[X] by multiplying with // LCM of all coefficients' denominators - ex num_lcm = lcm_of_coefficients_denominators(num); - ex den_lcm = lcm_of_coefficients_denominators(den); - num *= num_lcm; - den *= den_lcm; + numeric num_lcm = lcm_of_coefficients_denominators(num); + numeric den_lcm = lcm_of_coefficients_denominators(den); + num = multiply_lcm(num, num_lcm); + den = multiply_lcm(den, den_lcm); pre_factor = den_lcm / num_lcm; // Cancel GCD from numerator and denominator ex cnum, cden; - if (gcd(num, den, &cnum, &cden, false) != exONE()) { + if (gcd(num, den, &cnum, &cden, false) != _ex1()) { num = cnum; den = cden; } @@ -1343,12 +1793,16 @@ static ex frac_cancel(const ex &n, const ex &d) // as defined by get_first_symbol() is made positive) const symbol *x; if (get_first_symbol(den, x)) { - if (den.unit(*x).compare(exZERO()) < 0) { - num *= exMINUSONE(); - den *= exMINUSONE(); + GINAC_ASSERT(is_ex_exactly_of_type(den.unit(*x),numeric)); + if (ex_to_numeric(den.unit(*x)).is_negative()) { + num *= _ex_1(); + den *= _ex_1(); } } - return pre_factor * num / den; + + // Return result as list +//clog << " returns num = " << num << ", den = " << den << ", pre_factor = " << pre_factor << endl; + return (new lst(num * pre_factor.numer(), den * pre_factor.denom()))->setflag(status_flags::dynallocated); } @@ -1357,47 +1811,70 @@ static ex frac_cancel(const ex &n, const ex &d) * @see ex::normal */ ex add::normal(lst &sym_lst, lst &repl_lst, int level) const { - // Normalize and expand children + // Normalize and expand children, chop into summands exvector o; o.reserve(seq.size()+1); epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { + + // Normalize and expand child ex n = recombine_pair_to_ex(*it).bp->normal(sym_lst, repl_lst, level-1).expand(); - if (is_ex_exactly_of_type(n, add)) { - epvector::const_iterator bit = (static_cast(n.bp))->seq.begin(), bitend = (static_cast(n.bp))->seq.end(); + + // If numerator is a sum, chop into summands + if (is_ex_exactly_of_type(n.op(0), add)) { + epvector::const_iterator bit = ex_to_add(n.op(0)).seq.begin(), bitend = ex_to_add(n.op(0)).seq.end(); while (bit != bitend) { - o.push_back(recombine_pair_to_ex(*bit)); + o.push_back((new lst(recombine_pair_to_ex(*bit), n.op(1)))->setflag(status_flags::dynallocated)); bit++; } - o.push_back((static_cast(n.bp))->overall_coeff); + + // The overall_coeff is already normalized (== rational), we just + // split it into numerator and denominator + GINAC_ASSERT(ex_to_numeric(ex_to_add(n.op(0)).overall_coeff).is_rational()); + numeric overall = ex_to_numeric(ex_to_add(n.op(0)).overall_coeff); + o.push_back((new lst(overall.numer(), overall.denom() * n.op(1)))->setflag(status_flags::dynallocated)); } else o.push_back(n); it++; } o.push_back(overall_coeff.bp->normal(sym_lst, repl_lst, level-1)); + // o is now a vector of {numerator, denominator} lists + // Determine common denominator - ex den = exONE(); + ex den = _ex1(); exvector::const_iterator ait = o.begin(), aitend = o.end(); +//clog << "add::normal uses the following summands:\n"; while (ait != aitend) { - den = lcm((*ait).denom(false), den, false); +//clog << " num = " << ait->op(0) << ", den = " << ait->op(1) << endl; + den = lcm(ait->op(1), den, false); ait++; } +//clog << " common denominator = " << den << endl; // Add fractions - if (den.is_equal(exONE())) - return (new add(o))->setflag(status_flags::dynallocated); - else { + if (den.is_equal(_ex1())) { + + // Common denominator is 1, simply add all numerators + exvector num_seq; + for (ait=o.begin(); ait!=aitend; ait++) { + num_seq.push_back(ait->op(0)); + } + return (new lst((new add(num_seq))->setflag(status_flags::dynallocated), den))->setflag(status_flags::dynallocated); + + } else { + + // Perform fractional addition exvector num_seq; for (ait=o.begin(); ait!=aitend; ait++) { ex q; - if (!divide(den, (*ait).denom(false), q, false)) { + if (!divide(den, ait->op(1), q, false)) { // should not happen throw(std::runtime_error("invalid expression in add::normal, division failed")); } - num_seq.push_back((*ait).numer(false) * q); + num_seq.push_back((ait->op(0) * q).expand()); } - ex num = add(num_seq); + ex num = (new add(num_seq))->setflag(status_flags::dynallocated); // Cancel common factors from num/den return frac_cancel(num, den); @@ -1410,17 +1887,23 @@ ex add::normal(lst &sym_lst, lst &repl_lst, int level) const * @see ex::normal() */ ex mul::normal(lst &sym_lst, lst &repl_lst, int level) const { - // Normalize children - exvector o; - o.reserve(seq.size()+1); + // Normalize children, separate into numerator and denominator + ex num = _ex1(); + ex den = _ex1(); + ex n; epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { - o.push_back(recombine_pair_to_ex(*it).bp->normal(sym_lst, repl_lst, level-1)); + n = recombine_pair_to_ex(*it).bp->normal(sym_lst, repl_lst, level-1); + num *= n.op(0); + den *= n.op(1); it++; } - o.push_back(overall_coeff.bp->normal(sym_lst, repl_lst, level-1)); - ex n = (new mul(o))->setflag(status_flags::dynallocated); - return frac_cancel(n.numer(false), n.denom(false)); + n = overall_coeff.bp->normal(sym_lst, repl_lst, level-1); + num *= n.op(0); + den *= n.op(1); + + // Perform fraction cancellation + return frac_cancel(num, den); } @@ -1430,24 +1913,55 @@ ex mul::normal(lst &sym_lst, lst &repl_lst, int level) const * @see ex::normal */ ex power::normal(lst &sym_lst, lst &repl_lst, int level) const { - if (exponent.info(info_flags::integer)) { - // Integer powers are distributed - ex n = basis.bp->normal(sym_lst, repl_lst, level-1); - ex num = n.numer(false); - ex den = n.denom(false); - return power(num, exponent) / power(den, exponent); - } else { - // Non-integer powers are replaced by temporary symbol (after normalizing basis) - ex n = power(basis.bp->normal(sym_lst, repl_lst, level-1), exponent); - return replace_with_symbol(n, sym_lst, repl_lst); + // Normalize basis + ex n = basis.bp->normal(sym_lst, repl_lst, level-1); + + if (exponent.info(info_flags::integer)) { + + if (exponent.info(info_flags::positive)) { + + // (a/b)^n -> {a^n, b^n} + return (new lst(power(n.op(0), exponent), power(n.op(1), exponent)))->setflag(status_flags::dynallocated); + + } else if (exponent.info(info_flags::negative)) { + + // (a/b)^-n -> {b^n, a^n} + return (new lst(power(n.op(1), -exponent), power(n.op(0), -exponent)))->setflag(status_flags::dynallocated); + } + + } else { + + if (exponent.info(info_flags::positive)) { + + // (a/b)^x -> {sym((a/b)^x), 1} + return (new lst(replace_with_symbol(power(n.op(0) / n.op(1), exponent), sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated); + + } else if (exponent.info(info_flags::negative)) { + + if (n.op(1).is_equal(_ex1())) { + + // a^-x -> {1, sym(a^x)} + return (new lst(_ex1(), replace_with_symbol(power(n.op(0), -exponent), sym_lst, repl_lst)))->setflag(status_flags::dynallocated); + + } else { + + // (a/b)^-x -> {sym((b/a)^x), 1} + return (new lst(replace_with_symbol(power(n.op(1) / n.op(0), -exponent), sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated); + } + + } else { // exponent not numeric + + // (a/b)^x -> {sym((a/b)^x, 1} + return (new lst(replace_with_symbol(power(n.op(0) / n.op(1), exponent), sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated); + } } } -/** Implementation of ex::normal() for series. It normalizes each coefficient and +/** Implementation of ex::normal() for pseries. It normalizes each coefficient and * replaces the series by a temporary symbol. * @see ex::normal */ -ex series::normal(lst &sym_lst, lst &repl_lst, int level) const +ex pseries::normal(lst &sym_lst, lst &repl_lst, int level) const { epvector new_seq; new_seq.reserve(seq.size()); @@ -1457,9 +1971,16 @@ ex series::normal(lst &sym_lst, lst &repl_lst, int level) const new_seq.push_back(expair(it->rest.normal(), it->coeff)); it++; } + ex n = pseries(relational(var,point), new_seq); + return (new lst(replace_with_symbol(n, sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated); +} + - ex n = series(var, point, new_seq); - return replace_with_symbol(n, sym_lst, repl_lst); +/** Implementation of ex::normal() for relationals. It normalizes both sides. + * @see ex::normal */ +ex relational::normal(lst &sym_lst, lst &repl_lst, int level) const +{ + return (new lst(relational(lh.normal(), rh.normal(), o), _ex1()))->setflag(status_flags::dynallocated); } @@ -1467,8 +1988,8 @@ ex series::normal(lst &sym_lst, lst &repl_lst, int level) const * This function converts an expression to its normal form * "numerator/denominator", where numerator and denominator are (relatively * prime) polynomials. Any subexpressions which are not rational functions - * (like non-rational numbers, non-integer powers or functions like Sin(), - * Cos() etc.) are replaced by temporary symbols which are re-substituted by + * (like non-rational numbers, non-integer powers or functions like sin(), + * cos() etc.) are replaced by temporary symbols which are re-substituted by * the (normalized) subexpressions before normal() returns (this way, any * expression can be treated as a rational function). normal() is applied * recursively to arguments of functions etc. @@ -1478,11 +1999,127 @@ ex series::normal(lst &sym_lst, lst &repl_lst, int level) const ex ex::normal(int level) const { lst sym_lst, repl_lst; + ex e = bp->normal(sym_lst, repl_lst, level); + GINAC_ASSERT(is_ex_of_type(e, lst)); + + // Re-insert replaced symbols if (sym_lst.nops() > 0) - return e.subs(sym_lst, repl_lst); - else - return e; + e = e.subs(sym_lst, repl_lst); + + // Convert {numerator, denominator} form back to fraction + return e.op(0) / e.op(1); +} + +/** Numerator of an expression. If the expression is not of the normal form + * "numerator/denominator", it is first converted to this form and then the + * numerator is returned. + * + * @see ex::normal + * @return numerator */ +ex ex::numer(void) const +{ + lst sym_lst, repl_lst; + + ex e = bp->normal(sym_lst, repl_lst, 0); + GINAC_ASSERT(is_ex_of_type(e, lst)); + + // Re-insert replaced symbols + if (sym_lst.nops() > 0) + return e.op(0).subs(sym_lst, repl_lst); + else + return e.op(0); } +/** Denominator of an expression. If the expression is not of the normal form + * "numerator/denominator", it is first converted to this form and then the + * denominator is returned. + * + * @see ex::normal + * @return denominator */ +ex ex::denom(void) const +{ + lst sym_lst, repl_lst; + + ex e = bp->normal(sym_lst, repl_lst, 0); + GINAC_ASSERT(is_ex_of_type(e, lst)); + + // Re-insert replaced symbols + if (sym_lst.nops() > 0) + return e.op(1).subs(sym_lst, repl_lst); + else + return e.op(1); +} + + +/** Default implementation of ex::to_rational(). It replaces the object with a + * temporary symbol. + * @see ex::to_rational */ +ex basic::to_rational(lst &repl_lst) const +{ + return replace_with_symbol(*this, repl_lst); +} + + +/** Implementation of ex::to_rational() for symbols. This returns the unmodified symbol. + * @see ex::to_rational */ +ex symbol::to_rational(lst &repl_lst) const +{ + return *this; +} + + +/** Implementation of ex::to_rational() for a numeric. It splits complex numbers + * into re+I*im and replaces I and non-rational real numbers with a temporary + * symbol. + * @see ex::to_rational */ +ex numeric::to_rational(lst &repl_lst) const +{ + if (is_real()) { + if (!is_integer()) + return replace_with_symbol(*this, repl_lst); + } else { // complex + numeric re = real(), im = imag(); + ex re_ex = re.is_rational() ? re : replace_with_symbol(re, repl_lst); + ex im_ex = im.is_rational() ? im : replace_with_symbol(im, repl_lst); + return re_ex + im_ex * replace_with_symbol(I, repl_lst); + } + return *this; +} + + +/** Implementation of ex::to_rational() for powers. It replaces non-integer + * powers by temporary symbols. + * @see ex::to_rational */ +ex power::to_rational(lst &repl_lst) const +{ + if (exponent.info(info_flags::integer)) + return power(basis.to_rational(repl_lst), exponent); + else + return replace_with_symbol(*this, repl_lst); +} + + +/** Rationalization of non-rational functions. + * This function converts a general expression to a rational polynomial + * by replacing all non-rational subexpressions (like non-rational numbers, + * non-integer powers or functions like sin(), cos() etc.) to temporary + * symbols. This makes it possible to use functions like gcd() and divide() + * on non-rational functions by applying to_rational() on the arguments, + * calling the desired function and re-substituting the temporary symbols + * in the result. To make the last step possible, all temporary symbols and + * their associated expressions are collected in the list specified by the + * repl_lst parameter in the form {symbol == expression}, ready to be passed + * as an argument to ex::subs(). + * + * @param repl_lst collects a list of all temporary symbols and their replacements + * @return rationalized expression */ +ex ex::to_rational(lst &repl_lst) const +{ + return bp->to_rational(repl_lst); +} + + +#ifndef NO_NAMESPACE_GINAC } // namespace GiNaC +#endif // ndef NO_NAMESPACE_GINAC