X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fnormal.cpp;h=954529e63fe4d61f3901fde8c2c53407e79dccb4;hp=1808bcb90bc9722d5f78121b9c1f613896355e51;hb=cd0f12f5ce6023812f76d0f6eb40ee83078c2775;hpb=fa13c6831b809abdae9eb2c17b33d2eff8e4878c diff --git a/ginac/normal.cpp b/ginac/normal.cpp index 1808bcb9..954529e6 100644 --- a/ginac/normal.cpp +++ b/ginac/normal.cpp @@ -6,7 +6,7 @@ * computation, square-free factorization and rational function normalization. */ /* - * GiNaC Copyright (C) 1999-2005 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2015 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -23,9 +23,6 @@ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ -#include -#include - #include "normal.h" #include "basic.h" #include "ex.h" @@ -44,6 +41,10 @@ #include "pseries.h" #include "symbol.h" #include "utils.h" +#include "polynomial/chinrem_gcd.h" + +#include +#include namespace GiNaC { @@ -233,14 +234,14 @@ static numeric lcmcoeff(const ex &e, const numeric &l) if (e.info(info_flags::rational)) return lcm(ex_to(e).denom(), l); else if (is_exactly_a(e)) { - numeric c = _num1; + numeric c = *_num1_p; for (size_t i=0; i(e)) { - numeric c = _num1; + numeric c = *_num1_p; for (size_t i=0; i(e)) { if (is_a(e.op(0))) @@ -260,7 +261,7 @@ static numeric lcmcoeff(const ex &e, const numeric &l) * @return LCM of denominators of coefficients */ static numeric lcm_of_coefficients_denominators(const ex &e) { - return lcmcoeff(e, _num1); + return lcmcoeff(e, *_num1_p); } /** Bring polynomial from Q[X] to Z[X] by multiplying in the previously @@ -273,9 +274,9 @@ static ex multiply_lcm(const ex &e, const numeric &lcm) if (is_exactly_a(e)) { size_t num = e.nops(); exvector v; v.reserve(num + 1); - numeric lcm_accum = _num1; + numeric lcm_accum = *_num1_p; for (size_t i=0; i(it->rest)); GINAC_ASSERT(is_exactly_a(it->coeff)); @@ -614,6 +615,73 @@ bool divide(const ex &a, const ex &b, ex &q, bool check_args) if (!get_first_symbol(a, x) && !get_first_symbol(b, x)) throw(std::invalid_argument("invalid expression in divide()")); + // Try to avoid expanding partially factored expressions. + if (is_exactly_a(b)) { + // Divide sequentially by each term + ex rem_new, rem_old = a; + for (size_t i=0; i < b.nops(); i++) { + if (! divide(rem_old, b.op(i), rem_new, false)) + return false; + rem_old = rem_new; + } + q = rem_new; + return true; + } else if (is_exactly_a(b)) { + const ex& bb(b.op(0)); + int exp_b = ex_to(b.op(1)).to_int(); + ex rem_new, rem_old = a; + for (int i=exp_b; i>0; i--) { + if (! divide(rem_old, bb, rem_new, false)) + return false; + rem_old = rem_new; + } + q = rem_new; + return true; + } + + if (is_exactly_a(a)) { + // Divide sequentially each term. If some term in a is divisible + // by b we are done... and if not, we can't really say anything. + size_t i; + ex rem_i; + bool divisible_p = false; + for (i=0; i < a.nops(); ++i) { + if (divide(a.op(i), b, rem_i, false)) { + divisible_p = true; + break; + } + } + if (divisible_p) { + exvector resv; + resv.reserve(a.nops()); + for (size_t j=0; j < a.nops(); j++) { + if (j==i) + resv.push_back(rem_i); + else + resv.push_back(a.op(j)); + } + q = (new mul(resv))->setflag(status_flags::dynallocated); + return true; + } + } else if (is_exactly_a(a)) { + // The base itself might be divisible by b, in that case we don't + // need to expand a + const ex& ab(a.op(0)); + int a_exp = ex_to(a.op(1)).to_int(); + ex rem_i; + if (divide(ab, b, rem_i, false)) { + q = rem_i*power(ab, a_exp - 1); + return true; + } +// code below is commented-out because it leads to a significant slowdown +// for (int i=2; i < a_exp; i++) { +// if (divide(power(ab, i), b, rem_i, false)) { +// q = rem_i*power(ab, a_exp - i); +// return true; +// } +// } // ... so we *really* need to expand expression. + } + // Polynomial long division (recursive) ex r = a.expand(); if (r.is_zero()) { @@ -714,6 +782,31 @@ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_ite } #endif + if (is_exactly_a(b)) { + const ex& bb(b.op(0)); + ex qbar = a; + int exp_b = ex_to(b.op(1)).to_int(); + for (int i=exp_b; i>0; i--) { + if (!divide_in_z(qbar, bb, q, var)) + return false; + qbar = q; + } + return true; + } + + if (is_exactly_a(b)) { + ex qbar = a; + for (const_iterator itrb = b.begin(); itrb != b.end(); ++itrb) { + sym_desc_vec sym_stats; + get_symbol_stats(a, *itrb, sym_stats); + if (!divide_in_z(qbar, *itrb, q, sym_stats.begin())) + return false; + + qbar = q; + } + return true; + } + // Main symbol const ex &x = var->sym; @@ -730,24 +823,24 @@ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_ite // Compute values at evaluation points 0..adeg vector alpha; alpha.reserve(adeg + 1); exvector u; u.reserve(adeg + 1); - numeric point = _num0; + numeric point = *_num0_p; ex c; for (i=0; i<=adeg; i++) { ex bs = b.subs(x == point, subs_options::no_pattern); while (bs.is_zero()) { - point += _num1; + point += *_num1_p; bs = b.subs(x == point, subs_options::no_pattern); } if (!divide_in_z(a.subs(x == point, subs_options::no_pattern), bs, c, var+1)) return false; alpha.push_back(point); u.push_back(c); - point += _num1; + point += *_num1_p; } // Compute inverses vector rcp; rcp.reserve(adeg + 1); - rcp.push_back(_num0); + rcp.push_back(*_num0_p); for (k=1; k<=adeg; k++) { numeric product = alpha[k] - alpha[0]; for (i=1; isetflag(status_flags::dynallocated); + return false; // GCD of two numeric values -> CLN if (is_exactly_a(a) && is_exactly_a(b)) { @@ -1204,7 +1299,8 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const *ca = ex_to(a) / g; if (cb) *cb = ex_to(b) / g; - return g; + res = g; + return true; } // The first symbol is our main variable @@ -1222,9 +1318,9 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const numeric mq = q.max_coefficient(); numeric xi; if (mp > mq) - xi = mq * _num2 + _num2; + xi = mq * (*_num2_p) + (*_num2_p); else - xi = mp * _num2 + _num2; + xi = mp * (*_num2_p) + (*_num2_p); // 6 tries maximum for (int t=0; t<6; t++) { @@ -1234,9 +1330,13 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const // Apply evaluation homomorphism and calculate GCD ex cp, cq; - ex gamma = heur_gcd(p.subs(x == xi, subs_options::no_pattern), q.subs(x == xi, subs_options::no_pattern), &cp, &cq, var+1).expand(); - if (!is_exactly_a(gamma)) { - + ex gamma; + bool found = heur_gcd_z(gamma, + p.subs(x == xi, subs_options::no_pattern), + q.subs(x == xi, subs_options::no_pattern), + &cp, &cq, var+1); + if (found) { + gamma = gamma.expand(); // Reconstruct polynomial from GCD of mapped polynomials ex g = interpolate(gamma, xi, x, maxdeg); @@ -1247,16 +1347,83 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const ex dummy; if (divide_in_z(p, g, ca ? *ca : dummy, var) && divide_in_z(q, g, cb ? *cb : dummy, var)) { g *= gc; - return g; + res = g; + return true; } } // Next evaluation point xi = iquo(xi * isqrt(isqrt(xi)) * numeric(73794), numeric(27011)); } - return (new fail())->setflag(status_flags::dynallocated); + return false; } +/** Compute GCD of multivariate polynomials using the heuristic GCD algorithm. + * get_symbol_stats() must have been called previously with the input + * polynomials and an iterator to the first element of the sym_desc vector + * passed in. This function is used internally by gcd(). + * + * @param a first rational multivariate polynomial (expanded) + * @param b second rational multivariate polynomial (expanded) + * @param ca cofactor of polynomial a (returned), NULL to suppress + * calculation of cofactor + * @param cb cofactor of polynomial b (returned), NULL to suppress + * calculation of cofactor + * @param var iterator to first element of vector of sym_desc structs + * @param res the GCD (returned) + * @return true if GCD was computed, false otherwise. + * @see heur_gcd_z + * @see gcd + */ +static bool heur_gcd(ex& res, const ex& a, const ex& b, ex *ca, ex *cb, + sym_desc_vec::const_iterator var) +{ + if (a.info(info_flags::integer_polynomial) && + b.info(info_flags::integer_polynomial)) { + try { + return heur_gcd_z(res, a, b, ca, cb, var); + } catch (gcdheu_failed) { + return false; + } + } + + // convert polynomials to Z[X] + const numeric a_lcm = lcm_of_coefficients_denominators(a); + const numeric ab_lcm = lcmcoeff(b, a_lcm); + + const ex ai = a*ab_lcm; + const ex bi = b*ab_lcm; + if (!ai.info(info_flags::integer_polynomial)) + throw std::logic_error("heur_gcd: not an integer polynomial [1]"); + + if (!bi.info(info_flags::integer_polynomial)) + throw std::logic_error("heur_gcd: not an integer polynomial [2]"); + + bool found = false; + try { + found = heur_gcd_z(res, ai, bi, ca, cb, var); + } catch (gcdheu_failed) { + return false; + } + + // GCD is not unique, it's defined up to a unit (i.e. invertible + // element). If the coefficient ring is a field, every its element is + // invertible, so one can multiply the polynomial GCD with any element + // of the coefficient field. We use this ambiguity to make cofactors + // integer polynomials. + if (found) + res /= ab_lcm; + return found; +} + + +// gcd helper to handle partially factored polynomials (to avoid expanding +// large expressions). At least one of the arguments should be a power. +static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb); + +// gcd helper to handle partially factored polynomials (to avoid expanding +// large expressions). At least one of the arguments should be a product. +static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb); /** Compute GCD (Greatest Common Divisor) of multivariate polynomials a(X) * and b(X) in Z[X]. Optionally also compute the cofactors of a and b, @@ -1269,7 +1436,7 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const * @param check_args check whether a and b are polynomials with rational * coefficients (defaults to "true") * @return the GCD as a new expression */ -ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args) +ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned options) { #if STATISTICS gcd_called++; @@ -1300,150 +1467,14 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args) } // Partially factored cases (to avoid expanding large expressions) - if (is_exactly_a(a)) { - if (is_exactly_a(b) && b.nops() > a.nops()) - goto factored_b; -factored_a: - size_t num = a.nops(); - exvector g; g.reserve(num); - exvector acc_ca; acc_ca.reserve(num); - ex part_b = b; - for (size_t i=0; isetflag(status_flags::dynallocated); - if (cb) - *cb = part_b; - return (new mul(g))->setflag(status_flags::dynallocated); - } else if (is_exactly_a(b)) { - if (is_exactly_a(a) && a.nops() > b.nops()) - goto factored_a; -factored_b: - size_t num = b.nops(); - exvector g; g.reserve(num); - exvector acc_cb; acc_cb.reserve(num); - ex part_a = a; - for (size_t i=0; isetflag(status_flags::dynallocated); - return (new mul(g))->setflag(status_flags::dynallocated); - } - + if (!(options & gcd_options::no_part_factored)) { + if (is_exactly_a(a) || is_exactly_a(b)) + return gcd_pf_mul(a, b, ca, cb); #if FAST_COMPARE - // Input polynomials of the form poly^n are sometimes also trivial - if (is_exactly_a(a)) { - ex p = a.op(0); - const ex& exp_a = a.op(1); - if (is_exactly_a(b)) { - ex pb = b.op(0); - const ex& exp_b = b.op(1); - if (p.is_equal(pb)) { - // a = p^n, b = p^m, gcd = p^min(n, m) - if (exp_a < exp_b) { - if (ca) - *ca = _ex1; - if (cb) - *cb = power(p, exp_b - exp_a); - return power(p, exp_a); - } else { - if (ca) - *ca = power(p, exp_a - exp_b); - if (cb) - *cb = _ex1; - return power(p, exp_b); - } - } else { - ex p_co, pb_co; - ex p_gcd = gcd(p, pb, &p_co, &pb_co, check_args); - if (p_gcd.is_equal(_ex1)) { - // a(x) = p(x)^n, b(x) = p_b(x)^m, gcd (p, p_b) = 1 ==> - // gcd(a,b) = 1 - if (ca) - *ca = a; - if (cb) - *cb = b; - return _ex1; - // XXX: do I need to check for p_gcd = -1? - } else { - // there are common factors: - // a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==> - // gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m - if (exp_a < exp_b) { - return power(p_gcd, exp_a)* - gcd(power(p_co, exp_a), power(p_gcd, exp_b-exp_a)*power(pb_co, exp_b), ca, cb, false); - } else { - return power(p_gcd, exp_b)* - gcd(power(p_gcd, exp_a - exp_b)*power(p_co, exp_a), power(pb_co, exp_b), ca, cb, false); - } - } // p_gcd.is_equal(_ex1) - } // p.is_equal(pb) - - } else { - if (p.is_equal(b)) { - // a = p^n, b = p, gcd = p - if (ca) - *ca = power(p, a.op(1) - 1); - if (cb) - *cb = _ex1; - return p; - } - - ex p_co, bpart_co; - ex p_gcd = gcd(p, b, &p_co, &bpart_co, false); - - if (p_gcd.is_equal(_ex1)) { - // a(x) = p(x)^n, gcd(p, b) = 1 ==> gcd(a, b) = 1 - if (ca) - *ca = a; - if (cb) - *cb = b; - return _ex1; - } else { - // a(x) = g(x)^n A(x)^n, b(x) = g(x) B(x) ==> gcd(a, b) = g(x) gcd(g(x)^(n-1) A(x)^n, B(x)) - return p_gcd*gcd(power(p_gcd, exp_a-1)*power(p_co, exp_a), bpart_co, ca, cb, false); - } - } // is_exactly_a(b) - - } else if (is_exactly_a(b)) { - ex p = b.op(0); - if (p.is_equal(a)) { - // a = p, b = p^n, gcd = p - if (ca) - *ca = _ex1; - if (cb) - *cb = power(p, b.op(1) - 1); - return p; - } - - ex p_co, apart_co; - const ex& exp_b(b.op(1)); - ex p_gcd = gcd(a, p, &apart_co, &p_co, false); - if (p_gcd.is_equal(_ex1)) { - // b=p(x)^n, gcd(a, p) = 1 ==> gcd(a, b) == 1 - if (ca) - *ca = a; - if (cb) - *cb = b; - return _ex1; - } else { - // there are common factors: - // a(x) = g(x) A(x), b(x) = g(x)^n B(x)^n ==> gcd = g(x) gcd(g(x)^(n-1) A(x)^n, B(x)) - - return p_gcd*gcd(apart_co, power(p_gcd, exp_b-1)*power(p_co, exp_b), ca, cb, false); - } // p_gcd.is_equal(_ex1) - } + if (is_exactly_a(a) || is_exactly_a(b)) + return gcd_pf_pow(a, b, ca, cb); #endif + } // Some trivial cases ex aex = a.expand(), bex = b.expand(); @@ -1478,11 +1509,71 @@ factored_b: } #endif + if (is_a(aex)) { + if (! bex.subs(aex==_ex0, subs_options::no_pattern).is_zero()) { + if (ca) + *ca = a; + if (cb) + *cb = b; + return _ex1; + } + } + + if (is_a(bex)) { + if (! aex.subs(bex==_ex0, subs_options::no_pattern).is_zero()) { + if (ca) + *ca = a; + if (cb) + *cb = b; + return _ex1; + } + } + + if (is_exactly_a(aex)) { + numeric bcont = bex.integer_content(); + numeric g = gcd(ex_to(aex), bcont); + if (ca) + *ca = ex_to(aex)/g; + if (cb) + *cb = bex/g; + return g; + } + + if (is_exactly_a(bex)) { + numeric acont = aex.integer_content(); + numeric g = gcd(ex_to(bex), acont); + if (ca) + *ca = aex/g; + if (cb) + *cb = ex_to(bex)/g; + return g; + } + // Gather symbol statistics sym_desc_vec sym_stats; get_symbol_stats(a, b, sym_stats); - // The symbol with least degree is our main variable + // The symbol with least degree which is contained in both polynomials + // is our main variable + sym_desc_vec::iterator vari = sym_stats.begin(); + while ((vari != sym_stats.end()) && + (((vari->ldeg_b == 0) && (vari->deg_b == 0)) || + ((vari->ldeg_a == 0) && (vari->deg_a == 0)))) + vari++; + + // No common symbols at all, just return 1: + if (vari == sym_stats.end()) { + // N.B: keep cofactors factored + if (ca) + *ca = a; + if (cb) + *cb = b; + return _ex1; + } + // move symbols which contained only in one of the polynomials + // to the end: + rotate(sym_stats.begin(), vari, sym_stats.end()); + sym_desc_vec::const_iterator var = sym_stats.begin(); const ex &x = var->sym; @@ -1496,14 +1587,14 @@ factored_b: } // Try to eliminate variables - if (var->deg_a == 0) { + if (var->deg_a == 0 && var->deg_b != 0 ) { ex bex_u, bex_c, bex_p; bex.unitcontprim(x, bex_u, bex_c, bex_p); ex g = gcd(aex, bex_c, ca, cb, false); if (cb) *cb *= bex_u * bex_p; return g; - } else if (var->deg_b == 0) { + } else if (var->deg_b == 0 && var->deg_a != 0) { ex aex_u, aex_c, aex_p; aex.unitcontprim(x, aex_u, aex_c, aex_p); ex g = gcd(aex_c, bex, ca, cb, false); @@ -1514,41 +1605,162 @@ factored_b: // Try heuristic algorithm first, fall back to PRS if that failed ex g; - try { - g = heur_gcd(aex, bex, ca, cb, var); - } catch (gcdheu_failed) { - g = fail(); - } - if (is_exactly_a(g)) { + if (!(options & gcd_options::no_heur_gcd)) { + bool found = heur_gcd(g, aex, bex, ca, cb, var); + if (found) { + // heur_gcd have already computed cofactors... + if (g.is_equal(_ex1)) { + // ... but we want to keep them factored if possible. + if (ca) + *ca = a; + if (cb) + *cb = b; + } + return g; + } #if STATISTICS - heur_gcd_failed++; + else { + heur_gcd_failed++; + } #endif + } + if (options & gcd_options::use_sr_gcd) { g = sr_gcd(aex, bex, var); - if (g.is_equal(_ex1)) { - // Keep cofactors factored if possible + } else { + exvector vars; + for (std::size_t n = sym_stats.size(); n-- != 0; ) + vars.push_back(sym_stats[n].sym); + g = chinrem_gcd(aex, bex, vars); + } + + if (g.is_equal(_ex1)) { + // Keep cofactors factored if possible + if (ca) + *ca = a; + if (cb) + *cb = b; + } else { + if (ca) + divide(aex, g, *ca, false); + if (cb) + divide(bex, g, *cb, false); + } + return g; +} + +// gcd helper to handle partially factored polynomials (to avoid expanding +// large expressions). Both arguments should be powers. +static ex gcd_pf_pow_pow(const ex& a, const ex& b, ex* ca, ex* cb) +{ + ex p = a.op(0); + const ex& exp_a = a.op(1); + ex pb = b.op(0); + const ex& exp_b = b.op(1); + + // a = p^n, b = p^m, gcd = p^min(n, m) + if (p.is_equal(pb)) { + if (exp_a < exp_b) { if (ca) - *ca = a; + *ca = _ex1; if (cb) - *cb = b; + *cb = power(p, exp_b - exp_a); + return power(p, exp_a); } else { if (ca) - divide(aex, g, *ca, false); + *ca = power(p, exp_a - exp_b); if (cb) - divide(bex, g, *cb, false); + *cb = _ex1; + return power(p, exp_b); } - } else { - if (g.is_equal(_ex1)) { - // Keep cofactors factored if possible + } + + ex p_co, pb_co; + ex p_gcd = gcd(p, pb, &p_co, &pb_co, false); + // a(x) = p(x)^n, b(x) = p_b(x)^m, gcd (p, p_b) = 1 ==> gcd(a,b) = 1 + if (p_gcd.is_equal(_ex1)) { if (ca) *ca = a; if (cb) *cb = b; - } + return _ex1; + // XXX: do I need to check for p_gcd = -1? } - return g; + // there are common factors: + // a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==> + // gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m + if (exp_a < exp_b) { + ex pg = gcd(power(p_co, exp_a), power(p_gcd, exp_b-exp_a)*power(pb_co, exp_b), ca, cb, false); + return power(p_gcd, exp_a)*pg; + } else { + ex pg = gcd(power(p_gcd, exp_a - exp_b)*power(p_co, exp_a), power(pb_co, exp_b), ca, cb, false); + return power(p_gcd, exp_b)*pg; + } } +static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb) +{ + if (is_exactly_a(a) && is_exactly_a(b)) + return gcd_pf_pow_pow(a, b, ca, cb); + + if (is_exactly_a(b) && (! is_exactly_a(a))) + return gcd_pf_pow(b, a, cb, ca); + + GINAC_ASSERT(is_exactly_a(a)); + + ex p = a.op(0); + const ex& exp_a = a.op(1); + if (p.is_equal(b)) { + // a = p^n, b = p, gcd = p + if (ca) + *ca = power(p, a.op(1) - 1); + if (cb) + *cb = _ex1; + return p; + } + + ex p_co, bpart_co; + ex p_gcd = gcd(p, b, &p_co, &bpart_co, false); + + // a(x) = p(x)^n, gcd(p, b) = 1 ==> gcd(a, b) = 1 + if (p_gcd.is_equal(_ex1)) { + if (ca) + *ca = a; + if (cb) + *cb = b; + return _ex1; + } + // a(x) = g(x)^n A(x)^n, b(x) = g(x) B(x) ==> gcd(a, b) = g(x) gcd(g(x)^(n-1) A(x)^n, B(x)) + ex rg = gcd(power(p_gcd, exp_a-1)*power(p_co, exp_a), bpart_co, ca, cb, false); + return p_gcd*rg; +} + +static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb) +{ + if (is_exactly_a(a) && is_exactly_a(b) + && (b.nops() > a.nops())) + return gcd_pf_mul(b, a, cb, ca); + + if (is_exactly_a(b) && (!is_exactly_a(a))) + return gcd_pf_mul(b, a, cb, ca); + + GINAC_ASSERT(is_exactly_a(a)); + size_t num = a.nops(); + exvector g; g.reserve(num); + exvector acc_ca; acc_ca.reserve(num); + ex part_b = b; + for (size_t i=0; isetflag(status_flags::dynallocated); + if (cb) + *cb = part_b; + return (new mul(g))->setflag(status_flags::dynallocated); +} /** Compute LCM (Least Common Multiple) of multivariate polynomials in Z[X]. * @@ -1700,7 +1912,7 @@ ex sqrfree(const ex &a, const lst &l) else result *= quo(tmp, result, x); - // Put in the reational overall factor again and return + // Put in the rational overall factor again and return return result * lcm.inverse(); } @@ -1794,16 +2006,18 @@ ex sqrfree_parfrac(const ex & a, const symbol & x) * @see ex::normal */ static ex replace_with_symbol(const ex & e, exmap & repl, exmap & rev_lookup) { + // Since the repl contains replaced expressions we should search for them + ex e_replaced = e.subs(repl, subs_options::no_pattern); + // Expression already replaced? Then return the assigned symbol - exmap::const_iterator it = rev_lookup.find(e); + exmap::const_iterator it = rev_lookup.find(e_replaced); if (it != rev_lookup.end()) return it->second; - + // Otherwise create new symbol and add to list, taking care that the // replacement expression doesn't itself contain symbols from repl, // because subs() is not recursive ex es = (new symbol)->setflag(status_flags::dynallocated); - ex e_replaced = e.subs(repl, subs_options::no_pattern); repl.insert(std::make_pair(es, e_replaced)); rev_lookup.insert(std::make_pair(e_replaced, es)); return es; @@ -1816,16 +2030,18 @@ static ex replace_with_symbol(const ex & e, exmap & repl, exmap & rev_lookup) * @see basic::to_polynomial */ static ex replace_with_symbol(const ex & e, exmap & repl) { + // Since the repl contains replaced expressions we should search for them + ex e_replaced = e.subs(repl, subs_options::no_pattern); + // Expression already replaced? Then return the assigned symbol for (exmap::const_iterator it = repl.begin(); it != repl.end(); ++it) - if (it->second.is_equal(e)) + if (it->second.is_equal(e_replaced)) return it->first; - + // Otherwise create new symbol and add to list, taking care that the // replacement expression doesn't itself contain symbols from repl, // because subs() is not recursive ex es = (new symbol)->setflag(status_flags::dynallocated); - ex e_replaced = e.subs(repl, subs_options::no_pattern); repl.insert(std::make_pair(es, e_replaced)); return es; } @@ -1898,7 +2114,7 @@ static ex frac_cancel(const ex &n, const ex &d) { ex num = n; ex den = d; - numeric pre_factor = _num1; + numeric pre_factor = *_num1_p; //std::clog << "frac_cancel num = " << num << ", den = " << den << std::endl; @@ -1996,7 +2212,7 @@ ex add::normal(exmap & repl, exmap & rev_lookup, int level) const num_it++; den_it++; } - // Additiion of two fractions, taking advantage of the fact that + // Addition of two fractions, taking advantage of the fact that // the heuristic GCD algorithm computes the cofactors at no extra cost ex co_den1, co_den2; ex g = gcd(den, next_den, &co_den1, &co_den2, false); @@ -2182,7 +2398,7 @@ ex ex::denom() const return e.op(1).subs(repl, subs_options::no_pattern); } -/** Get numerator and denominator of an expression. If the expresison is not +/** Get numerator and denominator of an expression. If the expression is not * of the normal form "numerator/denominator", it is first converted to this * form and then a list [numerator, denominator] is returned. * @@ -2343,6 +2559,17 @@ ex power::to_polynomial(exmap & repl) const { if (exponent.info(info_flags::posint)) return power(basis.to_rational(repl), exponent); + else if (exponent.info(info_flags::negint)) + { + ex basis_pref = collect_common_factors(basis); + if (is_exactly_a(basis_pref) || is_exactly_a(basis_pref)) { + // (A*B)^n will be automagically transformed to A^n*B^n + ex t = power(basis_pref, exponent); + return t.to_polynomial(repl); + } + else + return power(replace_with_symbol(power(basis, _ex_1), repl), -exponent); + } else return replace_with_symbol(*this, repl); } @@ -2400,7 +2627,7 @@ static ex find_common_factor(const ex & e, ex & factor, exmap & repl) for (size_t i=0; i(x) || is_exactly_a(x)) { + if (is_exactly_a(x) || is_exactly_a(x) || is_a(x)) { ex f = 1; x = find_common_factor(x, f, repl); x *= f; @@ -2459,8 +2686,16 @@ term_done: ; return (new mul(v))->setflag(status_flags::dynallocated); } else if (is_exactly_a(e)) { - - return e.to_polynomial(repl); + const ex e_exp(e.op(1)); + if (e_exp.info(info_flags::integer)) { + ex eb = e.op(0).to_polynomial(repl); + ex factor_local(_ex1); + ex pre_res = find_common_factor(eb, factor_local, repl); + factor *= power(factor_local, e_exp); + return power(pre_res, e_exp); + + } else + return e.to_polynomial(repl); } else return e; @@ -2471,7 +2706,7 @@ term_done: ; * 'a*(b*x+b*y)' to 'a*b*(x+y)'. */ ex collect_common_factors(const ex & e) { - if (is_exactly_a(e) || is_exactly_a(e)) { + if (is_exactly_a(e) || is_exactly_a(e) || is_exactly_a(e)) { exmap repl; ex factor = 1;