X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fnormal.cpp;h=936957fe55e929df7bb58b647d184c097146c655;hp=e1d7349fa509b600cf8321c54a5ca1ed0a93180d;hb=bf82f5b1d41738936afe763e1fa6aa347c81ba2c;hpb=729d30ae80fa9fdcdbafd7a29e8671083130f69c;ds=sidebyside diff --git a/ginac/normal.cpp b/ginac/normal.cpp index e1d7349f..936957fe 100644 --- a/ginac/normal.cpp +++ b/ginac/normal.cpp @@ -92,14 +92,14 @@ static struct _stat_print { * @return "false" if no symbol was found, "true" otherwise */ static bool get_first_symbol(const ex &e, const symbol *&x) { - if (is_ex_exactly_of_type(e, symbol)) { + if (is_a(e)) { x = &ex_to(e); return true; - } else if (is_ex_exactly_of_type(e, add) || is_ex_exactly_of_type(e, mul)) { + } else if (is_exactly_a(e) || is_exactly_a(e)) { for (unsigned i=0; i(e)) { if (get_first_symbol(e.op(0), x)) return true; } @@ -169,12 +169,12 @@ static void add_symbol(const symbol *s, sym_desc_vec &v) // Collect all symbols of an expression (used internally by get_symbol_stats()) static void collect_symbols(const ex &e, sym_desc_vec &v) { - if (is_ex_exactly_of_type(e, symbol)) { + if (is_a(e)) { add_symbol(&ex_to(e), v); - } else if (is_ex_exactly_of_type(e, add) || is_ex_exactly_of_type(e, mul)) { + } else if (is_exactly_a(e) || is_exactly_a(e)) { for (unsigned i=0; i(e)) { collect_symbols(e.op(0), v); } } @@ -230,18 +230,18 @@ static numeric lcmcoeff(const ex &e, const numeric &l) { if (e.info(info_flags::rational)) return lcm(ex_to(e).denom(), l); - else if (is_ex_exactly_of_type(e, add)) { + else if (is_exactly_a(e)) { numeric c = _num1; for (unsigned i=0; i(e)) { numeric c = _num1; for (unsigned i=0; i(e)) { + if (is_a(e.op(0))) return l; else return pow(lcmcoeff(e.op(0), l), ex_to(e.op(1))); @@ -268,7 +268,7 @@ static numeric lcm_of_coefficients_denominators(const ex &e) * @param lcm LCM to multiply in */ static ex multiply_lcm(const ex &e, const numeric &lcm) { - if (is_ex_exactly_of_type(e, mul)) { + if (is_exactly_a(e)) { unsigned num = e.nops(); exvector v; v.reserve(num + 1); numeric lcm_accum = _num1; @@ -279,14 +279,14 @@ static ex multiply_lcm(const ex &e, const numeric &lcm) } v.push_back(lcm / lcm_accum); return (new mul(v))->setflag(status_flags::dynallocated); - } else if (is_ex_exactly_of_type(e, add)) { + } else if (is_exactly_a(e)) { unsigned num = e.nops(); exvector v; v.reserve(num); for (unsigned i=0; isetflag(status_flags::dynallocated); - } else if (is_ex_exactly_of_type(e, power)) { - if (is_ex_exactly_of_type(e.op(0), symbol)) + } else if (is_exactly_a(e)) { + if (is_a(e.op(0))) return e * lcm; else return pow(multiply_lcm(e.op(0), lcm.power(ex_to(e.op(1)).inverse())), e.op(1)); @@ -364,7 +364,7 @@ ex quo(const ex &a, const ex &b, const symbol &x, bool check_args) { if (b.is_zero()) throw(std::overflow_error("quo: division by zero")); - if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) + if (is_exactly_a(a) && is_exactly_a(b)) return a / b; #if FAST_COMPARE if (a.is_equal(b)) @@ -380,7 +380,7 @@ ex quo(const ex &a, const ex &b, const symbol &x, bool check_args) int bdeg = b.degree(x); int rdeg = r.degree(x); ex blcoeff = b.expand().coeff(x, bdeg); - bool blcoeff_is_numeric = is_ex_exactly_of_type(blcoeff, numeric); + bool blcoeff_is_numeric = is_exactly_a(blcoeff); exvector v; v.reserve(std::max(rdeg - bdeg + 1, 0)); while (rdeg >= bdeg) { ex term, rcoeff = r.coeff(x, rdeg); @@ -414,8 +414,8 @@ ex rem(const ex &a, const ex &b, const symbol &x, bool check_args) { if (b.is_zero()) throw(std::overflow_error("rem: division by zero")); - if (is_ex_exactly_of_type(a, numeric)) { - if (is_ex_exactly_of_type(b, numeric)) + if (is_exactly_a(a)) { + if (is_exactly_a(b)) return _ex0; else return a; @@ -434,7 +434,7 @@ ex rem(const ex &a, const ex &b, const symbol &x, bool check_args) int bdeg = b.degree(x); int rdeg = r.degree(x); ex blcoeff = b.expand().coeff(x, bdeg); - bool blcoeff_is_numeric = is_ex_exactly_of_type(blcoeff, numeric); + bool blcoeff_is_numeric = is_exactly_a(blcoeff); while (rdeg >= bdeg) { ex term, rcoeff = r.coeff(x, rdeg); if (blcoeff_is_numeric) @@ -464,7 +464,7 @@ ex decomp_rational(const ex &a, const symbol &x) ex nd = numer_denom(a); ex numer = nd.op(0), denom = nd.op(1); ex q = quo(numer, denom, x); - if (is_ex_exactly_of_type(q, fail)) + if (is_exactly_a(q)) return a; else return q + rem(numer, denom, x) / denom; @@ -483,8 +483,8 @@ ex prem(const ex &a, const ex &b, const symbol &x, bool check_args) { if (b.is_zero()) throw(std::overflow_error("prem: division by zero")); - if (is_ex_exactly_of_type(a, numeric)) { - if (is_ex_exactly_of_type(b, numeric)) + if (is_exactly_a(a)) { + if (is_exactly_a(b)) return _ex0; else return b; @@ -535,8 +535,8 @@ ex sprem(const ex &a, const ex &b, const symbol &x, bool check_args) { if (b.is_zero()) throw(std::overflow_error("prem: division by zero")); - if (is_ex_exactly_of_type(a, numeric)) { - if (is_ex_exactly_of_type(b, numeric)) + if (is_exactly_a(a)) { + if (is_exactly_a(b)) return _ex0; else return b; @@ -590,10 +590,10 @@ bool divide(const ex &a, const ex &b, ex &q, bool check_args) q = _ex0; return true; } - if (is_ex_exactly_of_type(b, numeric)) { + if (is_exactly_a(b)) { q = a / b; return true; - } else if (is_ex_exactly_of_type(a, numeric)) + } else if (is_exactly_a(a)) return false; #if FAST_COMPARE if (a.is_equal(b)) { @@ -619,7 +619,7 @@ bool divide(const ex &a, const ex &b, ex &q, bool check_args) int bdeg = b.degree(*x); int rdeg = r.degree(*x); ex blcoeff = b.expand().coeff(*x, bdeg); - bool blcoeff_is_numeric = is_ex_exactly_of_type(blcoeff, numeric); + bool blcoeff_is_numeric = is_exactly_a(blcoeff); exvector v; v.reserve(std::max(rdeg - bdeg + 1, 0)); while (rdeg >= bdeg) { ex term, rcoeff = r.coeff(*x, rdeg); @@ -686,8 +686,8 @@ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_ite q = a; return true; } - if (is_ex_exactly_of_type(a, numeric)) { - if (is_ex_exactly_of_type(b, numeric)) { + if (is_exactly_a(a)) { + if (is_exactly_a(b)) { q = a / b; return q.info(info_flags::integer); } else @@ -821,7 +821,7 @@ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_ite ex ex::unit(const symbol &x) const { ex c = expand().lcoeff(x); - if (is_ex_exactly_of_type(c, numeric)) + if (is_exactly_a(c)) return c < _ex0 ? _ex_1 : _ex1; else { const symbol *y; @@ -844,7 +844,7 @@ ex ex::content(const symbol &x) const { if (is_zero()) return _ex0; - if (is_ex_exactly_of_type(*this, numeric)) + if (is_exactly_a(*this)) return info(info_flags::negative) ? -*this : *this; ex e = expand(); if (e.is_zero()) @@ -880,14 +880,14 @@ ex ex::primpart(const symbol &x) const { if (is_zero()) return _ex0; - if (is_ex_exactly_of_type(*this, numeric)) + if (is_exactly_a(*this)) return _ex1; ex c = content(x); if (c.is_zero()) return _ex0; ex u = unit(x); - if (is_ex_exactly_of_type(c, numeric)) + if (is_exactly_a(c)) return *this / (c * u); else return quo(*this, c * u, x, false); @@ -907,11 +907,11 @@ ex ex::primpart(const symbol &x, const ex &c) const return _ex0; if (c.is_zero()) return _ex0; - if (is_ex_exactly_of_type(*this, numeric)) + if (is_exactly_a(*this)) return _ex1; ex u = unit(x); - if (is_ex_exactly_of_type(c, numeric)) + if (is_exactly_a(c)) return *this / (c * u); else return quo(*this, c * u, x, false); @@ -1110,7 +1110,7 @@ static ex red_gcd(const ex &a, const ex &b, const symbol *x) throw(std::runtime_error("invalid expression in red_gcd(), division failed")); ddeg = d.degree(*x); if (ddeg == 0) { - if (is_ex_exactly_of_type(r, numeric)) + if (is_exactly_a(r)) return gamma; else return gamma * r.primpart(*x); @@ -1185,7 +1185,7 @@ static ex sr_gcd(const ex &a, const ex &b, sym_desc_vec::const_iterator var) throw(std::runtime_error("invalid expression in sr_gcd(), division failed")); ddeg = d.degree(x); if (ddeg == 0) { - if (is_ex_exactly_of_type(r, numeric)) + if (is_exactly_a(r)) return gamma; else return gamma * r.primpart(x); @@ -1356,7 +1356,7 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const return (new fail())->setflag(status_flags::dynallocated); // GCD of two numeric values -> CLN - if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) { + if (is_exactly_a(a) && is_exactly_a(b)) { numeric g = gcd(ex_to(a), ex_to(b)); if (ca) *ca = ex_to(a) / g; @@ -1394,7 +1394,7 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const // Apply evaluation homomorphism and calculate GCD ex cp, cq; ex gamma = heur_gcd(p.subs(x == xi), q.subs(x == xi), &cp, &cq, var+1).expand(); - if (!is_ex_exactly_of_type(gamma, fail)) { + if (!is_exactly_a(gamma)) { // Reconstruct polynomial from GCD of mapped polynomials ex g = interpolate(gamma, xi, x, maxdeg); @@ -1407,7 +1407,7 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const if (divide_in_z(p, g, ca ? *ca : dummy, var) && divide_in_z(q, g, cb ? *cb : dummy, var)) { g *= gc; ex lc = g.lcoeff(x); - if (is_ex_exactly_of_type(lc, numeric) && ex_to(lc).is_negative()) + if (is_exactly_a(lc) && ex_to(lc).is_negative()) return -g; else return g; @@ -1420,7 +1420,7 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const if (ca) *ca = cp; ex lc = g.lcoeff(x); - if (is_ex_exactly_of_type(lc, numeric) && ex_to(lc).is_negative()) + if (is_exactly_a(lc) && ex_to(lc).is_negative()) return -g; else return g; @@ -1433,7 +1433,7 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const if (cb) *cb = cq; ex lc = g.lcoeff(x); - if (is_ex_exactly_of_type(lc, numeric) && ex_to(lc).is_negative()) + if (is_exactly_a(lc) && ex_to(lc).is_negative()) return -g; else return g; @@ -1465,7 +1465,7 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args) #endif // GCD of numerics -> CLN - if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) { + if (is_exactly_a(a) && is_exactly_a(b)) { numeric g = gcd(ex_to(a), ex_to(b)); if (ca || cb) { if (g.is_zero()) { @@ -1489,8 +1489,8 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args) } // Partially factored cases (to avoid expanding large expressions) - if (is_ex_exactly_of_type(a, mul)) { - if (is_ex_exactly_of_type(b, mul) && b.nops() > a.nops()) + if (is_exactly_a(a)) { + if (is_exactly_a(b) && b.nops() > a.nops()) goto factored_b; factored_a: unsigned num = a.nops(); @@ -1508,8 +1508,8 @@ factored_a: if (cb) *cb = part_b; return (new mul(g))->setflag(status_flags::dynallocated); - } else if (is_ex_exactly_of_type(b, mul)) { - if (is_ex_exactly_of_type(a, mul) && a.nops() > b.nops()) + } else if (is_exactly_a(b)) { + if (is_exactly_a(a) && a.nops() > b.nops()) goto factored_a; factored_b: unsigned num = b.nops(); @@ -1531,9 +1531,9 @@ factored_b: #if FAST_COMPARE // Input polynomials of the form poly^n are sometimes also trivial - if (is_ex_exactly_of_type(a, power)) { + if (is_exactly_a(a)) { ex p = a.op(0); - if (is_ex_exactly_of_type(b, power)) { + if (is_exactly_a(b)) { if (p.is_equal(b.op(0))) { // a = p^n, b = p^m, gcd = p^min(n, m) ex exp_a = a.op(1), exp_b = b.op(1); @@ -1561,7 +1561,7 @@ factored_b: return p; } } - } else if (is_ex_exactly_of_type(b, power)) { + } else if (is_exactly_a(b)) { ex p = b.op(0); if (p.is_equal(a)) { // a = p, b = p^n, gcd = p @@ -1650,7 +1650,7 @@ factored_b: } catch (gcdheu_failed) { g = fail(); } - if (is_ex_exactly_of_type(g, fail)) { + if (is_exactly_a(g)) { //std::clog << "heuristics failed" << std::endl; #if STATISTICS heur_gcd_failed++; @@ -1698,7 +1698,7 @@ factored_b: * @return the LCM as a new expression */ ex lcm(const ex &a, const ex &b, bool check_args) { - if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) + if (is_exactly_a(a) && is_exactly_a(b)) return lcm(ex_to(a), ex_to(b)); if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) throw(std::invalid_argument("lcm: arguments must be polynomials over the rationals")); @@ -1779,7 +1779,7 @@ static exvector sqrfree_yun(const ex &a, const symbol &x) */ ex sqrfree(const ex &a, const lst &l) { - if (is_a(a) || // algorithm does not trap a==0 + if (is_exactly_a(a) || // algorithm does not trap a==0 is_a(a)) // shortcut return a; @@ -2420,7 +2420,7 @@ ex expairseq::to_rational(lst &repl_lst) const * to 1, unless you're accumulating factors). */ static ex find_common_factor(const ex & e, ex & factor, lst & repl) { - if (is_a(e)) { + if (is_exactly_a(e)) { unsigned num = e.nops(); exvector terms; terms.reserve(num); @@ -2430,7 +2430,7 @@ static ex find_common_factor(const ex & e, ex & factor, lst & repl) for (unsigned i=0; i(x) || is_a(x)) { + if (is_exactly_a(x) || is_exactly_a(x)) { ex f = 1; x = find_common_factor(x, f, repl); x *= f; @@ -2456,7 +2456,7 @@ static ex find_common_factor(const ex & e, ex & factor, lst & repl) // Try to avoid divide() because it expands the polynomial ex &t = terms[i]; - if (is_a(t)) { + if (is_exactly_a(t)) { for (unsigned j=0; jsetflag(status_flags::dynallocated); - } else if (is_a(e)) { + } else if (is_exactly_a(e)) { unsigned num = e.nops(); exvector v; v.reserve(num); @@ -2488,10 +2488,10 @@ term_done: ; return (new mul(v))->setflag(status_flags::dynallocated); - } else if (is_a(e)) { + } else if (is_exactly_a(e)) { ex x = e.to_rational(repl); - if (is_a(x) && x.op(1).info(info_flags::negative)) + if (is_exactly_a(x) && x.op(1).info(info_flags::negative)) return replace_with_symbol(x, repl); else return x; @@ -2505,7 +2505,7 @@ term_done: ; * 'a*(b*x+b*y)' to 'a*b*(x+y)'. */ ex collect_common_factors(const ex & e) { - if (is_a(e) || is_a(e)) { + if (is_exactly_a(e) || is_exactly_a(e)) { lst repl; ex factor = 1;