X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fnormal.cpp;h=342ef06b411480e4efc42f269d280065d675922e;hp=97bd156ae06a2972c9b4dcb1d117b67d2a143eec;hb=9d9503cff68b40c4c5f6a2f9eb7ae9b32c53a486;hpb=2afa71937b3c12cdc70f01213baa8a92be4b604a diff --git a/ginac/normal.cpp b/ginac/normal.cpp index 97bd156a..342ef06b 100644 --- a/ginac/normal.cpp +++ b/ginac/normal.cpp @@ -6,7 +6,7 @@ * computation, square-free factorization and rational function normalization. */ /* - * GiNaC Copyright (C) 1999-2015 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2020 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -120,6 +120,11 @@ static bool get_first_symbol(const ex &e, ex &x) * * @see get_symbol_stats */ struct sym_desc { + /** Initialize symbol, leave other variables uninitialized */ + sym_desc(const ex& s) + : sym(s), deg_a(0), deg_b(0), ldeg_a(0), ldeg_b(0), max_deg(0), max_lcnops(0) + { } + /** Reference to symbol */ ex sym; @@ -141,7 +146,7 @@ struct sym_desc { /** Maximum number of terms of leading coefficient of symbol in both polynomials */ size_t max_lcnops; - /** Commparison operator for sorting */ + /** Comparison operator for sorting */ bool operator<(const sym_desc &x) const { if (max_deg == x.max_deg) @@ -157,15 +162,11 @@ typedef std::vector sym_desc_vec; // Add symbol the sym_desc_vec (used internally by get_symbol_stats()) static void add_symbol(const ex &s, sym_desc_vec &v) { - sym_desc_vec::const_iterator it = v.begin(), itend = v.end(); - while (it != itend) { - if (it->sym.is_equal(s)) // If it's already in there, don't add it a second time + for (auto & it : v) + if (it.sym.is_equal(s)) // If it's already in there, don't add it a second time return; - ++it; - } - sym_desc d; - d.sym = s; - v.push_back(d); + + v.push_back(sym_desc(s)); } // Collect all symbols of an expression (used internally by get_symbol_stats()) @@ -195,28 +196,26 @@ static void collect_symbols(const ex &e, sym_desc_vec &v) * @param v vector of sym_desc structs (filled in) */ static void get_symbol_stats(const ex &a, const ex &b, sym_desc_vec &v) { - collect_symbols(a.eval(), v); // eval() to expand assigned symbols - collect_symbols(b.eval(), v); - sym_desc_vec::iterator it = v.begin(), itend = v.end(); - while (it != itend) { - int deg_a = a.degree(it->sym); - int deg_b = b.degree(it->sym); - it->deg_a = deg_a; - it->deg_b = deg_b; - it->max_deg = std::max(deg_a, deg_b); - it->max_lcnops = std::max(a.lcoeff(it->sym).nops(), b.lcoeff(it->sym).nops()); - it->ldeg_a = a.ldegree(it->sym); - it->ldeg_b = b.ldegree(it->sym); - ++it; + collect_symbols(a, v); + collect_symbols(b, v); + for (auto & it : v) { + int deg_a = a.degree(it.sym); + int deg_b = b.degree(it.sym); + it.deg_a = deg_a; + it.deg_b = deg_b; + it.max_deg = std::max(deg_a, deg_b); + it.max_lcnops = std::max(a.lcoeff(it.sym).nops(), b.lcoeff(it.sym).nops()); + it.ldeg_a = a.ldegree(it.sym); + it.ldeg_b = b.ldegree(it.sym); } std::sort(v.begin(), v.end()); #if 0 std::clog << "Symbols:\n"; - it = v.begin(); itend = v.end(); + auto it = v.begin(), itend = v.end(); while (it != itend) { - std::clog << " " << it->sym << ": deg_a=" << it->deg_a << ", deg_b=" << it->deg_b << ", ldeg_a=" << it->ldeg_a << ", ldeg_b=" << it->ldeg_b << ", max_deg=" << it->max_deg << ", max_lcnops=" << it->max_lcnops << endl; - std::clog << " lcoeff_a=" << a.lcoeff(it->sym) << ", lcoeff_b=" << b.lcoeff(it->sym) << endl; + std::clog << " " << it->sym << ": deg_a=" << it->deg_a << ", deg_b=" << it->deg_b << ", ldeg_a=" << it->ldeg_a << ", ldeg_b=" << it->ldeg_b << ", max_deg=" << it->max_deg << ", max_lcnops=" << it->max_lcnops << std::endl; + std::clog << " lcoeff_a=" << a.lcoeff(it->sym) << ", lcoeff_b=" << b.lcoeff(it->sym) << std::endl; ++it; } #endif @@ -271,9 +270,15 @@ static numeric lcm_of_coefficients_denominators(const ex &e) * @param lcm LCM to multiply in */ static ex multiply_lcm(const ex &e, const numeric &lcm) { + if (lcm.is_equal(*_num1_p)) + // e * 1 -> e; + return e; + if (is_exactly_a(e)) { + // (a*b*...)*lcm -> (a*lcma)*(b*lcmb)*...*(lcm/(lcma*lcmb*...)) size_t num = e.nops(); - exvector v; v.reserve(num + 1); + exvector v; + v.reserve(num + 1); numeric lcm_accum = *_num1_p; for (size_t i=0; isetflag(status_flags::dynallocated); + return dynallocate(v); } else if (is_exactly_a(e)) { + // (a+b+...)*lcm -> a*lcm+b*lcm+... size_t num = e.nops(); - exvector v; v.reserve(num); + exvector v; + v.reserve(num); for (size_t i=0; isetflag(status_flags::dynallocated); + return dynallocate(v); } else if (is_exactly_a(e)) { - if (is_a(e.op(0))) - return e * lcm; - else - return pow(multiply_lcm(e.op(0), lcm.power(ex_to(e.op(1)).inverse())), e.op(1)); - } else - return e * lcm; + if (!is_a(e.op(0))) { + // (b^e)*lcm -> (b*lcm^(1/e))^e if lcm^(1/e) ∈ ℚ (i.e. not a float) + // but not for symbolic b, as evaluation would undo this again + numeric root_of_lcm = lcm.power(ex_to(e.op(1)).inverse()); + if (root_of_lcm.is_rational()) + return pow(multiply_lcm(e.op(0), root_of_lcm), e.op(1)); + } + } + // can't recurse down into e + return dynallocate(e, lcm); } @@ -321,15 +332,12 @@ numeric numeric::integer_content() const numeric add::integer_content() const { - epvector::const_iterator it = seq.begin(); - epvector::const_iterator itend = seq.end(); numeric c = *_num0_p, l = *_num1_p; - while (it != itend) { - GINAC_ASSERT(!is_exactly_a(it->rest)); - GINAC_ASSERT(is_exactly_a(it->coeff)); - c = gcd(ex_to(it->coeff).numer(), c); - l = lcm(ex_to(it->coeff).denom(), l); - it++; + for (auto & it : seq) { + GINAC_ASSERT(!is_exactly_a(it.rest)); + GINAC_ASSERT(is_exactly_a(it.coeff)); + c = gcd(ex_to(it.coeff).numer(), c); + l = lcm(ex_to(it.coeff).denom(), l); } GINAC_ASSERT(is_exactly_a(overall_coeff)); c = gcd(ex_to(overall_coeff).numer(), c); @@ -340,11 +348,8 @@ numeric add::integer_content() const numeric mul::integer_content() const { #ifdef DO_GINAC_ASSERT - epvector::const_iterator it = seq.begin(); - epvector::const_iterator itend = seq.end(); - while (it != itend) { - GINAC_ASSERT(!is_exactly_a(recombine_pair_to_ex(*it))); - ++it; + for (auto & it : seq) { + GINAC_ASSERT(!is_exactly_a(recombine_pair_to_ex(it))); } #endif // def DO_GINAC_ASSERT GINAC_ASSERT(is_exactly_a(overall_coeff)); @@ -393,16 +398,16 @@ ex quo(const ex &a, const ex &b, const ex &x, bool check_args) term = rcoeff / blcoeff; else { if (!divide(rcoeff, blcoeff, term, false)) - return (new fail())->setflag(status_flags::dynallocated); + return dynallocate(); } - term *= power(x, rdeg - bdeg); + term *= pow(x, rdeg - bdeg); v.push_back(term); r -= (term * b).expand(); if (r.is_zero()) break; rdeg = r.degree(x); } - return (new add(v))->setflag(status_flags::dynallocated); + return dynallocate(v); } @@ -446,9 +451,9 @@ ex rem(const ex &a, const ex &b, const ex &x, bool check_args) term = rcoeff / blcoeff; else { if (!divide(rcoeff, blcoeff, term, false)) - return (new fail())->setflag(status_flags::dynallocated); + return dynallocate(); } - term *= power(x, rdeg - bdeg); + term *= pow(x, rdeg - bdeg); r -= (term * b).expand(); if (r.is_zero()) break; @@ -508,23 +513,23 @@ ex prem(const ex &a, const ex &b, const ex &x, bool check_args) if (bdeg == 0) eb = _ex0; else - eb -= blcoeff * power(x, bdeg); + eb -= blcoeff * pow(x, bdeg); } else blcoeff = _ex1; int delta = rdeg - bdeg + 1, i = 0; while (rdeg >= bdeg && !r.is_zero()) { ex rlcoeff = r.coeff(x, rdeg); - ex term = (power(x, rdeg - bdeg) * eb * rlcoeff).expand(); + ex term = (pow(x, rdeg - bdeg) * eb * rlcoeff).expand(); if (rdeg == 0) r = _ex0; else - r -= rlcoeff * power(x, rdeg); + r -= rlcoeff * pow(x, rdeg); r = (blcoeff * r).expand() - term; rdeg = r.degree(x); i++; } - return power(blcoeff, delta - i) * r; + return pow(blcoeff, delta - i) * r; } @@ -560,17 +565,17 @@ ex sprem(const ex &a, const ex &b, const ex &x, bool check_args) if (bdeg == 0) eb = _ex0; else - eb -= blcoeff * power(x, bdeg); + eb -= blcoeff * pow(x, bdeg); } else blcoeff = _ex1; while (rdeg >= bdeg && !r.is_zero()) { ex rlcoeff = r.coeff(x, rdeg); - ex term = (power(x, rdeg - bdeg) * eb * rlcoeff).expand(); + ex term = (pow(x, rdeg - bdeg) * eb * rlcoeff).expand(); if (rdeg == 0) r = _ex0; else - r -= rlcoeff * power(x, rdeg); + r -= rlcoeff * pow(x, rdeg); r = (blcoeff * r).expand() - term; rdeg = r.degree(x); } @@ -660,7 +665,7 @@ bool divide(const ex &a, const ex &b, ex &q, bool check_args) else resv.push_back(a.op(j)); } - q = (new mul(resv))->setflag(status_flags::dynallocated); + q = dynallocate(resv); return true; } } else if (is_exactly_a(a)) { @@ -670,7 +675,7 @@ bool divide(const ex &a, const ex &b, ex &q, bool check_args) int a_exp = ex_to(a.op(1)).to_int(); ex rem_i; if (divide(ab, b, rem_i, false)) { - q = rem_i*power(ab, a_exp - 1); + q = rem_i * pow(ab, a_exp - 1); return true; } // code below is commented-out because it leads to a significant slowdown @@ -700,11 +705,11 @@ bool divide(const ex &a, const ex &b, ex &q, bool check_args) else if (!divide(rcoeff, blcoeff, term, false)) return false; - term *= power(x, rdeg - bdeg); + term *= pow(x, rdeg - bdeg); v.push_back(term); r -= (term * b).expand(); if (r.is_zero()) { - q = (new add(v))->setflag(status_flags::dynallocated); + q = dynallocate(v); return true; } rdeg = r.degree(x); @@ -796,10 +801,10 @@ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_ite if (is_exactly_a(b)) { ex qbar = a; - for (const_iterator itrb = b.begin(); itrb != b.end(); ++itrb) { + for (const auto & it : b) { sym_desc_vec sym_stats; - get_symbol_stats(a, *itrb, sym_stats); - if (!divide_in_z(qbar, *itrb, q, sym_stats.begin())) + get_symbol_stats(a, it, sym_stats); + if (!divide_in_z(qbar, it, q, sym_stats.begin())) return false; qbar = q; @@ -883,11 +888,11 @@ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_ite ex term, rcoeff = r.coeff(x, rdeg); if (!divide_in_z(rcoeff, blcoeff, term, var+1)) break; - term = (term * power(x, rdeg - bdeg)).expand(); + term = (term * pow(x, rdeg - bdeg)).expand(); v.push_back(term); r -= (term * eb).expand(); if (r.is_zero()) { - q = (new add(v))->setflag(status_flags::dynallocated); + q = dynallocate(v); #if USE_REMEMBER dr_remember[ex2(a, b)] = exbool(q, true); #endif @@ -961,7 +966,7 @@ ex ex::content(const ex &x) const return lcoeff * c / lcoeff.unit(x); ex cont = _ex0; for (int i=ldeg; i<=deg; i++) - cont = gcd(r.coeff(x, i), cont, NULL, NULL, false); + cont = gcd(r.coeff(x, i), cont, nullptr, nullptr, false); return cont * c; } @@ -1101,7 +1106,7 @@ static ex sr_gcd(const ex &a, const ex &b, sym_desc_vec::const_iterator var) // Remove content from c and d, to be attached to GCD later ex cont_c = c.content(x); ex cont_d = d.content(x); - ex gamma = gcd(cont_c, cont_d, NULL, NULL, false); + ex gamma = gcd(cont_c, cont_d, nullptr, nullptr, false); if (ddeg == 0) return gamma; c = c.primpart(x, cont_c); @@ -1165,17 +1170,14 @@ numeric numeric::max_coefficient() const numeric add::max_coefficient() const { - epvector::const_iterator it = seq.begin(); - epvector::const_iterator itend = seq.end(); GINAC_ASSERT(is_exactly_a(overall_coeff)); numeric cur_max = abs(ex_to(overall_coeff)); - while (it != itend) { + for (auto & it : seq) { numeric a; - GINAC_ASSERT(!is_exactly_a(it->rest)); - a = abs(ex_to(it->coeff)); + GINAC_ASSERT(!is_exactly_a(it.rest)); + a = abs(ex_to(it.coeff)); if (a > cur_max) cur_max = a; - it++; } return cur_max; } @@ -1183,11 +1185,8 @@ numeric add::max_coefficient() const numeric mul::max_coefficient() const { #ifdef DO_GINAC_ASSERT - epvector::const_iterator it = seq.begin(); - epvector::const_iterator itend = seq.end(); - while (it != itend) { - GINAC_ASSERT(!is_exactly_a(recombine_pair_to_ex(*it))); - it++; + for (auto & it : seq) { + GINAC_ASSERT(!is_exactly_a(recombine_pair_to_ex(it))); } #endif // def DO_GINAC_ASSERT GINAC_ASSERT(is_exactly_a(overall_coeff)); @@ -1215,36 +1214,30 @@ ex add::smod(const numeric &xi) const { epvector newseq; newseq.reserve(seq.size()+1); - epvector::const_iterator it = seq.begin(); - epvector::const_iterator itend = seq.end(); - while (it != itend) { - GINAC_ASSERT(!is_exactly_a(it->rest)); - numeric coeff = GiNaC::smod(ex_to(it->coeff), xi); + for (auto & it : seq) { + GINAC_ASSERT(!is_exactly_a(it.rest)); + numeric coeff = GiNaC::smod(ex_to(it.coeff), xi); if (!coeff.is_zero()) - newseq.push_back(expair(it->rest, coeff)); - it++; + newseq.push_back(expair(it.rest, coeff)); } GINAC_ASSERT(is_exactly_a(overall_coeff)); numeric coeff = GiNaC::smod(ex_to(overall_coeff), xi); - return (new add(newseq,coeff))->setflag(status_flags::dynallocated); + return dynallocate(std::move(newseq), coeff); } ex mul::smod(const numeric &xi) const { #ifdef DO_GINAC_ASSERT - epvector::const_iterator it = seq.begin(); - epvector::const_iterator itend = seq.end(); - while (it != itend) { - GINAC_ASSERT(!is_exactly_a(recombine_pair_to_ex(*it))); - it++; + for (auto & it : seq) { + GINAC_ASSERT(!is_exactly_a(recombine_pair_to_ex(it))); } #endif // def DO_GINAC_ASSERT - mul * mulcopyp = new mul(*this); + mul & mulcopy = dynallocate(*this); GINAC_ASSERT(is_exactly_a(overall_coeff)); - mulcopyp->overall_coeff = GiNaC::smod(ex_to(overall_coeff),xi); - mulcopyp->clearflag(status_flags::evaluated); - mulcopyp->clearflag(status_flags::hash_calculated); - return mulcopyp->setflag(status_flags::dynallocated); + mulcopy.overall_coeff = GiNaC::smod(ex_to(overall_coeff),xi); + mulcopy.clearflag(status_flags::evaluated); + mulcopy.clearflag(status_flags::hash_calculated); + return mulcopy; } @@ -1256,10 +1249,10 @@ static ex interpolate(const ex &gamma, const numeric &xi, const ex &x, int degre numeric rxi = xi.inverse(); for (int i=0; !e.is_zero(); i++) { ex gi = e.smod(xi); - g.push_back(gi * power(x, i)); + g.push_back(gi * pow(x, i)); e = (e - gi) * rxi; } - return (new add(g))->setflag(status_flags::dynallocated); + return dynallocate(g); } /** Exception thrown by heur_gcd() to signal failure. */ @@ -1272,9 +1265,9 @@ class gcdheu_failed {}; * * @param a first integer multivariate polynomial (expanded) * @param b second integer multivariate polynomial (expanded) - * @param ca cofactor of polynomial a (returned), NULL to suppress + * @param ca cofactor of polynomial a (returned), nullptr to suppress * calculation of cofactor - * @param cb cofactor of polynomial b (returned), NULL to suppress + * @param cb cofactor of polynomial b (returned), nullptr to suppress * calculation of cofactor * @param var iterator to first element of vector of sym_desc structs * @param res the GCD (returned) @@ -1365,9 +1358,9 @@ static bool heur_gcd_z(ex& res, const ex &a, const ex &b, ex *ca, ex *cb, * * @param a first rational multivariate polynomial (expanded) * @param b second rational multivariate polynomial (expanded) - * @param ca cofactor of polynomial a (returned), NULL to suppress + * @param ca cofactor of polynomial a (returned), nullptr to suppress * calculation of cofactor - * @param cb cofactor of polynomial b (returned), NULL to suppress + * @param cb cofactor of polynomial b (returned), nullptr to suppress * calculation of cofactor * @param var iterator to first element of vector of sym_desc structs * @param res the GCD (returned) @@ -1431,8 +1424,8 @@ static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb); * * @param a first multivariate polynomial * @param b second multivariate polynomial - * @param ca pointer to expression that will receive the cofactor of a, or NULL - * @param cb pointer to expression that will receive the cofactor of b, or NULL + * @param ca pointer to expression that will receive the cofactor of a, or nullptr + * @param cb pointer to expression that will receive the cofactor of b, or nullptr * @param check_args check whether a and b are polynomials with rational * coefficients (defaults to "true") * @return the GCD as a new expression */ @@ -1477,7 +1470,7 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio } // Some trivial cases - ex aex = a.expand(), bex = b.expand(); + ex aex = a.expand(); if (aex.is_zero()) { if (ca) *ca = _ex0; @@ -1485,6 +1478,7 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio *cb = _ex1; return b; } + ex bex = b.expand(); if (bex.is_zero()) { if (ca) *ca = _ex1; @@ -1535,7 +1529,7 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio if (ca) *ca = ex_to(aex)/g; if (cb) - *cb = bex/g; + *cb = bex/g; return g; } @@ -1555,7 +1549,7 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio // The symbol with least degree which is contained in both polynomials // is our main variable - sym_desc_vec::iterator vari = sym_stats.begin(); + auto vari = sym_stats.begin(); while ((vari != sym_stats.end()) && (((vari->ldeg_b == 0) && (vari->deg_b == 0)) || ((vari->ldeg_a == 0) && (vari->deg_a == 0)))) @@ -1570,8 +1564,7 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio *cb = b; return _ex1; } - // move symbols which contained only in one of the polynomials - // to the end: + // move symbol contained only in one of the polynomials to the end: rotate(sym_stats.begin(), vari, sym_stats.end()); sym_desc_vec::const_iterator var = sym_stats.begin(); @@ -1582,7 +1575,7 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio int ldeg_b = var->ldeg_b; int min_ldeg = std::min(ldeg_a,ldeg_b); if (min_ldeg > 0) { - ex common = power(x, min_ldeg); + ex common = pow(x, min_ldeg); return gcd((aex / common).expand(), (bex / common).expand(), ca, cb, false) * common; } @@ -1663,14 +1656,14 @@ static ex gcd_pf_pow_pow(const ex& a, const ex& b, ex* ca, ex* cb) if (ca) *ca = _ex1; if (cb) - *cb = power(p, exp_b - exp_a); - return power(p, exp_a); + *cb = pow(p, exp_b - exp_a); + return pow(p, exp_a); } else { if (ca) - *ca = power(p, exp_a - exp_b); + *ca = pow(p, exp_a - exp_b); if (cb) *cb = _ex1; - return power(p, exp_b); + return pow(p, exp_b); } } @@ -1683,18 +1676,17 @@ static ex gcd_pf_pow_pow(const ex& a, const ex& b, ex* ca, ex* cb) if (cb) *cb = b; return _ex1; - // XXX: do I need to check for p_gcd = -1? } // there are common factors: // a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==> // gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m if (exp_a < exp_b) { - ex pg = gcd(power(p_co, exp_a), power(p_gcd, exp_b-exp_a)*power(pb_co, exp_b), ca, cb, false); - return power(p_gcd, exp_a)*pg; + ex pg = gcd(pow(p_co, exp_a), pow(p_gcd, exp_b-exp_a)*pow(pb_co, exp_b), ca, cb, false); + return pow(p_gcd, exp_a)*pg; } else { - ex pg = gcd(power(p_gcd, exp_a - exp_b)*power(p_co, exp_a), power(pb_co, exp_b), ca, cb, false); - return power(p_gcd, exp_b)*pg; + ex pg = gcd(pow(p_gcd, exp_a - exp_b)*pow(p_co, exp_a), pow(pb_co, exp_b), ca, cb, false); + return pow(p_gcd, exp_b)*pg; } } @@ -1713,17 +1705,27 @@ static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb) if (p.is_equal(b)) { // a = p^n, b = p, gcd = p if (ca) - *ca = power(p, a.op(1) - 1); + *ca = pow(p, exp_a - 1); if (cb) *cb = _ex1; return p; - } + } + if (is_a(p)) { + // Cancel trivial common factor + int ldeg_a = ex_to(exp_a).to_int(); + int ldeg_b = b.ldegree(p); + int min_ldeg = std::min(ldeg_a, ldeg_b); + if (min_ldeg > 0) { + ex common = pow(p, min_ldeg); + return gcd(pow(p, ldeg_a - min_ldeg), (b / common).expand(), ca, cb, false) * common; + } + } ex p_co, bpart_co; ex p_gcd = gcd(p, b, &p_co, &bpart_co, false); - // a(x) = p(x)^n, gcd(p, b) = 1 ==> gcd(a, b) = 1 if (p_gcd.is_equal(_ex1)) { + // a(x) = p(x)^n, gcd(p, b) = 1 ==> gcd(a, b) = 1 if (ca) *ca = a; if (cb) @@ -1731,7 +1733,7 @@ static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb) return _ex1; } // a(x) = g(x)^n A(x)^n, b(x) = g(x) B(x) ==> gcd(a, b) = g(x) gcd(g(x)^(n-1) A(x)^n, B(x)) - ex rg = gcd(power(p_gcd, exp_a-1)*power(p_co, exp_a), bpart_co, ca, cb, false); + ex rg = gcd(pow(p_gcd, exp_a-1)*pow(p_co, exp_a), bpart_co, ca, cb, false); return p_gcd*rg; } @@ -1756,10 +1758,10 @@ static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb) part_b = part_cb; } if (ca) - *ca = (new mul(acc_ca))->setflag(status_flags::dynallocated); + *ca = dynallocate(acc_ca); if (cb) *cb = part_b; - return (new mul(g))->setflag(status_flags::dynallocated); + return dynallocate(g); } /** Compute LCM (Least Common Multiple) of multivariate polynomials in Z[X]. @@ -1790,34 +1792,67 @@ ex lcm(const ex &a, const ex &b, bool check_args) * Yun's algorithm. Used internally by sqrfree(). * * @param a multivariate polynomial over Z[X], treated here as univariate - * polynomial in x. + * polynomial in x (needs not be expanded). * @param x variable to factor in - * @return vector of factors sorted in ascending degree */ -static exvector sqrfree_yun(const ex &a, const symbol &x) + * @return vector of expairs (factor, exponent), sorted by exponents */ +static epvector sqrfree_yun(const ex &a, const symbol &x) { - exvector res; ex w = a; ex z = w.diff(x); ex g = gcd(w, z); + if (g.is_zero()) { + // manifest zero or hidden zero + return {}; + } if (g.is_equal(_ex1)) { - res.push_back(a); - return res; + // w(x) and w'(x) share no factors: w(x) is square-free + return {expair(a, _ex1)}; } - ex y; + + epvector factors; + ex i = 0; // exponent do { w = quo(w, g, x); - y = quo(z, g, x); - z = y - w.diff(x); + if (w.is_zero()) { + // hidden zero + break; + } + z = quo(z, g, x) - w.diff(x); + i += 1; + if (w.is_equal(x)) { + // shortcut for x^n with n ∈ ℕ + i += quo(z, w.diff(x), x); + factors.push_back(expair(w, i)); + break; + } g = gcd(w, z); - res.push_back(g); + if (!g.is_equal(_ex1)) { + factors.push_back(expair(g, i)); + } } while (!z.is_zero()); - return res; + + // correct for lost factor + // (being based on GCDs, Yun's algorithm only finds factors up to a unit) + const ex lost_factor = quo(a, mul{factors}, x); + if (lost_factor.is_equal(_ex1)) { + // trivial lost factor + return factors; + } + if (!factors.empty() && factors[0].coeff.is_equal(1)) { + // multiply factor^1 with lost_factor + factors[0].rest *= lost_factor; + return factors; + } + // no factor^1: prepend lost_factor^1 to the results + epvector results = {expair(lost_factor, 1)}; + std::move(factors.begin(), factors.end(), std::back_inserter(results)); + return results; } /** Compute a square-free factorization of a multivariate polynomial in Q[X]. * - * @param a multivariate polynomial over Q[X] + * @param a multivariate polynomial over Q[X] (needs not be expanded) * @param l lst of variables to factor in, may be left empty for autodetection * @return a square-free factorization of \p a. * @@ -1852,8 +1887,8 @@ static exvector sqrfree_yun(const ex &a, const symbol &x) */ ex sqrfree(const ex &a, const lst &l) { - if (is_exactly_a(a) || // algorithm does not trap a==0 - is_a(a)) // shortcut + if (is_exactly_a(a) || + is_a(a)) // shortcuts return a; // If no lst of variables to factorize in was specified we have to @@ -1863,11 +1898,8 @@ ex sqrfree(const ex &a, const lst &l) if (l.nops()==0) { sym_desc_vec sdv; get_symbol_stats(a, _ex0, sdv); - sym_desc_vec::const_iterator it = sdv.begin(), itend = sdv.end(); - while (it != itend) { - args.append(it->sym); - ++it; - } + for (auto & it : sdv) + args.append(it.sym); } else { args = l; } @@ -1879,41 +1911,29 @@ ex sqrfree(const ex &a, const lst &l) // convert the argument from something in Q[X] to something in Z[X] const numeric lcm = lcm_of_coefficients_denominators(a); - const ex tmp = multiply_lcm(a,lcm); + const ex tmp = multiply_lcm(a, lcm); // find the factors - exvector factors = sqrfree_yun(tmp, x); + epvector factors = sqrfree_yun(tmp, x); + if (factors.empty()) { + // the polynomial was a hidden zero + return _ex0; + } - // construct the next list of symbols with the first element popped - lst newargs = args; - newargs.remove_first(); + // remove symbol x and proceed recursively with the remaining symbols + args.remove_first(); // recurse down the factors in remaining variables - if (newargs.nops()>0) { - exvector::iterator i = factors.begin(); - while (i != factors.end()) { - *i = sqrfree(*i, newargs); - ++i; - } + if (args.nops()>0) { + for (auto & it : factors) + it.rest = sqrfree(it.rest, args); } // Done with recursion, now construct the final result - ex result = _ex1; - exvector::const_iterator it = factors.begin(), itend = factors.end(); - for (int p = 1; it!=itend; ++it, ++p) - result *= power(*it, p); - - // Yun's algorithm does not account for constant factors. (For univariate - // polynomials it works only in the monic case.) We can correct this by - // inserting what has been lost back into the result. For completeness - // we'll also have to recurse down that factor in the remaining variables. - if (newargs.nops()>0) - result *= sqrfree(quo(tmp, result, x), newargs); - else - result *= quo(tmp, result, x); + ex result = mul(factors); - // Put in the reational overall factor again and return - return result * lcm.inverse(); + // Put in the rational overall factor again and return + return result * lcm.inverse(); } @@ -1929,36 +1949,33 @@ ex sqrfree_parfrac(const ex & a, const symbol & x) // Find numerator and denominator ex nd = numer_denom(a); ex numer = nd.op(0), denom = nd.op(1); -//clog << "numer = " << numer << ", denom = " << denom << endl; +//std::clog << "numer = " << numer << ", denom = " << denom << std::endl; // Convert N(x)/D(x) -> Q(x) + R(x)/D(x), so degree(R) < degree(D) ex red_poly = quo(numer, denom, x), red_numer = rem(numer, denom, x).expand(); -//clog << "red_poly = " << red_poly << ", red_numer = " << red_numer << endl; +//std::clog << "red_poly = " << red_poly << ", red_numer = " << red_numer << std::endl; // Factorize denominator and compute cofactors - exvector yun = sqrfree_yun(denom, x); -//clog << "yun factors: " << exprseq(yun) << endl; - size_t num_yun = yun.size(); - exvector factor; factor.reserve(num_yun); - exvector cofac; cofac.reserve(num_yun); - for (size_t i=0; i(yun.back().coeff).to_int(); + exvector factor, cofac; + for (size_t i=0; i(yun[i].coeff); + for (size_t j=0; j symbol3^2" in the previous part of the expression + * needs to be done outside of the present routine; + * 2) The pair "symbol1 : exp(2*x)" shall be deleted from the replacement table repl. + * However, this will create illegal substitution "symbol2 : cos(symbol1 + 1)" with + * undefined symbol1. + * These both problems are mitigated through the additions of the record + * "symbol1==symbol3^2" to the list modifier. Changed length of the modifier signals + * to the calling code that the previous portion of the expression needs to be + * altered (it solves 1). Thus GiNaC can record now + * e =symbol3^2*symbol2*symbol3 + * repl = {symbol2 : cos(symbol1 + 1), symbol3 : exp(x)} + * modifier = {symbol1==symbol3^2} + * Then, doing the backward substitutions the list modifier will be used to restore + * such iterative substitutions in the right way (this solves 2). * @see ex::normal */ -static ex replace_with_symbol(const ex & e, exmap & repl, exmap & rev_lookup) +static ex replace_with_symbol(const ex & e, exmap & repl, exmap & rev_lookup, lst & modifier) { + // Since the repl contains replaced expressions we should search for them + ex e_replaced = e.subs(repl, subs_options::no_pattern); + // Expression already replaced? Then return the assigned symbol - exmap::const_iterator it = rev_lookup.find(e); + auto it = rev_lookup.find(e_replaced); if (it != rev_lookup.end()) return it->second; - + + // We treat powers and the exponent functions differently because + // they can be rationalised more efficiently + if (is_a(e_replaced) && is_ex_the_function(e_replaced, exp)) { + for (auto & it : repl) { + if (is_a(it.second) && is_ex_the_function(e_replaced, exp)) { + ex ratio = normal(e_replaced.op(0) / it.second.op(0)); + if (is_a(ratio) && ex_to(ratio).is_rational()) { + // Different exponents can be treated as powers of the same basic equation + if (ex_to(ratio).is_integer()) { + // If ratio is an integer then this is simply the power of the existing symbol. + // std::clog << e_replaced << " is a " << ratio << " power of " << it.first << std::endl; + return dynallocate(it.first, ratio); + } else { + // otherwise we need to give the replacement pattern to change + // the previous expression... + ex es = dynallocate(); + ex Num = numer(ratio); + modifier.append(it.first == power(es, denom(ratio))); + // std::clog << e_replaced << " is power " << Num << " and " + // << it.first << " is power " << denom(ratio) << " of the common base " + // << exp(e_replaced.op(0)/Num) << std::endl; + // ... and modify the replacement tables + rev_lookup.erase(it.second); + rev_lookup.insert({exp(e_replaced.op(0)/Num), es}); + repl.erase(it.first); + repl.insert({es, exp(e_replaced.op(0)/Num)}); + return dynallocate(es, Num); + } + } + } + } + } + // Otherwise create new symbol and add to list, taking care that the // replacement expression doesn't itself contain symbols from repl, // because subs() is not recursive - ex es = (new symbol)->setflag(status_flags::dynallocated); - ex e_replaced = e.subs(repl, subs_options::no_pattern); + ex es = dynallocate(); repl.insert(std::make_pair(es, e_replaced)); rev_lookup.insert(std::make_pair(e_replaced, es)); return es; @@ -2028,16 +2108,18 @@ static ex replace_with_symbol(const ex & e, exmap & repl, exmap & rev_lookup) * @see basic::to_polynomial */ static ex replace_with_symbol(const ex & e, exmap & repl) { + // Since the repl contains replaced expressions we should search for them + ex e_replaced = e.subs(repl, subs_options::no_pattern); + // Expression already replaced? Then return the assigned symbol - for (exmap::const_iterator it = repl.begin(); it != repl.end(); ++it) - if (it->second.is_equal(e)) - return it->first; - + for (auto & it : repl) + if (it.second.is_equal(e_replaced)) + return it.first; + // Otherwise create new symbol and add to list, taking care that the // replacement expression doesn't itself contain symbols from repl, // because subs() is not recursive - ex es = (new symbol)->setflag(status_flags::dynallocated); - ex e_replaced = e.subs(repl, subs_options::no_pattern); + ex es = dynallocate(); repl.insert(std::make_pair(es, e_replaced)); return es; } @@ -2045,36 +2127,35 @@ static ex replace_with_symbol(const ex & e, exmap & repl) /** Function object to be applied by basic::normal(). */ struct normal_map_function : public map_function { - int level; - normal_map_function(int l) : level(l) {} - ex operator()(const ex & e) { return normal(e, level); } + ex operator()(const ex & e) override { return normal(e); } }; /** Default implementation of ex::normal(). It normalizes the children and * replaces the object with a temporary symbol. * @see ex::normal */ -ex basic::normal(exmap & repl, exmap & rev_lookup, int level) const +ex basic::normal(exmap & repl, exmap & rev_lookup, lst & modifier) const { if (nops() == 0) - return (new lst(replace_with_symbol(*this, repl, rev_lookup), _ex1))->setflag(status_flags::dynallocated); - else { - if (level == 1) - return (new lst(replace_with_symbol(*this, repl, rev_lookup), _ex1))->setflag(status_flags::dynallocated); - else if (level == -max_recursion_level) - throw(std::runtime_error("max recursion level reached")); - else { - normal_map_function map_normal(level - 1); - return (new lst(replace_with_symbol(map(map_normal), repl, rev_lookup), _ex1))->setflag(status_flags::dynallocated); - } + return dynallocate({replace_with_symbol(*this, repl, rev_lookup, modifier), _ex1}); + + normal_map_function map_normal; + int nmod = modifier.nops(); // To watch new modifiers to the replacement list + lst result = dynallocate({replace_with_symbol(map(map_normal), repl, rev_lookup, modifier), _ex1}); + for (int imod = nmod; imod < modifier.nops(); ++imod) { + exmap this_repl; + this_repl.insert(std::make_pair(modifier.op(imod).op(0), modifier.op(imod).op(1))); + result = ex_to(result.subs(this_repl, subs_options::no_pattern)); } + + return result; } /** Implementation of ex::normal() for symbols. This returns the unmodified symbol. * @see ex::normal */ -ex symbol::normal(exmap & repl, exmap & rev_lookup, int level) const +ex symbol::normal(exmap & repl, exmap & rev_lookup, lst & modifier) const { - return (new lst(*this, _ex1))->setflag(status_flags::dynallocated); + return dynallocate({*this, _ex1}); } @@ -2082,23 +2163,23 @@ ex symbol::normal(exmap & repl, exmap & rev_lookup, int level) const * into re+I*im and replaces I and non-rational real numbers with a temporary * symbol. * @see ex::normal */ -ex numeric::normal(exmap & repl, exmap & rev_lookup, int level) const +ex numeric::normal(exmap & repl, exmap & rev_lookup, lst & modifier) const { numeric num = numer(); ex numex = num; if (num.is_real()) { if (!num.is_integer()) - numex = replace_with_symbol(numex, repl, rev_lookup); + numex = replace_with_symbol(numex, repl, rev_lookup, modifier); } else { // complex numeric re = num.real(), im = num.imag(); - ex re_ex = re.is_rational() ? re : replace_with_symbol(re, repl, rev_lookup); - ex im_ex = im.is_rational() ? im : replace_with_symbol(im, repl, rev_lookup); - numex = re_ex + im_ex * replace_with_symbol(I, repl, rev_lookup); + ex re_ex = re.is_rational() ? re : replace_with_symbol(re, repl, rev_lookup, modifier); + ex im_ex = im.is_rational() ? im : replace_with_symbol(im, repl, rev_lookup, modifier); + numex = re_ex + im_ex * replace_with_symbol(I, repl, rev_lookup, modifier); } // Denominator is always a real integer (see numeric::denom()) - return (new lst(numex, denom()))->setflag(status_flags::dynallocated); + return dynallocate({numex, denom()}); } @@ -2116,11 +2197,11 @@ static ex frac_cancel(const ex &n, const ex &d) // Handle trivial case where denominator is 1 if (den.is_equal(_ex1)) - return (new lst(num, den))->setflag(status_flags::dynallocated); + return dynallocate({num, den}); // Handle special cases where numerator or denominator is 0 if (num.is_zero()) - return (new lst(num, _ex1))->setflag(status_flags::dynallocated); + return dynallocate({num, _ex1}); if (den.expand().is_zero()) throw(std::overflow_error("frac_cancel: division by zero in frac_cancel")); @@ -2159,32 +2240,26 @@ static ex frac_cancel(const ex &n, const ex &d) // Return result as list //std::clog << " returns num = " << num << ", den = " << den << ", pre_factor = " << pre_factor << std::endl; - return (new lst(num * pre_factor.numer(), den * pre_factor.denom()))->setflag(status_flags::dynallocated); + return dynallocate({num * pre_factor.numer(), den * pre_factor.denom()}); } /** Implementation of ex::normal() for a sum. It expands terms and performs * fractional addition. * @see ex::normal */ -ex add::normal(exmap & repl, exmap & rev_lookup, int level) const +ex add::normal(exmap & repl, exmap & rev_lookup, lst & modifier) const { - if (level == 1) - return (new lst(replace_with_symbol(*this, repl, rev_lookup), _ex1))->setflag(status_flags::dynallocated); - else if (level == -max_recursion_level) - throw(std::runtime_error("max recursion level reached")); - // Normalize children and split each one into numerator and denominator exvector nums, dens; nums.reserve(seq.size()+1); dens.reserve(seq.size()+1); - epvector::const_iterator it = seq.begin(), itend = seq.end(); - while (it != itend) { - ex n = ex_to(recombine_pair_to_ex(*it)).normal(repl, rev_lookup, level-1); + int nmod = modifier.nops(); // To watch new modifiers to the replacement list + for (auto & it : seq) { + ex n = ex_to(recombine_pair_to_ex(it)).normal(repl, rev_lookup, modifier); nums.push_back(n.op(0)); dens.push_back(n.op(1)); - it++; } - ex n = ex_to(overall_coeff).normal(repl, rev_lookup, level-1); + ex n = ex_to(overall_coeff).normal(repl, rev_lookup, modifier); nums.push_back(n.op(0)); dens.push_back(n.op(1)); GINAC_ASSERT(nums.size() == dens.size()); @@ -2194,9 +2269,21 @@ ex add::normal(exmap & repl, exmap & rev_lookup, int level) const //std::clog << "add::normal uses " << nums.size() << " summands:\n"; // Add fractions sequentially - exvector::const_iterator num_it = nums.begin(), num_itend = nums.end(); - exvector::const_iterator den_it = dens.begin(), den_itend = dens.end(); + auto num_it = nums.begin(), num_itend = nums.end(); + auto den_it = dens.begin(), den_itend = dens.end(); //std::clog << " num = " << *num_it << ", den = " << *den_it << std::endl; + for (int imod = nmod; imod < modifier.nops(); ++imod) { + while (num_it != num_itend) { + *num_it = num_it->subs(modifier.op(imod), subs_options::no_pattern); + ++num_it; + *den_it = den_it->subs(modifier.op(imod), subs_options::no_pattern); + ++den_it; + } + // Reset iterators for the next round + num_it = nums.begin(); + den_it = dens.begin(); + } + ex num = *num_it++, den = *den_it++; while (num_it != num_itend) { //std::clog << " num = " << *num_it << ", den = " << *den_it << std::endl; @@ -2208,7 +2295,7 @@ ex add::normal(exmap & repl, exmap & rev_lookup, int level) const num_it++; den_it++; } - // Additiion of two fractions, taking advantage of the fact that + // Addition of two fractions, taking advantage of the fact that // the heuristic GCD algorithm computes the cofactors at no extra cost ex co_den1, co_den2; ex g = gcd(den, next_den, &co_den1, &co_den2, false); @@ -2225,48 +2312,48 @@ ex add::normal(exmap & repl, exmap & rev_lookup, int level) const /** Implementation of ex::normal() for a product. It cancels common factors * from fractions. * @see ex::normal() */ -ex mul::normal(exmap & repl, exmap & rev_lookup, int level) const +ex mul::normal(exmap & repl, exmap & rev_lookup, lst & modifier) const { - if (level == 1) - return (new lst(replace_with_symbol(*this, repl, rev_lookup), _ex1))->setflag(status_flags::dynallocated); - else if (level == -max_recursion_level) - throw(std::runtime_error("max recursion level reached")); - // Normalize children, separate into numerator and denominator exvector num; num.reserve(seq.size()); exvector den; den.reserve(seq.size()); ex n; - epvector::const_iterator it = seq.begin(), itend = seq.end(); - while (it != itend) { - n = ex_to(recombine_pair_to_ex(*it)).normal(repl, rev_lookup, level-1); + int nmod = modifier.nops(); // To watch new modifiers to the replacement list + for (auto & it : seq) { + n = ex_to(recombine_pair_to_ex(it)).normal(repl, rev_lookup, modifier); num.push_back(n.op(0)); den.push_back(n.op(1)); - it++; } - n = ex_to(overall_coeff).normal(repl, rev_lookup, level-1); + n = ex_to(overall_coeff).normal(repl, rev_lookup, modifier); num.push_back(n.op(0)); den.push_back(n.op(1)); + auto num_it = num.begin(), num_itend = num.end(); + auto den_it = den.begin(), den_itend = den.end(); + for (int imod = nmod; imod < modifier.nops(); ++imod) { + while (num_it != num_itend) { + *num_it = num_it->subs(modifier.op(imod), subs_options::no_pattern); + ++num_it; + *den_it = den_it->subs(modifier.op(imod), subs_options::no_pattern); + ++den_it; + } + num_it = num.begin(); + den_it = den.begin(); + } // Perform fraction cancellation - return frac_cancel((new mul(num))->setflag(status_flags::dynallocated), - (new mul(den))->setflag(status_flags::dynallocated)); + return frac_cancel(dynallocate(num), dynallocate(den)); } -/** Implementation of ex::normal([B) for powers. It normalizes the basis, +/** Implementation of ex::normal() for powers. It normalizes the basis, * distributes integer exponents to numerator and denominator, and replaces * non-integer powers by temporary symbols. * @see ex::normal */ -ex power::normal(exmap & repl, exmap & rev_lookup, int level) const +ex power::normal(exmap & repl, exmap & rev_lookup, lst & modifier) const { - if (level == 1) - return (new lst(replace_with_symbol(*this, repl, rev_lookup), _ex1))->setflag(status_flags::dynallocated); - else if (level == -max_recursion_level) - throw(std::runtime_error("max recursion level reached")); - // Normalize basis and exponent (exponent gets reassembled) - ex n_basis = ex_to(basis).normal(repl, rev_lookup, level-1); - ex n_exponent = ex_to(exponent).normal(repl, rev_lookup, level-1); + ex n_basis = ex_to(basis).normal(repl, rev_lookup, modifier); + ex n_exponent = ex_to(exponent).normal(repl, rev_lookup, modifier); n_exponent = n_exponent.op(0) / n_exponent.op(1); if (n_exponent.info(info_flags::integer)) { @@ -2274,12 +2361,12 @@ ex power::normal(exmap & repl, exmap & rev_lookup, int level) const if (n_exponent.info(info_flags::positive)) { // (a/b)^n -> {a^n, b^n} - return (new lst(power(n_basis.op(0), n_exponent), power(n_basis.op(1), n_exponent)))->setflag(status_flags::dynallocated); + return dynallocate({pow(n_basis.op(0), n_exponent), pow(n_basis.op(1), n_exponent)}); } else if (n_exponent.info(info_flags::negative)) { // (a/b)^-n -> {b^n, a^n} - return (new lst(power(n_basis.op(1), -n_exponent), power(n_basis.op(0), -n_exponent)))->setflag(status_flags::dynallocated); + return dynallocate({pow(n_basis.op(1), -n_exponent), pow(n_basis.op(0), -n_exponent)}); } } else { @@ -2287,43 +2374,41 @@ ex power::normal(exmap & repl, exmap & rev_lookup, int level) const if (n_exponent.info(info_flags::positive)) { // (a/b)^x -> {sym((a/b)^x), 1} - return (new lst(replace_with_symbol(power(n_basis.op(0) / n_basis.op(1), n_exponent), repl, rev_lookup), _ex1))->setflag(status_flags::dynallocated); + return dynallocate({replace_with_symbol(pow(n_basis.op(0) / n_basis.op(1), n_exponent), repl, rev_lookup, modifier), _ex1}); } else if (n_exponent.info(info_flags::negative)) { if (n_basis.op(1).is_equal(_ex1)) { // a^-x -> {1, sym(a^x)} - return (new lst(_ex1, replace_with_symbol(power(n_basis.op(0), -n_exponent), repl, rev_lookup)))->setflag(status_flags::dynallocated); + return dynallocate({_ex1, replace_with_symbol(pow(n_basis.op(0), -n_exponent), repl, rev_lookup, modifier)}); } else { // (a/b)^-x -> {sym((b/a)^x), 1} - return (new lst(replace_with_symbol(power(n_basis.op(1) / n_basis.op(0), -n_exponent), repl, rev_lookup), _ex1))->setflag(status_flags::dynallocated); + return dynallocate({replace_with_symbol(pow(n_basis.op(1) / n_basis.op(0), -n_exponent), repl, rev_lookup, modifier), _ex1}); } } } // (a/b)^x -> {sym((a/b)^x, 1} - return (new lst(replace_with_symbol(power(n_basis.op(0) / n_basis.op(1), n_exponent), repl, rev_lookup), _ex1))->setflag(status_flags::dynallocated); + return dynallocate({replace_with_symbol(pow(n_basis.op(0) / n_basis.op(1), n_exponent), repl, rev_lookup, modifier), _ex1}); } /** Implementation of ex::normal() for pseries. It normalizes each coefficient * and replaces the series by a temporary symbol. * @see ex::normal */ -ex pseries::normal(exmap & repl, exmap & rev_lookup, int level) const +ex pseries::normal(exmap & repl, exmap & rev_lookup, lst & modifier) const { epvector newseq; - epvector::const_iterator i = seq.begin(), end = seq.end(); - while (i != end) { - ex restexp = i->rest.normal(); + for (auto & it : seq) { + ex restexp = it.rest.normal(); if (!restexp.is_zero()) - newseq.push_back(expair(restexp, i->coeff)); - ++i; + newseq.push_back(expair(restexp, it.coeff)); } - ex n = pseries(relational(var,point), newseq); - return (new lst(replace_with_symbol(n, repl, rev_lookup), _ex1))->setflag(status_flags::dynallocated); + ex n = pseries(relational(var,point), std::move(newseq)); + return dynallocate({replace_with_symbol(n, repl, rev_lookup, modifier), _ex1}); } @@ -2337,18 +2422,21 @@ ex pseries::normal(exmap & repl, exmap & rev_lookup, int level) const * expression can be treated as a rational function). normal() is applied * recursively to arguments of functions etc. * - * @param level maximum depth of recursion * @return normalized expression */ -ex ex::normal(int level) const +ex ex::normal() const { exmap repl, rev_lookup; + lst modifier; - ex e = bp->normal(repl, rev_lookup, level); + ex e = bp->normal(repl, rev_lookup, modifier); GINAC_ASSERT(is_a(e)); // Re-insert replaced symbols - if (!repl.empty()) + if (!repl.empty()) { + for(int i=0; i < modifier.nops(); ++i) + e = e.subs(modifier.op(i), subs_options::no_pattern); e = e.subs(repl, subs_options::no_pattern); + } // Convert {numerator, denominator} form back to fraction return e.op(0) / e.op(1); @@ -2363,15 +2451,20 @@ ex ex::normal(int level) const ex ex::numer() const { exmap repl, rev_lookup; + lst modifier; - ex e = bp->normal(repl, rev_lookup, 0); + ex e = bp->normal(repl, rev_lookup, modifier); GINAC_ASSERT(is_a(e)); // Re-insert replaced symbols if (repl.empty()) return e.op(0); - else + else { + for(int i=0; i < modifier.nops(); ++i) + e = e.subs(modifier.op(i), subs_options::no_pattern); + return e.op(0).subs(repl, subs_options::no_pattern); + } } /** Get denominator of an expression. If the expression is not of the normal @@ -2383,18 +2476,23 @@ ex ex::numer() const ex ex::denom() const { exmap repl, rev_lookup; + lst modifier; - ex e = bp->normal(repl, rev_lookup, 0); + ex e = bp->normal(repl, rev_lookup, modifier); GINAC_ASSERT(is_a(e)); // Re-insert replaced symbols if (repl.empty()) return e.op(1); - else + else { + for(int i=0; i < modifier.nops(); ++i) + e = e.subs(modifier.op(i), subs_options::no_pattern); + return e.op(1).subs(repl, subs_options::no_pattern); + } } -/** Get numerator and denominator of an expression. If the expresison is not +/** Get numerator and denominator of an expression. If the expression is not * of the normal form "numerator/denominator", it is first converted to this * form and then a list [numerator, denominator] is returned. * @@ -2403,15 +2501,20 @@ ex ex::denom() const ex ex::numer_denom() const { exmap repl, rev_lookup; + lst modifier; - ex e = bp->normal(repl, rev_lookup, 0); + ex e = bp->normal(repl, rev_lookup, modifier); GINAC_ASSERT(is_a(e)); // Re-insert replaced symbols if (repl.empty()) return e; - else + else { + for(int i=0; i < modifier.nops(); ++i) + e = e.subs(modifier.op(i), subs_options::no_pattern); + return e.subs(repl, subs_options::no_pattern); + } } @@ -2433,47 +2536,11 @@ ex ex::to_rational(exmap & repl) const return bp->to_rational(repl); } -// GiNaC 1.1 compatibility function -ex ex::to_rational(lst & repl_lst) const -{ - // Convert lst to exmap - exmap m; - for (lst::const_iterator it = repl_lst.begin(); it != repl_lst.end(); ++it) - m.insert(std::make_pair(it->op(0), it->op(1))); - - ex ret = bp->to_rational(m); - - // Convert exmap back to lst - repl_lst.remove_all(); - for (exmap::const_iterator it = m.begin(); it != m.end(); ++it) - repl_lst.append(it->first == it->second); - - return ret; -} - ex ex::to_polynomial(exmap & repl) const { return bp->to_polynomial(repl); } -// GiNaC 1.1 compatibility function -ex ex::to_polynomial(lst & repl_lst) const -{ - // Convert lst to exmap - exmap m; - for (lst::const_iterator it = repl_lst.begin(); it != repl_lst.end(); ++it) - m.insert(std::make_pair(it->op(0), it->op(1))); - - ex ret = bp->to_polynomial(m); - - // Convert exmap back to lst - repl_lst.remove_all(); - for (exmap::const_iterator it = m.begin(); it != m.end(); ++it) - repl_lst.append(it->first == it->second); - - return ret; -} - /** Default implementation of ex::to_rational(). This replaces the object with * a temporary symbol. */ ex basic::to_rational(exmap & repl) const @@ -2544,7 +2611,7 @@ ex numeric::to_polynomial(exmap & repl) const ex power::to_rational(exmap & repl) const { if (exponent.info(info_flags::integer)) - return power(basis.to_rational(repl), exponent); + return pow(basis.to_rational(repl), exponent); else return replace_with_symbol(*this, repl); } @@ -2554,17 +2621,17 @@ ex power::to_rational(exmap & repl) const ex power::to_polynomial(exmap & repl) const { if (exponent.info(info_flags::posint)) - return power(basis.to_rational(repl), exponent); + return pow(basis.to_rational(repl), exponent); else if (exponent.info(info_flags::negint)) { ex basis_pref = collect_common_factors(basis); if (is_exactly_a(basis_pref) || is_exactly_a(basis_pref)) { // (A*B)^n will be automagically transformed to A^n*B^n - ex t = power(basis_pref, exponent); + ex t = pow(basis_pref, exponent); return t.to_polynomial(repl); } else - return power(replace_with_symbol(power(basis, _ex_1), repl), -exponent); + return pow(replace_with_symbol(pow(basis, _ex_1), repl), -exponent); } else return replace_with_symbol(*this, repl); @@ -2576,17 +2643,15 @@ ex expairseq::to_rational(exmap & repl) const { epvector s; s.reserve(seq.size()); - epvector::const_iterator i = seq.begin(), end = seq.end(); - while (i != end) { - s.push_back(split_ex_to_pair(recombine_pair_to_ex(*i).to_rational(repl))); - ++i; - } + for (auto & it : seq) + s.push_back(split_ex_to_pair(recombine_pair_to_ex(it).to_rational(repl))); + ex oc = overall_coeff.to_rational(repl); if (oc.info(info_flags::numeric)) - return thisexpairseq(s, overall_coeff); + return thisexpairseq(std::move(s), overall_coeff); else - s.push_back(combine_ex_with_coeff_to_pair(oc, _ex1)); - return thisexpairseq(s, default_overall_coeff()); + s.push_back(expair(oc, _ex1)); + return thisexpairseq(std::move(s), default_overall_coeff()); } /** Implementation of ex::to_polynomial() for expairseqs. */ @@ -2594,17 +2659,15 @@ ex expairseq::to_polynomial(exmap & repl) const { epvector s; s.reserve(seq.size()); - epvector::const_iterator i = seq.begin(), end = seq.end(); - while (i != end) { - s.push_back(split_ex_to_pair(recombine_pair_to_ex(*i).to_polynomial(repl))); - ++i; - } + for (auto & it : seq) + s.push_back(split_ex_to_pair(recombine_pair_to_ex(it).to_polynomial(repl))); + ex oc = overall_coeff.to_polynomial(repl); if (oc.info(info_flags::numeric)) - return thisexpairseq(s, overall_coeff); + return thisexpairseq(std::move(s), overall_coeff); else - s.push_back(combine_ex_with_coeff_to_pair(oc, _ex1)); - return thisexpairseq(s, default_overall_coeff()); + s.push_back(expair(oc, _ex1)); + return thisexpairseq(std::move(s), default_overall_coeff()); } @@ -2629,7 +2692,7 @@ static ex find_common_factor(const ex & e, ex & factor, exmap & repl) x *= f; } - if (i == 0) + if (gc.is_zero()) gc = x; else gc = gcd(gc, x); @@ -2640,6 +2703,9 @@ static ex find_common_factor(const ex & e, ex & factor, exmap & repl) if (gc.is_equal(_ex1)) return e; + if (gc.is_zero()) + return _ex0; + // The GCD is the factor we pull out factor *= gc; @@ -2659,7 +2725,7 @@ static ex find_common_factor(const ex & e, ex & factor, exmap & repl) else v.push_back(t.op(k)); } - t = (new mul(v))->setflag(status_flags::dynallocated); + t = dynallocate(v); goto term_done; } } @@ -2669,7 +2735,7 @@ static ex find_common_factor(const ex & e, ex & factor, exmap & repl) t = x; term_done: ; } - return (new add(terms))->setflag(status_flags::dynallocated); + return dynallocate(terms); } else if (is_exactly_a(e)) { @@ -2679,7 +2745,7 @@ term_done: ; for (size_t i=0; isetflag(status_flags::dynallocated); + return dynallocate(v); } else if (is_exactly_a(e)) { const ex e_exp(e.op(1)); @@ -2687,8 +2753,8 @@ term_done: ; ex eb = e.op(0).to_polynomial(repl); ex factor_local(_ex1); ex pre_res = find_common_factor(eb, factor_local, repl); - factor *= power(factor_local, e_exp); - return power(pre_res, e_exp); + factor *= pow(factor_local, e_exp); + return pow(pre_res, e_exp); } else return e.to_polynomial(repl);