X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fnormal.cpp;h=1c2dc823f7911b76fbd60a5d7fd1ebaa0bd87900;hp=c04596856f4e207a9ff5d762930f3278b303652a;hb=083b0f50275a536be807fa2a34c1e278098e12f5;hpb=a8507b8af1c08d9b27d98d57f95c7ca1a8671e27 diff --git a/ginac/normal.cpp b/ginac/normal.cpp index c0459685..1c2dc823 100644 --- a/ginac/normal.cpp +++ b/ginac/normal.cpp @@ -4,9 +4,10 @@ * multivariate polynomials and rational functions. * These functions include polynomial quotient and remainder, GCD and LCM * computation, square-free factorization and rational function normalization. + */ - * - * GiNaC Copyright (C) 1999 Johannes Gutenberg University Mainz, Germany +/* + * GiNaC Copyright (C) 1999-2000 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -24,8 +25,31 @@ */ #include +#include +#include -#include "ginac.h" +#include "normal.h" +#include "basic.h" +#include "ex.h" +#include "add.h" +#include "constant.h" +#include "expairseq.h" +#include "fail.h" +#include "indexed.h" +#include "inifcns.h" +#include "lst.h" +#include "mul.h" +#include "ncmul.h" +#include "numeric.h" +#include "power.h" +#include "relational.h" +#include "pseries.h" +#include "symbol.h" +#include "utils.h" + +#ifndef NO_NAMESPACE_GINAC +namespace GiNaC { +#endif // ndef NO_NAMESPACE_GINAC // If comparing expressions (ex::compare()) is fast, you can set this to 1. // Some routines like quo(), rem() and gcd() will then return a quick answer @@ -50,7 +74,7 @@ static bool get_first_symbol(const ex &e, const symbol *&x) x = static_cast(e.bp); return true; } else if (is_ex_exactly_of_type(e, add) || is_ex_exactly_of_type(e, mul)) { - for (int i=0; i - /** This structure holds information about the highest and lowest degrees * in which a symbol appears in two multivariate polynomials "a" and "b". * A vector of these structures with information about all symbols in @@ -119,7 +141,7 @@ static void collect_symbols(const ex &e, sym_desc_vec &v) if (is_ex_exactly_of_type(e, symbol)) { add_symbol(static_cast(e.bp), v); } else if (is_ex_exactly_of_type(e, add) || is_ex_exactly_of_type(e, mul)) { - for (int i=0; iinteger_content(); } numeric basic::integer_content(void) const { - return numONE(); + return _num1(); } numeric numeric::integer_content(void) const @@ -219,29 +274,29 @@ numeric add::integer_content(void) const { epvector::const_iterator it = seq.begin(); epvector::const_iterator itend = seq.end(); - numeric c = numZERO(); + numeric c = _num0(); while (it != itend) { - ASSERT(!is_ex_exactly_of_type(it->rest,numeric)); - ASSERT(is_ex_exactly_of_type(it->coeff,numeric)); + GINAC_ASSERT(!is_ex_exactly_of_type(it->rest,numeric)); + GINAC_ASSERT(is_ex_exactly_of_type(it->coeff,numeric)); c = gcd(ex_to_numeric(it->coeff), c); it++; } - ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); + GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); c = gcd(ex_to_numeric(overall_coeff),c); return c; } numeric mul::integer_content(void) const { -#ifdef DOASSERT +#ifdef DO_GINAC_ASSERT epvector::const_iterator it = seq.begin(); epvector::const_iterator itend = seq.end(); while (it != itend) { - ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric)); + GINAC_ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric)); ++it; } -#endif // def DOASSERT - ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); +#endif // def DO_GINAC_ASSERT + GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); return abs(ex_to_numeric(overall_coeff)); } @@ -268,13 +323,13 @@ ex quo(const ex &a, const ex &b, const symbol &x, bool check_args) return a / b; #if FAST_COMPARE if (a.is_equal(b)) - return exONE(); + return _ex1(); #endif if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) throw(std::invalid_argument("quo: arguments must be polynomials over the rationals")); // Polynomial long division - ex q = exZERO(); + ex q = _ex0(); ex r = a.expand(); if (r.is_zero()) return r; @@ -317,13 +372,13 @@ ex rem(const ex &a, const ex &b, const symbol &x, bool check_args) throw(std::overflow_error("rem: division by zero")); if (is_ex_exactly_of_type(a, numeric)) { if (is_ex_exactly_of_type(b, numeric)) - return exZERO(); + return _ex0(); else return b; } #if FAST_COMPARE if (a.is_equal(b)) - return exZERO(); + return _ex0(); #endif if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))) throw(std::invalid_argument("rem: arguments must be polynomials over the rationals")); @@ -369,7 +424,7 @@ ex prem(const ex &a, const ex &b, const symbol &x, bool check_args) throw(std::overflow_error("prem: division by zero")); if (is_ex_exactly_of_type(a, numeric)) { if (is_ex_exactly_of_type(b, numeric)) - return exZERO(); + return _ex0(); else return b; } @@ -385,18 +440,18 @@ ex prem(const ex &a, const ex &b, const symbol &x, bool check_args) if (bdeg <= rdeg) { blcoeff = eb.coeff(x, bdeg); if (bdeg == 0) - eb = exZERO(); + eb = _ex0(); else eb -= blcoeff * power(x, bdeg); } else - blcoeff = exONE(); + blcoeff = _ex1(); int delta = rdeg - bdeg + 1, i = 0; while (rdeg >= bdeg && !r.is_zero()) { ex rlcoeff = r.coeff(x, rdeg); ex term = (power(x, rdeg - bdeg) * eb * rlcoeff).expand(); if (rdeg == 0) - r = exZERO(); + r = _ex0(); else r -= rlcoeff * power(x, rdeg); r = (blcoeff * r).expand() - term; @@ -419,7 +474,7 @@ ex prem(const ex &a, const ex &b, const symbol &x, bool check_args) bool divide(const ex &a, const ex &b, ex &q, bool check_args) { - q = exZERO(); + q = _ex0(); if (b.is_zero()) throw(std::overflow_error("divide: division by zero")); if (is_ex_exactly_of_type(b, numeric)) { @@ -429,7 +484,7 @@ bool divide(const ex &a, const ex &b, ex &q, bool check_args) return false; #if FAST_COMPARE if (a.is_equal(b)) { - q = exONE(); + q = _ex1(); return true; } #endif @@ -472,8 +527,6 @@ bool divide(const ex &a, const ex &b, ex &q, bool check_args) * Remembering */ -#include - typedef pair ex2; typedef pair exbool; @@ -506,10 +559,10 @@ typedef map ex2_exbool_remember; * @see get_symbol_stats, heur_gcd */ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_iterator var) { - q = exZERO(); + q = _ex0(); if (b.is_zero()) throw(std::overflow_error("divide_in_z: division by zero")); - if (b.is_equal(exONE())) { + if (b.is_equal(_ex1())) { q = a; return true; } @@ -522,7 +575,7 @@ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_ite } #if FAST_COMPARE if (a.is_equal(b)) { - q = exONE(); + q = _ex1(); return true; } #endif @@ -582,19 +635,19 @@ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_ite // Compute values at evaluation points 0..adeg vector alpha; alpha.reserve(adeg + 1); exvector u; u.reserve(adeg + 1); - numeric point = numZERO(); + numeric point = _num0(); ex c; for (i=0; i<=adeg; i++) { ex bs = b.subs(*x == point); while (bs.is_zero()) { - point += numONE(); + point += _num1(); bs = b.subs(*x == point); } if (!divide_in_z(a.subs(*x == point), bs, c, var+1)) return false; alpha.push_back(point); u.push_back(c); - point += numONE(); + point += _num1(); } // Compute inverses @@ -646,7 +699,7 @@ ex ex::unit(const symbol &x) const { ex c = expand().lcoeff(x); if (is_ex_exactly_of_type(c, numeric)) - return c < exZERO() ? exMINUSONE() : exONE(); + return c < _ex0() ? _ex_1() : _ex1(); else { const symbol *y; if (get_first_symbol(c, y)) @@ -667,12 +720,12 @@ ex ex::unit(const symbol &x) const ex ex::content(const symbol &x) const { if (is_zero()) - return exZERO(); + return _ex0(); if (is_ex_exactly_of_type(*this, numeric)) return info(info_flags::negative) ? -*this : *this; ex e = expand(); if (e.is_zero()) - return exZERO(); + return _ex0(); // First, try the integer content ex c = e.integer_content(); @@ -686,7 +739,7 @@ ex ex::content(const symbol &x) const int ldeg = e.ldegree(x); if (deg == ldeg) return e.lcoeff(x) / e.unit(x); - c = exZERO(); + c = _ex0(); for (int i=ldeg; i<=deg; i++) c = gcd(e.coeff(x, i), c, NULL, NULL, false); return c; @@ -703,13 +756,13 @@ ex ex::content(const symbol &x) const ex ex::primpart(const symbol &x) const { if (is_zero()) - return exZERO(); + return _ex0(); if (is_ex_exactly_of_type(*this, numeric)) - return exONE(); + return _ex1(); ex c = content(x); if (c.is_zero()) - return exZERO(); + return _ex0(); ex u = unit(x); if (is_ex_exactly_of_type(c, numeric)) return *this / (c * u); @@ -729,11 +782,11 @@ ex ex::primpart(const symbol &x) const ex ex::primpart(const symbol &x, const ex &c) const { if (is_zero()) - return exZERO(); + return _ex0(); if (c.is_zero()) - return exZERO(); + return _ex0(); if (is_ex_exactly_of_type(*this, numeric)) - return exONE(); + return _ex1(); ex u = unit(x); if (is_ex_exactly_of_type(c, numeric)) @@ -784,7 +837,7 @@ static ex sr_gcd(const ex &a, const ex &b, const symbol *x) d = d.primpart(*x, cont_d); // First element of subresultant sequence - ex r = exZERO(), ri = exONE(), psi = exONE(); + ex r = _ex0(), ri = _ex1(), psi = _ex1(); int delta = cdeg - ddeg; for (;;) { @@ -824,13 +877,13 @@ static ex sr_gcd(const ex &a, const ex &b, const symbol *x) numeric ex::max_coefficient(void) const { - ASSERT(bp!=0); + GINAC_ASSERT(bp!=0); return bp->max_coefficient(); } numeric basic::max_coefficient(void) const { - return numONE(); + return _num1(); } numeric numeric::max_coefficient(void) const @@ -842,11 +895,11 @@ numeric add::max_coefficient(void) const { epvector::const_iterator it = seq.begin(); epvector::const_iterator itend = seq.end(); - ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); + GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); numeric cur_max = abs(ex_to_numeric(overall_coeff)); while (it != itend) { numeric a; - ASSERT(!is_ex_exactly_of_type(it->rest,numeric)); + GINAC_ASSERT(!is_ex_exactly_of_type(it->rest,numeric)); a = abs(ex_to_numeric(it->coeff)); if (a > cur_max) cur_max = a; @@ -857,15 +910,15 @@ numeric add::max_coefficient(void) const numeric mul::max_coefficient(void) const { -#ifdef DOASSERT +#ifdef DO_GINAC_ASSERT epvector::const_iterator it = seq.begin(); epvector::const_iterator itend = seq.end(); while (it != itend) { - ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric)); + GINAC_ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric)); it++; } -#endif // def DOASSERT - ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); +#endif // def DO_GINAC_ASSERT + GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); return abs(ex_to_numeric(overall_coeff)); } @@ -880,7 +933,7 @@ numeric mul::max_coefficient(void) const ex ex::smod(const numeric &xi) const { - ASSERT(bp!=0); + GINAC_ASSERT(bp!=0); return bp->smod(xi); } @@ -891,7 +944,11 @@ ex basic::smod(const numeric &xi) const ex numeric::smod(const numeric &xi) const { +#ifndef NO_NAMESPACE_GINAC + return GiNaC::smod(*this, xi); +#else // ndef NO_NAMESPACE_GINAC return ::smod(*this, xi); +#endif // ndef NO_NAMESPACE_GINAC } ex add::smod(const numeric &xi) const @@ -901,37 +958,49 @@ ex add::smod(const numeric &xi) const epvector::const_iterator it = seq.begin(); epvector::const_iterator itend = seq.end(); while (it != itend) { - ASSERT(!is_ex_exactly_of_type(it->rest,numeric)); + GINAC_ASSERT(!is_ex_exactly_of_type(it->rest,numeric)); +#ifndef NO_NAMESPACE_GINAC + numeric coeff = GiNaC::smod(ex_to_numeric(it->coeff), xi); +#else // ndef NO_NAMESPACE_GINAC numeric coeff = ::smod(ex_to_numeric(it->coeff), xi); +#endif // ndef NO_NAMESPACE_GINAC if (!coeff.is_zero()) newseq.push_back(expair(it->rest, coeff)); it++; } - ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); + GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); +#ifndef NO_NAMESPACE_GINAC + numeric coeff = GiNaC::smod(ex_to_numeric(overall_coeff), xi); +#else // ndef NO_NAMESPACE_GINAC numeric coeff = ::smod(ex_to_numeric(overall_coeff), xi); +#endif // ndef NO_NAMESPACE_GINAC return (new add(newseq,coeff))->setflag(status_flags::dynallocated); } ex mul::smod(const numeric &xi) const { -#ifdef DOASSERT +#ifdef DO_GINAC_ASSERT epvector::const_iterator it = seq.begin(); epvector::const_iterator itend = seq.end(); while (it != itend) { - ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric)); + GINAC_ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric)); it++; } -#endif // def DOASSERT +#endif // def DO_GINAC_ASSERT mul * mulcopyp=new mul(*this); - ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); - mulcopyp->overall_coeff=::smod(ex_to_numeric(overall_coeff),xi); + GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); +#ifndef NO_NAMESPACE_GINAC + mulcopyp->overall_coeff = GiNaC::smod(ex_to_numeric(overall_coeff),xi); +#else // ndef NO_NAMESPACE_GINAC + mulcopyp->overall_coeff = ::smod(ex_to_numeric(overall_coeff),xi); +#endif // ndef NO_NAMESPACE_GINAC mulcopyp->clearflag(status_flags::evaluated); mulcopyp->clearflag(status_flags::hash_calculated); return mulcopyp->setflag(status_flags::dynallocated); } -/** Exception thrown by heur_gcd() to signal failure */ +/** Exception thrown by heur_gcd() to signal failure. */ class gcdheu_failed {}; /** Compute GCD of multivariate polynomials using the heuristic GCD algorithm. @@ -978,9 +1047,9 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const numeric mp = p.max_coefficient(), mq = q.max_coefficient(); numeric xi; if (mp > mq) - xi = mq * numTWO() + numTWO(); + xi = mq * _num2() + _num2(); else - xi = mp * numTWO() + numTWO(); + xi = mp * _num2() + _num2(); // 6 tries maximum for (int t=0; t<6; t++) { @@ -992,7 +1061,7 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const if (!is_ex_exactly_of_type(gamma, fail)) { // Reconstruct polynomial from GCD of mapped polynomials - ex g = exZERO(); + ex g = _ex0(); numeric rxi = xi.inverse(); for (int i=0; !gamma.is_zero(); i++) { ex gi = gamma.smod(xi); @@ -1007,7 +1076,7 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const if (divide_in_z(p, g, ca ? *ca : dummy, var) && divide_in_z(q, g, cb ? *cb : dummy, var)) { g *= gc; ex lc = g.lcoeff(*x); - if (is_ex_exactly_of_type(lc, numeric) && lc.compare(exZERO()) < 0) + if (is_ex_exactly_of_type(lc, numeric) && lc.compare(_ex0()) < 0) return -g; else return g; @@ -1032,48 +1101,86 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args) { + // Partially factored cases (to avoid expanding large expressions) + if (is_ex_exactly_of_type(a, mul)) { + if (is_ex_exactly_of_type(b, mul) && b.nops() > a.nops()) + goto factored_b; +factored_a: + ex g = _ex1(); + ex acc_ca = _ex1(); + ex part_b = b; + for (unsigned i=0; i b.nops()) + goto factored_a; +factored_b: + ex g = _ex1(); + ex acc_cb = _ex1(); + ex part_a = a; + for (unsigned i=0; i 0) { ex common = power(*x, min_ldeg); //clog << "trivial common factor " << common << endl; - return gcd((a / common).expand(), (b / common).expand(), ca, cb, false) * common; + return gcd((aex / common).expand(), (bex / common).expand(), ca, cb, false) * common; } // Try to eliminate variables if (var->deg_a == 0) { //clog << "eliminating variable " << *x << " from b" << endl; - ex c = b.content(*x); - ex g = gcd(a, c, ca, cb, false); + ex c = bex.content(*x); + ex g = gcd(aex, c, ca, cb, false); if (cb) - *cb *= b.unit(*x) * b.primpart(*x, c); + *cb *= bex.unit(*x) * bex.primpart(*x, c); return g; } else if (var->deg_b == 0) { //clog << "eliminating variable " << *x << " from a" << endl; - ex c = a.content(*x); - ex g = gcd(c, b, ca, cb, false); + ex c = aex.content(*x); + ex g = gcd(c, bex, ca, cb, false); if (ca) - *ca *= a.unit(*x) * a.primpart(*x, c); + *ca *= aex.unit(*x) * aex.primpart(*x, c); return g; } // Try heuristic algorithm first, fall back to PRS if that failed ex g; try { - g = heur_gcd(a.expand(), b.expand(), ca, cb, var); + g = heur_gcd(aex, bex, ca, cb, var); } catch (gcdheu_failed) { g = *new ex(fail()); } if (is_ex_exactly_of_type(g, fail)) { -//clog << "heuristics failed\n"; - g = sr_gcd(a, b, x); +//clog << "heuristics failed" << endl; + g = sr_gcd(aex, bex, x); if (ca) - divide(a, g, *ca, false); + divide(aex, g, *ca, false); if (cb) - divide(b, g, *cb, false); + divide(bex, g, *cb, false); } return g; } @@ -1141,7 +1248,7 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args) ex lcm(const ex &a, const ex &b, bool check_args) { if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) - return gcd(ex_to_numeric(a), ex_to_numeric(b)); + return lcm(ex_to_numeric(a), ex_to_numeric(b)); if (check_args && !a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)) throw(std::invalid_argument("lcm: arguments must be polynomials over the rationals")); @@ -1163,8 +1270,8 @@ static ex univariate_gcd(const ex &a, const ex &b, const symbol &x) return b; if (b.is_zero()) return a; - if (a.is_equal(exONE()) || b.is_equal(exONE())) - return exONE(); + if (a.is_equal(_ex1()) || b.is_equal(_ex1())) + return _ex1(); if (is_ex_of_type(a, numeric) && is_ex_of_type(b, numeric)) return gcd(ex_to_numeric(a), ex_to_numeric(b)); if (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)) @@ -1199,11 +1306,11 @@ static ex univariate_gcd(const ex &a, const ex &b, const symbol &x) ex sqrfree(const ex &a, const symbol &x) { int i = 1; - ex res = exONE(); + ex res = _ex1(); ex b = a.diff(x); ex c = univariate_gcd(a, b, x); ex w; - if (c.is_equal(exONE())) { + if (c.is_equal(_ex1())) { w = a; } else { w = quo(a, c, x); @@ -1226,13 +1333,22 @@ ex sqrfree(const ex &a, const symbol &x) * Normal form of rational functions */ -// Create a symbol for replacing the expression "e" (or return a previously -// assigned symbol). The symbol is appended to sym_list and returned, the -// expression is appended to repl_list. +/* + * Note: The internal normal() functions (= basic::normal() and overloaded + * functions) all return lists of the form {numerator, denominator}. This + * is to get around mul::eval()'s automatic expansion of numeric coefficients. + * E.g. (a+b)/3 is automatically converted to a/3+b/3 but we want to keep + * the information that (a+b) is the numerator and 3 is the denominator. + */ + +/** Create a symbol for replacing the expression "e" (or return a previously + * assigned symbol). The symbol is appended to sym_list and returned, the + * expression is appended to repl_list. + * @see ex::normal */ static ex replace_with_symbol(const ex &e, lst &sym_lst, lst &repl_lst) { // Expression already in repl_lst? Then return the assigned symbol - for (int i=0; isetflag(status_flags::dynallocated); } -/** Implementation of ex::normal() for symbols. This returns the unmodifies symbol. +/** Implementation of ex::normal() for symbols. This returns the unmodified symbol. * @see ex::normal */ ex symbol::normal(lst &sym_lst, lst &repl_lst, int level) const { - return *this; + return (new lst(*this, _ex1()))->setflag(status_flags::dynallocated); } @@ -1271,53 +1387,53 @@ ex symbol::normal(lst &sym_lst, lst &repl_lst, int level) const * @see ex::normal */ ex numeric::normal(lst &sym_lst, lst &repl_lst, int level) const { - if (is_real()) - if (is_rational()) - return *this; - else - return replace_with_symbol(*this, sym_lst, repl_lst); - else { // complex - numeric re = real(), im = imag(); - ex re_ex = re.is_rational() ? re : replace_with_symbol(re, sym_lst, repl_lst); - ex im_ex = im.is_rational() ? im : replace_with_symbol(im, sym_lst, repl_lst); - return re_ex + im_ex * replace_with_symbol(I, sym_lst, repl_lst); - } -} + numeric num = numer(); + ex numex = num; + + if (num.is_real()) { + if (!num.is_integer()) + numex = replace_with_symbol(numex, sym_lst, repl_lst); + } else { // complex + numeric re = num.real(), im = num.imag(); + ex re_ex = re.is_rational() ? re : replace_with_symbol(re, sym_lst, repl_lst); + ex im_ex = im.is_rational() ? im : replace_with_symbol(im, sym_lst, repl_lst); + numex = re_ex + im_ex * replace_with_symbol(I, sym_lst, repl_lst); + } + // Denominator is always a real integer (see numeric::denom()) + return (new lst(numex, denom()))->setflag(status_flags::dynallocated); +} -/* - * Helper function for fraction cancellation (returns cancelled fraction n/d) - */ +/** Fraction cancellation. + * @param n numerator + * @param d denominator + * @return cancelled fraction {n, d} as a list */ static ex frac_cancel(const ex &n, const ex &d) { ex num = n; ex den = d; - ex pre_factor = exONE(); + numeric pre_factor = _num1(); + +//clog << "frac_cancel num = " << num << ", den = " << den << endl; // Handle special cases where numerator or denominator is 0 if (num.is_zero()) - return exZERO(); + return (new lst(_ex0(), _ex1()))->setflag(status_flags::dynallocated); if (den.expand().is_zero()) throw(std::overflow_error("frac_cancel: division by zero in frac_cancel")); - // More special cases - if (is_ex_exactly_of_type(den, numeric)) - return num / den; - if (num.is_zero()) - return exZERO(); - // Bring numerator and denominator to Z[X] by multiplying with // LCM of all coefficients' denominators - ex num_lcm = lcm_of_coefficients_denominators(num); - ex den_lcm = lcm_of_coefficients_denominators(den); - num *= num_lcm; - den *= den_lcm; + numeric num_lcm = lcm_of_coefficients_denominators(num); + numeric den_lcm = lcm_of_coefficients_denominators(den); + num = multiply_lcm(num, num_lcm); + den = multiply_lcm(den, den_lcm); pre_factor = den_lcm / num_lcm; // Cancel GCD from numerator and denominator ex cnum, cden; - if (gcd(num, den, &cnum, &cden, false) != exONE()) { + if (gcd(num, den, &cnum, &cden, false) != _ex1()) { num = cnum; den = cden; } @@ -1326,12 +1442,14 @@ static ex frac_cancel(const ex &n, const ex &d) // as defined by get_first_symbol() is made positive) const symbol *x; if (get_first_symbol(den, x)) { - if (den.unit(*x).compare(exZERO()) < 0) { - num *= exMINUSONE(); - den *= exMINUSONE(); + if (den.unit(*x).compare(_ex0()) < 0) { + num *= _ex_1(); + den *= _ex_1(); } } - return pre_factor * num / den; + + // Return result as list + return (new lst(num * pre_factor.numer(), den * pre_factor.denom()))->setflag(status_flags::dynallocated); } @@ -1340,47 +1458,67 @@ static ex frac_cancel(const ex &n, const ex &d) * @see ex::normal */ ex add::normal(lst &sym_lst, lst &repl_lst, int level) const { - // Normalize and expand children + // Normalize and expand children, chop into summands exvector o; o.reserve(seq.size()+1); epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { + + // Normalize and expand child ex n = recombine_pair_to_ex(*it).bp->normal(sym_lst, repl_lst, level-1).expand(); - if (is_ex_exactly_of_type(n, add)) { - epvector::const_iterator bit = (static_cast(n.bp))->seq.begin(), bitend = (static_cast(n.bp))->seq.end(); + + // If numerator is a sum, chop into summands + if (is_ex_exactly_of_type(n.op(0), add)) { + epvector::const_iterator bit = ex_to_add(n.op(0)).seq.begin(), bitend = ex_to_add(n.op(0)).seq.end(); while (bit != bitend) { - o.push_back(recombine_pair_to_ex(*bit)); + o.push_back((new lst(recombine_pair_to_ex(*bit), n.op(1)))->setflag(status_flags::dynallocated)); bit++; } - o.push_back((static_cast(n.bp))->overall_coeff); + + // The overall_coeff is already normalized (== rational), we just + // split it into numerator and denominator + GINAC_ASSERT(ex_to_numeric(ex_to_add(n.op(0)).overall_coeff).is_rational()); + numeric overall = ex_to_numeric(ex_to_add(n.op(0)).overall_coeff); + o.push_back((new lst(overall.numer(), overall.denom()))->setflag(status_flags::dynallocated)); } else o.push_back(n); it++; } o.push_back(overall_coeff.bp->normal(sym_lst, repl_lst, level-1)); + // o is now a vector of {numerator, denominator} lists + // Determine common denominator - ex den = exONE(); + ex den = _ex1(); exvector::const_iterator ait = o.begin(), aitend = o.end(); while (ait != aitend) { - den = lcm((*ait).denom(false), den, false); + den = lcm(ait->op(1), den, false); ait++; } // Add fractions - if (den.is_equal(exONE())) - return (new add(o))->setflag(status_flags::dynallocated); - else { + if (den.is_equal(_ex1())) { + + // Common denominator is 1, simply add all numerators + exvector num_seq; + for (ait=o.begin(); ait!=aitend; ait++) { + num_seq.push_back(ait->op(0)); + } + return (new lst((new add(num_seq))->setflag(status_flags::dynallocated), den))->setflag(status_flags::dynallocated); + + } else { + + // Perform fractional addition exvector num_seq; for (ait=o.begin(); ait!=aitend; ait++) { ex q; - if (!divide(den, (*ait).denom(false), q, false)) { + if (!divide(den, ait->op(1), q, false)) { // should not happen throw(std::runtime_error("invalid expression in add::normal, division failed")); } - num_seq.push_back((*ait).numer(false) * q); + num_seq.push_back(ait->op(0) * q); } - ex num = add(num_seq); + ex num = (new add(num_seq))->setflag(status_flags::dynallocated); // Cancel common factors from num/den return frac_cancel(num, den); @@ -1393,17 +1531,23 @@ ex add::normal(lst &sym_lst, lst &repl_lst, int level) const * @see ex::normal() */ ex mul::normal(lst &sym_lst, lst &repl_lst, int level) const { - // Normalize children - exvector o; - o.reserve(seq.size()+1); + // Normalize children, separate into numerator and denominator + ex num = _ex1(); + ex den = _ex1(); + ex n; epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { - o.push_back(recombine_pair_to_ex(*it).bp->normal(sym_lst, repl_lst, level-1)); + n = recombine_pair_to_ex(*it).bp->normal(sym_lst, repl_lst, level-1); + num *= n.op(0); + den *= n.op(1); it++; } - o.push_back(overall_coeff.bp->normal(sym_lst, repl_lst, level-1)); - ex n = (new mul(o))->setflag(status_flags::dynallocated); - return frac_cancel(n.numer(false), n.denom(false)); + n = overall_coeff.bp->normal(sym_lst, repl_lst, level-1); + num *= n.op(0); + den *= n.op(1); + + // Perform fraction cancellation + return frac_cancel(num, den); } @@ -1413,24 +1557,26 @@ ex mul::normal(lst &sym_lst, lst &repl_lst, int level) const * @see ex::normal */ ex power::normal(lst &sym_lst, lst &repl_lst, int level) const { - if (exponent.info(info_flags::integer)) { + if (exponent.info(info_flags::posint)) { // Integer powers are distributed ex n = basis.bp->normal(sym_lst, repl_lst, level-1); - ex num = n.numer(false); - ex den = n.denom(false); - return power(num, exponent) / power(den, exponent); + return (new lst(power(n.op(0), exponent), power(n.op(1), exponent)))->setflag(status_flags::dynallocated); + } else if (exponent.info(info_flags::negint)) { + // Integer powers are distributed + ex n = basis.bp->normal(sym_lst, repl_lst, level-1); + return (new lst(power(n.op(1), -exponent), power(n.op(0), -exponent)))->setflag(status_flags::dynallocated); } else { // Non-integer powers are replaced by temporary symbol (after normalizing basis) - ex n = power(basis.bp->normal(sym_lst, repl_lst, level-1), exponent); - return replace_with_symbol(n, sym_lst, repl_lst); + ex n = basis.bp->normal(sym_lst, repl_lst, level-1); + return (new lst(replace_with_symbol(power(n.op(0) / n.op(1), exponent), sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated); } } -/** Implementation of ex::normal() for series. It normalizes each coefficient and +/** Implementation of ex::normal() for pseries. It normalizes each coefficient and * replaces the series by a temporary symbol. * @see ex::normal */ -ex series::normal(lst &sym_lst, lst &repl_lst, int level) const +ex pseries::normal(lst &sym_lst, lst &repl_lst, int level) const { epvector new_seq; new_seq.reserve(seq.size()); @@ -1440,9 +1586,8 @@ ex series::normal(lst &sym_lst, lst &repl_lst, int level) const new_seq.push_back(expair(it->rest.normal(), it->coeff)); it++; } - - ex n = series(var, point, new_seq); - return replace_with_symbol(n, sym_lst, repl_lst); + ex n = pseries(var, point, new_seq); + return (new lst(replace_with_symbol(n, sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated); } @@ -1461,9 +1606,18 @@ ex series::normal(lst &sym_lst, lst &repl_lst, int level) const ex ex::normal(int level) const { lst sym_lst, repl_lst; + ex e = bp->normal(sym_lst, repl_lst, level); + GINAC_ASSERT(is_ex_of_type(e, lst)); + + // Re-insert replaced symbols if (sym_lst.nops() > 0) - return e.subs(sym_lst, repl_lst); - else - return e; + e = e.subs(sym_lst, repl_lst); + + // Convert {numerator, denominator} form back to fraction + return e.op(0) / e.op(1); } + +#ifndef NO_NAMESPACE_GINAC +} // namespace GiNaC +#endif // ndef NO_NAMESPACE_GINAC