X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fnormal.cpp;h=09773d37489693a4854964f129002abb186b2c5b;hp=0cb91001a01ff427bdb353590a3a29210c99c597;hb=4a9f6c276daf54acbb2f5951f0435bfb6f014809;hpb=7d7131d3af3de5425b7fe80b1f587740294371bc diff --git a/ginac/normal.cpp b/ginac/normal.cpp index 0cb91001..09773d37 100644 --- a/ginac/normal.cpp +++ b/ginac/normal.cpp @@ -1417,11 +1417,11 @@ static bool heur_gcd(ex& res, const ex& a, const ex& b, ex *ca, ex *cb, // gcd helper to handle partially factored polynomials (to avoid expanding // large expressions). At least one of the arguments should be a power. -static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb, bool check_args); +static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb); // gcd helper to handle partially factored polynomials (to avoid expanding // large expressions). At least one of the arguments should be a product. -static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb, bool check_args); +static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb); /** Compute GCD (Greatest Common Divisor) of multivariate polynomials a(X) * and b(X) in Z[X]. Optionally also compute the cofactors of a and b, @@ -1465,12 +1465,14 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio } // Partially factored cases (to avoid expanding large expressions) - if (is_exactly_a(a) || is_exactly_a(b)) - return gcd_pf_mul(a, b, ca, cb, check_args); + if (!(options & gcd_options::no_part_factored)) { + if (is_exactly_a(a) || is_exactly_a(b)) + return gcd_pf_mul(a, b, ca, cb); #if FAST_COMPARE - if (is_exactly_a(a) || is_exactly_a(b)) - return gcd_pf_pow(a, b, ca, cb, check_args); + if (is_exactly_a(a) || is_exactly_a(b)) + return gcd_pf_pow(a, b, ca, cb); #endif + } // Some trivial cases ex aex = a.expand(), bex = b.expand(); @@ -1601,183 +1603,154 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio // Try heuristic algorithm first, fall back to PRS if that failed ex g; - bool found = heur_gcd(g, aex, bex, ca, cb, var); - if (!found) { -#if STATISTICS - heur_gcd_failed++; -#endif - g = sr_gcd(aex, bex, var); - if (g.is_equal(_ex1)) { - // Keep cofactors factored if possible - if (ca) - *ca = a; - if (cb) - *cb = b; - } else { - if (ca) - divide(aex, g, *ca, false); - if (cb) - divide(bex, g, *cb, false); + if (!(options & gcd_options::no_heur_gcd)) { + bool found = heur_gcd(g, aex, bex, ca, cb, var); + if (found) { + // heur_gcd have already computed cofactors... + if (g.is_equal(_ex1)) { + // ... but we want to keep them factored if possible. + if (ca) + *ca = a; + if (cb) + *cb = b; + } + return g; } - } else { - if (g.is_equal(_ex1)) { - // Keep cofactors factored if possible - if (ca) - *ca = a; - if (cb) - *cb = b; +#if STATISTICS + else { + heur_gcd_failed++; } +#endif } + g = sr_gcd(aex, bex, var); + if (g.is_equal(_ex1)) { + // Keep cofactors factored if possible + if (ca) + *ca = a; + if (cb) + *cb = b; + } else { + if (ca) + divide(aex, g, *ca, false); + if (cb) + divide(bex, g, *cb, false); + } return g; } -static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb, bool check_args) -{ - if (is_exactly_a(a)) { - ex p = a.op(0); - const ex& exp_a = a.op(1); - if (is_exactly_a(b)) { - ex pb = b.op(0); - const ex& exp_b = b.op(1); - if (p.is_equal(pb)) { - // a = p^n, b = p^m, gcd = p^min(n, m) - if (exp_a < exp_b) { - if (ca) - *ca = _ex1; - if (cb) - *cb = power(p, exp_b - exp_a); - return power(p, exp_a); - } else { - if (ca) - *ca = power(p, exp_a - exp_b); - if (cb) - *cb = _ex1; - return power(p, exp_b); - } - } else { - ex p_co, pb_co; - ex p_gcd = gcd(p, pb, &p_co, &pb_co, check_args); - if (p_gcd.is_equal(_ex1)) { - // a(x) = p(x)^n, b(x) = p_b(x)^m, gcd (p, p_b) = 1 ==> - // gcd(a,b) = 1 - if (ca) - *ca = a; - if (cb) - *cb = b; - return _ex1; - // XXX: do I need to check for p_gcd = -1? - } else { - // there are common factors: - // a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==> - // gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m - if (exp_a < exp_b) { - return power(p_gcd, exp_a)* - gcd(power(p_co, exp_a), power(p_gcd, exp_b-exp_a)*power(pb_co, exp_b), ca, cb, false); - } else { - return power(p_gcd, exp_b)* - gcd(power(p_gcd, exp_a - exp_b)*power(p_co, exp_a), power(pb_co, exp_b), ca, cb, false); - } - } // p_gcd.is_equal(_ex1) - } // p.is_equal(pb) - - } else { - if (p.is_equal(b)) { - // a = p^n, b = p, gcd = p - if (ca) - *ca = power(p, a.op(1) - 1); - if (cb) - *cb = _ex1; - return p; - } - - ex p_co, bpart_co; - ex p_gcd = gcd(p, b, &p_co, &bpart_co, false); - - if (p_gcd.is_equal(_ex1)) { - // a(x) = p(x)^n, gcd(p, b) = 1 ==> gcd(a, b) = 1 - if (ca) - *ca = a; - if (cb) - *cb = b; - return _ex1; - } else { - // a(x) = g(x)^n A(x)^n, b(x) = g(x) B(x) ==> gcd(a, b) = g(x) gcd(g(x)^(n-1) A(x)^n, B(x)) - return p_gcd*gcd(power(p_gcd, exp_a-1)*power(p_co, exp_a), bpart_co, ca, cb, false); - } - } // is_exactly_a(b) +// gcd helper to handle partially factored polynomials (to avoid expanding +// large expressions). Both arguments should be powers. +static ex gcd_pf_pow_pow(const ex& a, const ex& b, ex* ca, ex* cb) +{ + ex p = a.op(0); + const ex& exp_a = a.op(1); + ex pb = b.op(0); + const ex& exp_b = b.op(1); - } else if (is_exactly_a(b)) { - ex p = b.op(0); - if (p.is_equal(a)) { - // a = p, b = p^n, gcd = p + // a = p^n, b = p^m, gcd = p^min(n, m) + if (p.is_equal(pb)) { + if (exp_a < exp_b) { if (ca) *ca = _ex1; if (cb) - *cb = power(p, b.op(1) - 1); - return p; + *cb = power(p, exp_b - exp_a); + return power(p, exp_a); + } else { + if (ca) + *ca = power(p, exp_a - exp_b); + if (cb) + *cb = _ex1; + return power(p, exp_b); } + } - ex p_co, apart_co; - const ex& exp_b(b.op(1)); - ex p_gcd = gcd(a, p, &apart_co, &p_co, false); - if (p_gcd.is_equal(_ex1)) { - // b=p(x)^n, gcd(a, p) = 1 ==> gcd(a, b) == 1 + ex p_co, pb_co; + ex p_gcd = gcd(p, pb, &p_co, &pb_co, false); + // a(x) = p(x)^n, b(x) = p_b(x)^m, gcd (p, p_b) = 1 ==> gcd(a,b) = 1 + if (p_gcd.is_equal(_ex1)) { if (ca) *ca = a; if (cb) *cb = b; return _ex1; - } else { - // there are common factors: - // a(x) = g(x) A(x), b(x) = g(x)^n B(x)^n ==> gcd = g(x) gcd(g(x)^(n-1) A(x)^n, B(x)) + // XXX: do I need to check for p_gcd = -1? + } - return p_gcd*gcd(apart_co, power(p_gcd, exp_b-1)*power(p_co, exp_b), ca, cb, false); - } // p_gcd.is_equal(_ex1) + // there are common factors: + // a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==> + // gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m + if (exp_a < exp_b) { + ex pg = gcd(power(p_co, exp_a), power(p_gcd, exp_b-exp_a)*power(pb_co, exp_b), ca, cb, false); + return power(p_gcd, exp_a)*pg; + } else { + ex pg = gcd(power(p_gcd, exp_a - exp_b)*power(p_co, exp_a), power(pb_co, exp_b), ca, cb, false); + return power(p_gcd, exp_b)*pg; } } -static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb, bool check_args) +static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb) { - if (is_exactly_a(a)) { - if (is_exactly_a(b) && b.nops() > a.nops()) - goto factored_b; -factored_a: - size_t num = a.nops(); - exvector g; g.reserve(num); - exvector acc_ca; acc_ca.reserve(num); - ex part_b = b; - for (size_t i=0; i(a) && is_exactly_a(b)) + return gcd_pf_pow_pow(a, b, ca, cb); + + if (is_exactly_a(b) && (! is_exactly_a(a))) + return gcd_pf_pow(b, a, cb, ca); + + GINAC_ASSERT(is_exactly_a(a)); + + ex p = a.op(0); + const ex& exp_a = a.op(1); + if (p.is_equal(b)) { + // a = p^n, b = p, gcd = p if (ca) - *ca = (new mul(acc_ca))->setflag(status_flags::dynallocated); + *ca = power(p, a.op(1) - 1); if (cb) - *cb = part_b; - return (new mul(g))->setflag(status_flags::dynallocated); - } else if (is_exactly_a(b)) { - if (is_exactly_a(a) && a.nops() > b.nops()) - goto factored_a; -factored_b: - size_t num = b.nops(); - exvector g; g.reserve(num); - exvector acc_cb; acc_cb.reserve(num); - ex part_a = a; - for (size_t i=0; i gcd(a, b) = 1 + if (p_gcd.is_equal(_ex1)) { if (ca) - *ca = part_a; + *ca = a; if (cb) - *cb = (new mul(acc_cb))->setflag(status_flags::dynallocated); - return (new mul(g))->setflag(status_flags::dynallocated); + *cb = b; + return _ex1; + } + // a(x) = g(x)^n A(x)^n, b(x) = g(x) B(x) ==> gcd(a, b) = g(x) gcd(g(x)^(n-1) A(x)^n, B(x)) + ex rg = gcd(power(p_gcd, exp_a-1)*power(p_co, exp_a), bpart_co, ca, cb, false); + return p_gcd*rg; +} + +static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb) +{ + if (is_exactly_a(a) && is_exactly_a(b) + && (b.nops() > a.nops())) + return gcd_pf_mul(b, a, cb, ca); + + if (is_exactly_a(b) && (!is_exactly_a(a))) + return gcd_pf_mul(b, a, cb, ca); + + GINAC_ASSERT(is_exactly_a(a)); + size_t num = a.nops(); + exvector g; g.reserve(num); + exvector acc_ca; acc_ca.reserve(num); + ex part_b = b; + for (size_t i=0; isetflag(status_flags::dynallocated); + if (cb) + *cb = part_b; + return (new mul(g))->setflag(status_flags::dynallocated); } /** Compute LCM (Least Common Multiple) of multivariate polynomials in Z[X].