X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fncmul.cpp;h=f086e49235568573d19f5513dad93b930c8e79c6;hp=7d2364e2e6107650473707347fa48b524087786a;hb=8cffcdf13d817a47f217f1a1043317d95969e070;hpb=9eab44408b9213d8909b7a9e525f404ad06064dd diff --git a/ginac/ncmul.cpp b/ginac/ncmul.cpp index 7d2364e2..f086e492 100644 --- a/ginac/ncmul.cpp +++ b/ginac/ncmul.cpp @@ -3,7 +3,7 @@ * Implementation of GiNaC's non-commutative products of expressions. */ /* - * GiNaC Copyright (C) 1999 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2019 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -17,516 +17,544 @@ * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ -#include -#include -#include - #include "ncmul.h" #include "ex.h" #include "add.h" #include "mul.h" -#include "debugmsg.h" +#include "clifford.h" +#include "matrix.h" +#include "archive.h" +#include "indexed.h" +#include "utils.h" + +#include +#include +#include namespace GiNaC { +GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(ncmul, exprseq, + print_func(&ncmul::do_print). + print_func(&ncmul::do_print_tree). + print_func(&ncmul::do_print_csrc). + print_func(&ncmul::do_print_csrc)) + + +////////// +// default constructor +////////// + +ncmul::ncmul() +{ +} + ////////// -// default constructor, destructor, copy constructor assignment operator and helpers +// other constructors ////////// // public -ncmul::ncmul() +ncmul::ncmul(const ex & lh, const ex & rh) : inherited{lh,rh} { - debugmsg("ncmul default constructor",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_ncmul; } -ncmul::~ncmul() +ncmul::ncmul(const ex & f1, const ex & f2, const ex & f3) : inherited{f1,f2,f3} { - debugmsg("ncmul destructor",LOGLEVEL_DESTRUCT); - destroy(0); } -ncmul::ncmul(ncmul const & other) +ncmul::ncmul(const ex & f1, const ex & f2, const ex & f3, + const ex & f4) : inherited{f1,f2,f3,f4} { - debugmsg("ncmul copy constructor",LOGLEVEL_CONSTRUCT); - copy(other); } -ncmul const & ncmul::operator=(ncmul const & other) +ncmul::ncmul(const ex & f1, const ex & f2, const ex & f3, + const ex & f4, const ex & f5) : inherited{f1,f2,f3,f4,f5} { - debugmsg("ncmul operator=",LOGLEVEL_ASSIGNMENT); - if (this != &other) { - destroy(1); - copy(other); - } - return *this; } -// protected +ncmul::ncmul(const ex & f1, const ex & f2, const ex & f3, + const ex & f4, const ex & f5, const ex & f6) : inherited{f1,f2,f3,f4,f5,f6} +{ +} -void ncmul::copy(ncmul const & other) +ncmul::ncmul(const exvector & v) : inherited(v) { - exprseq::copy(other); } -void ncmul::destroy(bool call_parent) +ncmul::ncmul(exvector && v) : inherited(std::move(v)) { - if (call_parent) exprseq::destroy(call_parent); } ////////// -// other constructors +// archiving +////////// + + +////////// +// functions overriding virtual functions from base classes ////////// // public -ncmul::ncmul(ex const & lh, ex const & rh) : - exprseq(lh,rh) +void ncmul::do_print(const print_context & c, unsigned level) const { - debugmsg("ncmul constructor from ex,ex",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_ncmul; + printseq(c, '(', '*', ')', precedence(), level); } -ncmul::ncmul(ex const & f1, ex const & f2, ex const & f3) : - exprseq(f1,f2,f3) +void ncmul::do_print_csrc(const print_context & c, unsigned level) const { - debugmsg("ncmul constructor from 3 ex",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_ncmul; + c.s << class_name(); + printseq(c, '(', ',', ')', precedence(), precedence()); } -ncmul::ncmul(ex const & f1, ex const & f2, ex const & f3, - ex const & f4) : exprseq(f1,f2,f3,f4) +bool ncmul::info(unsigned inf) const { - debugmsg("ncmul constructor from 4 ex",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_ncmul; + return inherited::info(inf); } -ncmul::ncmul(ex const & f1, ex const & f2, ex const & f3, - ex const & f4, ex const & f5) : exprseq(f1,f2,f3,f4,f5) -{ - debugmsg("ncmul constructor from 5 ex",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_ncmul; -} +typedef std::vector uintvector; -ncmul::ncmul(ex const & f1, ex const & f2, ex const & f3, - ex const & f4, ex const & f5, ex const & f6) : - exprseq(f1,f2,f3,f4,f5,f6) +ex ncmul::expand(unsigned options) const { - debugmsg("ncmul constructor from 6 ex",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_ncmul; + // First, expand the children + exvector v = expandchildren(options); + const exvector &expanded_seq = v.empty() ? this->seq : v; + + // Now, look for all the factors that are sums and remember their + // position and number of terms. + uintvector positions_of_adds(expanded_seq.size()); + uintvector number_of_add_operands(expanded_seq.size()); + + size_t number_of_adds = 0; + size_t number_of_expanded_terms = 1; + + size_t current_position = 0; + for (auto & it : expanded_seq) { + if (is_exactly_a(it)) { + positions_of_adds[number_of_adds] = current_position; + size_t num_ops = it.nops(); + number_of_add_operands[number_of_adds] = num_ops; + number_of_expanded_terms *= num_ops; + number_of_adds++; + } + ++current_position; + } + + // If there are no sums, we are done + if (number_of_adds == 0) { + if (!v.empty()) + return dynallocate(std::move(v)).setflag(options == 0 ? status_flags::expanded : 0); + else + return *this; + } + + // Now, form all possible products of the terms of the sums with the + // remaining factors, and add them together + exvector distrseq; + distrseq.reserve(number_of_expanded_terms); + + uintvector k(number_of_adds); + + /* Rename indices in the static members of the product */ + exvector expanded_seq_mod; + size_t j = 0; + exvector va; + + for (size_t i=0; i(std::move(term)).setflag(options == 0 ? status_flags::expanded : 0)); + + // increment k[] + int l = number_of_adds-1; + while ((l>=0) && ((++k[l]) >= number_of_add_operands[l])) { + k[l] = 0; + l--; + } + if (l<0) + break; + } + + return dynallocate(distrseq).setflag(options == 0 ? status_flags::expanded : 0); +} + +int ncmul::degree(const ex & s) const +{ + if (is_equal(ex_to(s))) + return 1; + + // Sum up degrees of factors + int deg_sum = 0; + for (auto & i : seq) + deg_sum += i.degree(s); + return deg_sum; +} + +int ncmul::ldegree(const ex & s) const +{ + if (is_equal(ex_to(s))) + return 1; + + // Sum up degrees of factors + int deg_sum = 0; + for (auto & i : seq) + deg_sum += i.degree(s); + return deg_sum; +} + +ex ncmul::coeff(const ex & s, int n) const +{ + if (is_equal(ex_to(s))) + return n==1 ? _ex1 : _ex0; + + exvector coeffseq; + coeffseq.reserve(seq.size()); + + if (n == 0) { + // product of individual coeffs + // if a non-zero power of s is found, the resulting product will be 0 + for (auto & it : seq) + coeffseq.push_back(it.coeff(s,n)); + return dynallocate(std::move(coeffseq)); + } + + bool coeff_found = false; + for (auto & i : seq) { + ex c = i.coeff(s,n); + if (c.is_zero()) { + coeffseq.push_back(i); + } else { + coeffseq.push_back(c); + coeff_found = true; + } + } + + if (coeff_found) + return dynallocate(std::move(coeffseq)); + + return _ex0; +} + +size_t ncmul::count_factors(const ex & e) const +{ + if ((is_exactly_a(e)&&(e.return_type()!=return_types::commutative))|| + (is_exactly_a(e))) { + size_t factors=0; + for (size_t i=0; i(e)&&(e.return_type()!=return_types::commutative))|| + (is_exactly_a(e))) { + for (size_t i=0; i unsignedvector; +typedef std::vector exvectorvector; + +/** Perform automatic term rewriting rules in this class. In the following + * x, x1, x2,... stand for a symbolic variables of type ex and c, c1, c2... + * stand for such expressions that contain a plain number. + * - ncmul(...,*(x1,x2),...,ncmul(x3,x4),...) -> ncmul(...,x1,x2,...,x3,x4,...) (associativity) + * - ncmul(x) -> x + * - ncmul() -> 1 + * - ncmul(...,c1,...,c2,...) -> *(c1,c2,ncmul(...)) (pull out commutative elements) + * - ncmul(x1,y1,x2,y2) -> *(ncmul(x1,x2),ncmul(y1,y2)) (collect elements of same type) + * - ncmul(x1,x2,x3,...) -> x::eval_ncmul(x1,x2,x3,...) + */ +ex ncmul::eval() const +{ + // The following additional rule would be nice, but produces a recursion, + // which must be trapped by introducing a flag that the sub-ncmuls() + // are already evaluated (maybe later...) + // ncmul(x1,x2,...,X,y1,y2,...) -> + // ncmul(ncmul(x1,x2,...),X,ncmul(y1,y2,...) + // (X noncommutative_composite) + + if (flags & status_flags::evaluated) { + return *this; + } + + // ncmul(...,*(x1,x2),...,ncmul(x3,x4),...) -> + // ncmul(...,x1,x2,...,x3,x4,...) (associativity) + size_t factors = 0; + for (auto & it : seq) + factors += count_factors(it); + + exvector assocseq; + assocseq.reserve(factors); + make_flat_inserter mf(seq, true); + for (auto & it : seq) { + ex factor = mf.handle_factor(it, 1); + append_factors(assocseq, factor); + } + + // ncmul(x) -> x + if (assocseq.size()==1) return *(seq.begin()); + + // ncmul() -> 1 + if (assocseq.empty()) return _ex1; + + // determine return types + unsignedvector rettypes(assocseq.size()); + size_t i = 0; + size_t count_commutative=0; + size_t count_noncommutative=0; + size_t count_noncommutative_composite=0; + for (auto & it : assocseq) { + rettypes[i] = it.return_type(); + switch (rettypes[i]) { + case return_types::commutative: + count_commutative++; + break; + case return_types::noncommutative: + count_noncommutative++; + break; + case return_types::noncommutative_composite: + count_noncommutative_composite++; + break; + default: + throw(std::logic_error("ncmul::eval(): invalid return type")); + } + ++i; + } + GINAC_ASSERT(count_commutative+count_noncommutative+count_noncommutative_composite==assocseq.size()); + + // ncmul(...,c1,...,c2,...) -> + // *(c1,c2,ncmul(...)) (pull out commutative elements) + if (count_commutative!=0) { + exvector commutativeseq; + commutativeseq.reserve(count_commutative+1); + exvector noncommutativeseq; + noncommutativeseq.reserve(assocseq.size()-count_commutative); + size_t num = assocseq.size(); + for (size_t i=0; i(std::move(noncommutativeseq))); + return dynallocate(std::move(commutativeseq)); + } + + // ncmul(x1,y1,x2,y2) -> *(ncmul(x1,x2),ncmul(y1,y2)) + // (collect elements of same type) + + if (count_noncommutative_composite==0) { + // there are neither commutative nor noncommutative_composite + // elements in assocseq + GINAC_ASSERT(count_commutative==0); + + size_t assoc_num = assocseq.size(); + exvectorvector evv; + std::vector rttinfos; + evv.reserve(assoc_num); + rttinfos.reserve(assoc_num); + + for (auto & it : assocseq) { + return_type_t ti = it.return_type_tinfo(); + size_t rtt_num = rttinfos.size(); + // search type in vector of known types + for (i=0; i= rtt_num) { + // new type + rttinfos.push_back(ti); + evv.push_back(exvector()); + (evv.end()-1)->reserve(assoc_num); + (evv.end()-1)->push_back(it); + } + } + + size_t evv_num = evv.size(); +#ifdef DO_GINAC_ASSERT + GINAC_ASSERT(evv_num == rttinfos.size()); + GINAC_ASSERT(evv_num > 0); + size_t s=0; + for (i=0; i(evv[i])); + + return dynallocate(splitseq); + } + + return dynallocate(assocseq).setflag(status_flags::evaluated); +} + +ex ncmul::evalm() const +{ + // Evaluate children first + exvector s; + s.reserve(seq.size()); + for (auto & it : seq) + s.push_back(it.evalm()); + + // If there are only matrices, simply multiply them + auto it = s.begin(), itend = s.end(); + if (is_a(*it)) { + matrix prod(ex_to(*it)); + it++; + while (it != itend) { + if (!is_a(*it)) + goto no_matrix; + prod = prod.mul(ex_to(*it)); + it++; + } + return prod; + } + +no_matrix: + return dynallocate(std::move(s)); +} + +ex ncmul::thiscontainer(const exvector & v) const +{ + return dynallocate(v); +} + +ex ncmul::thiscontainer(exvector && v) const +{ + return dynallocate(std::move(v)); +} + +ex ncmul::conjugate() const +{ + if (return_type() != return_types::noncommutative) { + return exprseq::conjugate(); + } + + if (!is_clifford_tinfo(return_type_tinfo())) { + return exprseq::conjugate(); + } + + exvector ev; + ev.reserve(nops()); + for (auto i=end(); i!=begin();) { + --i; + ev.push_back(i->conjugate()); + } + return dynallocate(std::move(ev)); +} + +ex ncmul::real_part() const +{ + return basic::real_part(); +} + +ex ncmul::imag_part() const +{ + return basic::imag_part(); } -ncmul::ncmul(exvector const & v, bool discardable) : exprseq(v,discardable) -{ - debugmsg("ncmul constructor from exvector,bool",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_ncmul; -} +// protected -ncmul::ncmul(exvector * vp) : exprseq(vp) +/** Implementation of ex::diff() for a non-commutative product. It applies + * the product rule. + * @see ex::diff */ +ex ncmul::derivative(const symbol & s) const { - debugmsg("ncmul constructor from exvector *",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_ncmul; + size_t num = seq.size(); + exvector addseq; + addseq.reserve(num); + + // D(a*b*c) = D(a)*b*c + a*D(b)*c + a*b*D(c) + exvector ncmulseq = seq; + for (size_t i=0; i(ncmulseq)); + e.swap(ncmulseq[i]); + } + return dynallocate(addseq); } - -////////// -// functions overriding virtual functions from bases classes -////////// -// public - -basic * ncmul::duplicate() const +int ncmul::compare_same_type(const basic & other) const { - debugmsg("ncmul duplicate",LOGLEVEL_ASSIGNMENT); - return new ncmul(*this); + return inherited::compare_same_type(other); } -bool ncmul::info(unsigned inf) const +unsigned ncmul::return_type() const { - throw(std::logic_error("which flags have to be implemented in ncmul::info()?")); -} + if (seq.empty()) + return return_types::commutative; -typedef vector intvector; + bool all_commutative = true; + exvector::const_iterator noncommutative_element; // point to first found nc element -ex ncmul::expand(unsigned options) const -{ - exvector sub_expanded_seq; - intvector positions_of_adds; - intvector number_of_add_operands; - - exvector expanded_seq=expandchildren(options); - - positions_of_adds.resize(expanded_seq.size()); - number_of_add_operands.resize(expanded_seq.size()); - - int number_of_adds=0; - int number_of_expanded_terms=1; - - unsigned current_position=0; - exvector::const_iterator last=expanded_seq.end(); - for (exvector::const_iterator cit=expanded_seq.begin(); cit!=last; ++cit) { - if (is_ex_exactly_of_type((*cit),add)) { - positions_of_adds[number_of_adds]=current_position; - add const & expanded_addref=ex_to_add(*cit); - number_of_add_operands[number_of_adds]=expanded_addref.seq.size(); - number_of_expanded_terms *= expanded_addref.seq.size(); - number_of_adds++; - } - current_position++; - } - - if (number_of_adds==0) { - return (new ncmul(expanded_seq,1))->setflag(status_flags::dynallocated || - status_flags::expanded); - } - - exvector distrseq; - distrseq.reserve(number_of_expanded_terms); - - intvector k; - k.resize(number_of_adds); - - int l; - for (l=0; lsetflag(status_flags::dynallocated | - status_flags::expanded)); - - // increment k[] - l=number_of_adds-1; - while ((l>=0)&&((++k[l])>=number_of_add_operands[l])) { - k[l]=0; - l--; - } - if (l<0) break; - } - - return (new add(distrseq))->setflag(status_flags::dynallocated | - status_flags::expanded); -} - -int ncmul::degree(symbol const & s) const -{ - int deg_sum=0; - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - deg_sum+=(*cit).degree(s); - } - return deg_sum; -} - -int ncmul::ldegree(symbol const & s) const -{ - int deg_sum=0; - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - deg_sum+=(*cit).ldegree(s); - } - return deg_sum; -} - -ex ncmul::coeff(symbol const & s, int const n) const -{ - exvector coeffseq; - coeffseq.reserve(seq.size()); - - if (n==0) { - // product of individual coeffs - // if a non-zero power of s is found, the resulting product will be 0 - exvector::const_iterator it=seq.begin(); - while (it!=seq.end()) { - coeffseq.push_back((*it).coeff(s,n)); - ++it; - } - return (new ncmul(coeffseq,1))->setflag(status_flags::dynallocated); - } - - exvector::const_iterator it=seq.begin(); - bool coeff_found=0; - while (it!=seq.end()) { - ex c=(*it).coeff(s,n); - if (!c.is_zero()) { - coeffseq.push_back(c); - coeff_found=1; - } else { - coeffseq.push_back(*it); - } - ++it; - } - - if (coeff_found) return (new ncmul(coeffseq,1))->setflag(status_flags::dynallocated); - - return exZERO(); -} - -unsigned ncmul::count_factors(ex const & e) const -{ - if ((is_ex_exactly_of_type(e,mul)&&(e.return_type()!=return_types::commutative))|| - (is_ex_exactly_of_type(e,ncmul))) { - unsigned factors=0; - for (int i=0; i unsignedvector; -typedef vector exvectorvector; - -ex ncmul::eval(int level) const -{ - // simplifications: ncmul(...,*(x1,x2),...,ncmul(x3,x4),...) -> - // ncmul(...,x1,x2,...,x3,x4,...) (associativity) - // ncmul(x) -> x - // ncmul() -> 1 - // ncmul(...,c1,...,c2,...) -> - // *(c1,c2,ncmul(...)) (pull out commutative elements) - // ncmul(x1,y1,x2,y2) -> *(ncmul(x1,x2),ncmul(y1,y2)) - // (collect elements of same type) - // ncmul(x1,x2,x3,...) -> x::eval_ncmul(x1,x2,x3,...) - // the following rule would be nice, but produces a recursion, - // which must be trapped by introducing a flag that the sub-ncmuls() - // are already evaluated (maybe later...) - // ncmul(x1,x2,...,X,y1,y2,...) -> - // ncmul(ncmul(x1,x2,...),X,ncmul(y1,y2,...) - // (X noncommutative_composite) - - if ((level==1)&&(flags & status_flags::evaluated)) { - return *this; - } - - exvector evaledseq=evalchildren(level); - - // ncmul(...,*(x1,x2),...,ncmul(x3,x4),...) -> - // ncmul(...,x1,x2,...,x3,x4,...) (associativity) - unsigned factors=0; - for (exvector::const_iterator cit=evaledseq.begin(); cit!=evaledseq.end(); ++cit) { - factors += count_factors(*cit); - } - - exvector assocseq; - assocseq.reserve(factors); - for (exvector::const_iterator cit=evaledseq.begin(); cit!=evaledseq.end(); ++cit) { - append_factors(assocseq,*cit); - } - - // ncmul(x) -> x - if (assocseq.size()==1) return *(seq.begin()); - - // ncmul() -> 1 - if (assocseq.size()==0) return exONE(); - - // determine return types - unsignedvector rettypes; - rettypes.reserve(assocseq.size()); - unsigned i=0; - unsigned count_commutative=0; - unsigned count_noncommutative=0; - unsigned count_noncommutative_composite=0; - for (exvector::const_iterator cit=assocseq.begin(); cit!=assocseq.end(); ++cit) { - switch (rettypes[i]=(*cit).return_type()) { - case return_types::commutative: - count_commutative++; - break; - case return_types::noncommutative: - count_noncommutative++; - break; - case return_types::noncommutative_composite: - count_noncommutative_composite++; - break; - default: - throw(std::logic_error("ncmul::eval(): invalid return type")); - } - ++i; - } - ASSERT(count_commutative+count_noncommutative+count_noncommutative_composite==assocseq.size()); - - // ncmul(...,c1,...,c2,...) -> - // *(c1,c2,ncmul(...)) (pull out commutative elements) - if (count_commutative!=0) { - exvector commutativeseq; - commutativeseq.reserve(count_commutative+1); - exvector noncommutativeseq; - noncommutativeseq.reserve(assocseq.size()-count_commutative); - for (i=0; i - setflag(status_flags::dynallocated)); - return (new mul(commutativeseq))->setflag(status_flags::dynallocated); - } - - // ncmul(x1,y1,x2,y2) -> *(ncmul(x1,x2),ncmul(y1,y2)) - // (collect elements of same type) - - if (count_noncommutative_composite==0) { - // there are neither commutative nor noncommutative_composite - // elements in assocseq - ASSERT(count_commutative==0); - - exvectorvector evv; - unsignedvector rttinfos; - evv.reserve(assocseq.size()); - rttinfos.reserve(assocseq.size()); - - for (exvector::const_iterator cit=assocseq.begin(); cit!=assocseq.end(); ++cit) { - unsigned ti=(*cit).return_type_tinfo(); - // search type in vector of known types - for (i=0; i=rttinfos.size()) { - // new type - rttinfos.push_back(ti); - evv.push_back(exvector()); - (*(evv.end()-1)).reserve(assocseq.size()); - (*(evv.end()-1)).push_back(*cit); - } - } - -#ifdef DOASSERT - ASSERT(evv.size()==rttinfos.size()); - ASSERT(evv.size()>0); - unsigned s=0; - for (i=0; i - setflag(status_flags::dynallocated)); - } - - return (new mul(splitseq))->setflag(status_flags::dynallocated); - } - - return (new ncmul(assocseq))->setflag(status_flags::dynallocated | - status_flags::evaluated); -} - -exvector ncmul::get_indices(void) const -{ - // return union of indices of factors - exvector iv; - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - exvector subiv=(*cit).get_indices(); - iv.reserve(iv.size()+subiv.size()); - for (exvector::const_iterator cit2=subiv.begin(); cit2!=subiv.end(); ++cit2) { - iv.push_back(*cit2); - } - } - return iv; -} - -ex ncmul::subs(lst const & ls, lst const & lr) const -{ - return ncmul(subschildren(ls, lr)); -} - -ex ncmul::thisexprseq(exvector const & v) const -{ - return (new ncmul(v))->setflag(status_flags::dynallocated); -} - -ex ncmul::thisexprseq(exvector * vp) const -{ - return (new ncmul(vp))->setflag(status_flags::dynallocated); + auto i = seq.begin(), end = seq.end(); + while (i != end) { + unsigned rt = i->return_type(); + if (rt == return_types::noncommutative_composite) + return rt; // one ncc -> mul also ncc + if ((rt == return_types::noncommutative) && (all_commutative)) { + // first nc element found, remember position + noncommutative_element = i; + all_commutative = false; + } + if ((rt == return_types::noncommutative) && (!all_commutative)) { + // another nc element found, compare type_infos + if(noncommutative_element->return_type_tinfo() != i->return_type_tinfo()) + return return_types::noncommutative_composite; + } + ++i; + } + // all factors checked + GINAC_ASSERT(!all_commutative); // not all factors should commutate, because this is a ncmul(); + return all_commutative ? return_types::commutative : return_types::noncommutative; } -// protected +return_type_t ncmul::return_type_tinfo() const +{ + if (seq.empty()) + return make_return_type_t(); -int ncmul::compare_same_type(basic const & other) const -{ - return exprseq::compare_same_type(other); -} - -unsigned ncmul::return_type(void) const -{ - if (seq.size()==0) { - // ncmul without factors: should not happen, but commutes - return return_types::commutative; - } - - bool all_commutative=1; - unsigned rt; - exvector::const_iterator cit_noncommutative_element; // point to first found nc element - - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - rt=(*cit).return_type(); - if (rt==return_types::noncommutative_composite) return rt; // one ncc -> mul also ncc - if ((rt==return_types::noncommutative)&&(all_commutative)) { - // first nc element found, remember position - cit_noncommutative_element=cit; - all_commutative=0; - } - if ((rt==return_types::noncommutative)&&(!all_commutative)) { - // another nc element found, compare type_infos - if ((*cit_noncommutative_element).return_type_tinfo()!=(*cit).return_type_tinfo()) { - // diffent types -> mul is ncc - return return_types::noncommutative_composite; - } - } - } - // all factors checked - ASSERT(!all_commutative); // not all factors should commute, because this is a ncmul(); - return all_commutative ? return_types::commutative : return_types::noncommutative; -} - -unsigned ncmul::return_type_tinfo(void) const -{ - if (seq.size()==0) { - // mul without factors: should not happen - return tinfo_key; - } - // return type_info of first noncommutative element - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - if ((*cit).return_type()==return_types::noncommutative) { - return (*cit).return_type_tinfo(); - } - } - // no noncommutative element found, should not happen - return tinfo_key; + // return type_info of first noncommutative element + for (auto & i : seq) + if (i.return_type() == return_types::noncommutative) + return i.return_type_tinfo(); + + // no noncommutative element found, should not happen + return make_return_type_t(); } ////////// @@ -541,54 +569,58 @@ unsigned ncmul::return_type_tinfo(void) const exvector ncmul::expandchildren(unsigned options) const { - exvector s; - s.reserve(seq.size()); + auto cit = this->seq.begin(), end = this->seq.end(); + while (cit != end) { + const ex & expanded_ex = cit->expand(options); + if (!are_ex_trivially_equal(*cit, expanded_ex)) { - for (exvector::const_iterator it=seq.begin(); it!=seq.end(); ++it) { - s.push_back((*it).expand(options)); - } - return s; -} + // copy first part of seq which hasn't changed + exvector s(this->seq.begin(), cit); + s.reserve(this->seq.size()); -exvector const & ncmul::get_factors(void) const -{ - return seq; -} - -////////// -// static member variables -////////// + // insert changed element + s.push_back(expanded_ex); + ++cit; -// protected + // copy rest + while (cit != end) { + s.push_back(cit->expand(options)); + ++cit; + } -unsigned ncmul::precedence=50; + return s; + } + ++cit; + } -////////// -// global constants -////////// + return exvector(); // nothing has changed +} -const ncmul some_ncmul; -type_info const & typeid_ncmul=typeid(some_ncmul); +const exvector & ncmul::get_factors() const +{ + return seq; +} ////////// // friend functions ////////// -ex nonsimplified_ncmul(exvector const & v) +ex reeval_ncmul(const exvector & v) { - return (new ncmul(v))->setflag(status_flags::dynallocated); + return dynallocate(v); } -ex simplified_ncmul(exvector const & v) +ex hold_ncmul(const exvector & v) { - if (v.size()==0) { - return exONE(); - } else if (v.size()==1) { - return v[0]; - } - return (new ncmul(v))->setflag(status_flags::dynallocated | - status_flags::evaluated); + if (v.empty()) + return _ex1; + else if (v.size() == 1) + return v[0]; + else + return dynallocate(v).setflag(status_flags::evaluated); } +GINAC_BIND_UNARCHIVER(ncmul); + } // namespace GiNaC