X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fncmul.cpp;h=e3a6b552f7e6d0294022fb69603083325ec40b4f;hp=c4cfe69cb2a93fd3b8afe03f2e571c9a1ba0e34e;hb=d54e497297f4687c385ff8fbc91296365887c7c0;hpb=b6e3c62f240698c7e9ed464c57bb6d92741765ba diff --git a/ginac/ncmul.cpp b/ginac/ncmul.cpp index c4cfe69c..e3a6b552 100644 --- a/ginac/ncmul.cpp +++ b/ginac/ncmul.cpp @@ -3,7 +3,7 @@ * Implementation of GiNaC's non-commutative products of expressions. */ /* - * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -29,28 +29,27 @@ #include "add.h" #include "mul.h" #include "matrix.h" -#include "print.h" #include "archive.h" -#include "debugmsg.h" #include "utils.h" namespace GiNaC { -GINAC_IMPLEMENT_REGISTERED_CLASS(ncmul, exprseq) +GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(ncmul, exprseq, + print_func(&ncmul::do_print). + print_func(&basic::do_print_tree). + print_func(&ncmul::do_print_csrc). + print_func(&ncmul::do_print_csrc)) + ////////// -// default constructor, destructor, copy constructor assignment operator and helpers +// default constructor ////////// ncmul::ncmul() { - debugmsg("ncmul default constructor",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_ncmul; } -DEFAULT_COPY(ncmul) -DEFAULT_DESTROY(ncmul) - ////////// // other constructors ////////// @@ -59,46 +58,39 @@ DEFAULT_DESTROY(ncmul) ncmul::ncmul(const ex & lh, const ex & rh) : inherited(lh,rh) { - debugmsg("ncmul constructor from ex,ex",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_ncmul; } ncmul::ncmul(const ex & f1, const ex & f2, const ex & f3) : inherited(f1,f2,f3) { - debugmsg("ncmul constructor from 3 ex",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_ncmul; } ncmul::ncmul(const ex & f1, const ex & f2, const ex & f3, const ex & f4) : inherited(f1,f2,f3,f4) { - debugmsg("ncmul constructor from 4 ex",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_ncmul; } ncmul::ncmul(const ex & f1, const ex & f2, const ex & f3, const ex & f4, const ex & f5) : inherited(f1,f2,f3,f4,f5) { - debugmsg("ncmul constructor from 5 ex",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_ncmul; } ncmul::ncmul(const ex & f1, const ex & f2, const ex & f3, const ex & f4, const ex & f5, const ex & f6) : inherited(f1,f2,f3,f4,f5,f6) { - debugmsg("ncmul constructor from 6 ex",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_ncmul; } ncmul::ncmul(const exvector & v, bool discardable) : inherited(v,discardable) { - debugmsg("ncmul constructor from exvector,bool",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_ncmul; } -ncmul::ncmul(exvector * vp) : inherited(vp) +ncmul::ncmul(std::auto_ptr vp) : inherited(vp) { - debugmsg("ncmul constructor from exvector *",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_ncmul; } @@ -109,38 +101,25 @@ ncmul::ncmul(exvector * vp) : inherited(vp) DEFAULT_ARCHIVING(ncmul) ////////// -// functions overriding virtual functions from bases classes +// functions overriding virtual functions from base classes ////////// // public -void ncmul::print(const print_context & c, unsigned level) const +void ncmul::do_print(const print_context & c, unsigned level) const { - debugmsg("ncmul print", LOGLEVEL_PRINT); - - if (is_of_type(c, print_tree)) { - - inherited::print(c, level); - - } else if (is_of_type(c, print_csrc)) { - - c.s << "ncmul("; - exvector::const_iterator it = seq.begin(), itend = seq.end()-1; - while (it != itend) { - it->print(c, precedence()); - c.s << ","; - it++; - } - it->print(c, precedence()); - c.s << ")"; + printseq(c, '(', '*', ')', precedence(), level); +} - } else - printseq(c, '(', '*', ')', precedence(), level); +void ncmul::do_print_csrc(const print_context & c, unsigned level) const +{ + c.s << class_name(); + printseq(c, '(', ',', ')', precedence(), precedence()); } bool ncmul::info(unsigned inf) const { - throw(std::logic_error("which flags have to be implemented in ncmul::info()?")); + return inherited::info(inf); } typedef std::vector intvector; @@ -149,31 +128,26 @@ ex ncmul::expand(unsigned options) const { // First, expand the children exvector expanded_seq = expandchildren(options); - + // Now, look for all the factors that are sums and remember their - // position and number of terms. One remark is in order here: we do not - // take into account the overall_coeff of the add objects. This is - // because in GiNaC, all terms of a sum must be of the same type, so - // a non-zero overall_coeff (which can only be numeric) would imply that - // the sum only has commutative terms. But then it would never appear - // as a factor of an ncmul. + // position and number of terms. intvector positions_of_adds(expanded_seq.size()); intvector number_of_add_operands(expanded_seq.size()); - int number_of_adds = 0; - int number_of_expanded_terms = 1; + size_t number_of_adds = 0; + size_t number_of_expanded_terms = 1; - unsigned current_position = 0; + size_t current_position = 0; exvector::const_iterator last = expanded_seq.end(); for (exvector::const_iterator cit=expanded_seq.begin(); cit!=last; ++cit) { - if (is_ex_exactly_of_type(*cit, add)) { + if (is_exactly_a(*cit)) { positions_of_adds[number_of_adds] = current_position; - const add & expanded_addref = ex_to(*cit); - number_of_add_operands[number_of_adds] = expanded_addref.seq.size(); - number_of_expanded_terms *= expanded_addref.seq.size(); + size_t num_ops = cit->nops(); + number_of_add_operands[number_of_adds] = num_ops; + number_of_expanded_terms *= num_ops; number_of_adds++; } - current_position++; + ++current_position; } // If there are no sums, we are done @@ -190,11 +164,8 @@ ex ncmul::expand(unsigned options) const while (true) { exvector term = expanded_seq; - for (int i=0; i(expanded_seq[positions_of_adds[i]]); - term[positions_of_adds[i]] = addref.recombine_pair_to_ex(addref.seq[k[i]]); - } + for (size_t i=0; i setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0))); @@ -267,15 +238,15 @@ ex ncmul::coeff(const ex & s, int n) const if (coeff_found) return (new ncmul(coeffseq,1))->setflag(status_flags::dynallocated); - return _ex0(); + return _ex0; } -unsigned ncmul::count_factors(const ex & e) const +size_t ncmul::count_factors(const ex & e) const { - if ((is_ex_exactly_of_type(e,mul)&&(e.return_type()!=return_types::commutative))|| - (is_ex_exactly_of_type(e,ncmul))) { - unsigned factors=0; - for (unsigned i=0; i(e)&&(e.return_type()!=return_types::commutative))|| + (is_exactly_a(e))) { + size_t factors=0; + for (size_t i=0; i(e)&&(e.return_type()!=return_types::commutative))|| + (is_exactly_a(e))) { + for (size_t i=0; i unsignedvector; typedef std::vector exvectorvector; +/** Perform automatic term rewriting rules in this class. In the following + * x, x1, x2,... stand for a symbolic variables of type ex and c, c1, c2... + * stand for such expressions that contain a plain number. + * - ncmul(...,*(x1,x2),...,ncmul(x3,x4),...) -> ncmul(...,x1,x2,...,x3,x4,...) (associativity) + * - ncmul(x) -> x + * - ncmul() -> 1 + * - ncmul(...,c1,...,c2,...) -> *(c1,c2,ncmul(...)) (pull out commutative elements) + * - ncmul(x1,y1,x2,y2) -> *(ncmul(x1,x2),ncmul(y1,y2)) (collect elements of same type) + * - ncmul(x1,x2,x3,...) -> x::eval_ncmul(x1,x2,x3,...) + * + * @param level cut-off in recursive evaluation */ ex ncmul::eval(int level) const { - // simplifications: ncmul(...,*(x1,x2),...,ncmul(x3,x4),...) -> - // ncmul(...,x1,x2,...,x3,x4,...) (associativity) - // ncmul(x) -> x - // ncmul() -> 1 - // ncmul(...,c1,...,c2,...) - // *(c1,c2,ncmul(...)) (pull out commutative elements) - // ncmul(x1,y1,x2,y2) -> *(ncmul(x1,x2),ncmul(y1,y2)) - // (collect elements of same type) - // ncmul(x1,x2,x3,...) -> x::simplify_ncmul(x1,x2,x3,...) - // the following rule would be nice, but produces a recursion, + // The following additional rule would be nice, but produces a recursion, // which must be trapped by introducing a flag that the sub-ncmuls() // are already evaluated (maybe later...) // ncmul(x1,x2,...,X,y1,y2,...) -> @@ -321,8 +294,8 @@ ex ncmul::eval(int level) const exvector evaledseq=evalchildren(level); // ncmul(...,*(x1,x2),...,ncmul(x3,x4),...) -> - // ncmul(...,x1,x2,...,x3,x4,...) (associativity) - unsigned factors = 0; + // ncmul(...,x1,x2,...,x3,x4,...) (associativity) + size_t factors = 0; exvector::const_iterator cit = evaledseq.begin(), citend = evaledseq.end(); while (cit != citend) factors += count_factors(*cit++); @@ -337,15 +310,15 @@ ex ncmul::eval(int level) const if (assocseq.size()==1) return *(seq.begin()); // ncmul() -> 1 - if (assocseq.empty()) return _ex1(); + if (assocseq.empty()) return _ex1; // determine return types unsignedvector rettypes; rettypes.reserve(assocseq.size()); - unsigned i = 0; - unsigned count_commutative=0; - unsigned count_noncommutative=0; - unsigned count_noncommutative_composite=0; + size_t i = 0; + size_t count_commutative=0; + size_t count_noncommutative=0; + size_t count_noncommutative_composite=0; cit = assocseq.begin(); citend = assocseq.end(); while (cit != citend) { switch (rettypes[i] = cit->return_type()) { @@ -372,8 +345,8 @@ ex ncmul::eval(int level) const commutativeseq.reserve(count_commutative+1); exvector noncommutativeseq; noncommutativeseq.reserve(assocseq.size()-count_commutative); - unsigned num = assocseq.size(); - for (unsigned i=0; ireturn_type_tinfo(); - unsigned rtt_num = rttinfos.size(); + size_t rtt_num = rttinfos.size(); // search type in vector of known types for (i=0; i 0); - unsigned s=0; + size_t s=0; for (i=0; i s(new exvector); s->reserve(seq.size()); exvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { @@ -457,16 +430,15 @@ ex ncmul::evalm(void) const // If there are only matrices, simply multiply them it = s->begin(); itend = s->end(); - if (is_ex_of_type(*it, matrix)) { + if (is_a(*it)) { matrix prod(ex_to(*it)); it++; while (it != itend) { - if (!is_ex_of_type(*it, matrix)) + if (!is_a(*it)) goto no_matrix; prod = prod.mul(ex_to(*it)); it++; } - delete s; return prod; } @@ -474,12 +446,12 @@ no_matrix: return (new ncmul(s))->setflag(status_flags::dynallocated); } -ex ncmul::thisexprseq(const exvector & v) const +ex ncmul::thiscontainer(const exvector & v) const { return (new ncmul(v))->setflag(status_flags::dynallocated); } -ex ncmul::thisexprseq(exvector * vp) const +ex ncmul::thiscontainer(std::auto_ptr vp) const { return (new ncmul(vp))->setflag(status_flags::dynallocated); } @@ -491,13 +463,13 @@ ex ncmul::thisexprseq(exvector * vp) const * @see ex::diff */ ex ncmul::derivative(const symbol & s) const { - unsigned num = seq.size(); + size_t num = seq.size(); exvector addseq; addseq.reserve(num); // D(a*b*c) = D(a)*b*c + a*D(b)*c + a*b*D(c) exvector ncmulseq = seq; - for (unsigned i=0; isetflag(status_flags::dynallocated)); @@ -511,7 +483,7 @@ int ncmul::compare_same_type(const basic & other) const return inherited::compare_same_type(other); } -unsigned ncmul::return_type(void) const +unsigned ncmul::return_type() const { if (seq.empty()) return return_types::commutative; @@ -543,7 +515,7 @@ unsigned ncmul::return_type(void) const return all_commutative ? return_types::commutative : return_types::noncommutative; } -unsigned ncmul::return_type_tinfo(void) const +unsigned ncmul::return_type_tinfo() const { if (seq.empty()) return tinfo_key; @@ -582,7 +554,7 @@ exvector ncmul::expandchildren(unsigned options) const return s; } -const exvector & ncmul::get_factors(void) const +const exvector & ncmul::get_factors() const { return seq; } @@ -591,15 +563,15 @@ const exvector & ncmul::get_factors(void) const // friend functions ////////// -ex nonsimplified_ncmul(const exvector & v) +ex reeval_ncmul(const exvector & v) { return (new ncmul(v))->setflag(status_flags::dynallocated); } -ex simplified_ncmul(const exvector & v) +ex hold_ncmul(const exvector & v) { if (v.empty()) - return _ex1(); + return _ex1; else if (v.size() == 1) return v[0]; else