X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fncmul.cpp;h=ccc91c490d4be13f853739e61b8d423c076e6fe4;hp=e4a9186aa87b2d7620a1b0781f0b124fcb62f3b7;hb=948071fb79e925111799128dacff49296c69f2ca;hpb=591b85b0697370f2f5f25a29a1e94ff831a02c12;ds=sidebyside diff --git a/ginac/ncmul.cpp b/ginac/ncmul.cpp index e4a9186a..ccc91c49 100644 --- a/ginac/ncmul.cpp +++ b/ginac/ncmul.cpp @@ -3,7 +3,7 @@ * Implementation of GiNaC's non-commutative products of expressions. */ /* - * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2004 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -29,28 +29,27 @@ #include "add.h" #include "mul.h" #include "matrix.h" -#include "print.h" #include "archive.h" -#include "debugmsg.h" #include "utils.h" namespace GiNaC { -GINAC_IMPLEMENT_REGISTERED_CLASS(ncmul, exprseq) +GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(ncmul, exprseq, + print_func(&ncmul::do_print). + print_func(&ncmul::do_print_tree). + print_func(&ncmul::do_print_csrc). + print_func(&ncmul::do_print_csrc)) + ////////// -// default constructor, destructor, copy constructor assignment operator and helpers +// default constructor ////////// ncmul::ncmul() { - debugmsg("ncmul default constructor",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_ncmul; } -DEFAULT_COPY(ncmul) -DEFAULT_DESTROY(ncmul) - ////////// // other constructors ////////// @@ -59,46 +58,39 @@ DEFAULT_DESTROY(ncmul) ncmul::ncmul(const ex & lh, const ex & rh) : inherited(lh,rh) { - debugmsg("ncmul constructor from ex,ex",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_ncmul; } ncmul::ncmul(const ex & f1, const ex & f2, const ex & f3) : inherited(f1,f2,f3) { - debugmsg("ncmul constructor from 3 ex",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_ncmul; } ncmul::ncmul(const ex & f1, const ex & f2, const ex & f3, const ex & f4) : inherited(f1,f2,f3,f4) { - debugmsg("ncmul constructor from 4 ex",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_ncmul; } ncmul::ncmul(const ex & f1, const ex & f2, const ex & f3, const ex & f4, const ex & f5) : inherited(f1,f2,f3,f4,f5) { - debugmsg("ncmul constructor from 5 ex",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_ncmul; } ncmul::ncmul(const ex & f1, const ex & f2, const ex & f3, const ex & f4, const ex & f5, const ex & f6) : inherited(f1,f2,f3,f4,f5,f6) { - debugmsg("ncmul constructor from 6 ex",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_ncmul; } ncmul::ncmul(const exvector & v, bool discardable) : inherited(v,discardable) { - debugmsg("ncmul constructor from exvector,bool",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_ncmul; } -ncmul::ncmul(exvector * vp) : inherited(vp) +ncmul::ncmul(std::auto_ptr vp) : inherited(vp) { - debugmsg("ncmul constructor from exvector *",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_ncmul; } @@ -109,123 +101,113 @@ ncmul::ncmul(exvector * vp) : inherited(vp) DEFAULT_ARCHIVING(ncmul) ////////// -// functions overriding virtual functions from bases classes +// functions overriding virtual functions from base classes ////////// // public -void ncmul::print(const print_context & c, unsigned level) const +void ncmul::do_print(const print_context & c, unsigned level) const { - debugmsg("ncmul print", LOGLEVEL_PRINT); - - if (is_of_type(c, print_tree)) { - - inherited::print(c, level); - - } else if (is_of_type(c, print_csrc)) { - - c.s << "ncmul("; - exvector::const_iterator it = seq.begin(), itend = seq.end()-1; - while (it != itend) { - it->print(c, precedence()); - c.s << ","; - it++; - } - it->print(c, precedence()); - c.s << ")"; + printseq(c, '(', '*', ')', precedence(), level); +} - } else - printseq(c, '(', '*', ')', precedence(), level); +void ncmul::do_print_csrc(const print_context & c, unsigned level) const +{ + c.s << class_name(); + printseq(c, '(', ',', ')', precedence(), precedence()); } bool ncmul::info(unsigned inf) const { - throw(std::logic_error("which flags have to be implemented in ncmul::info()?")); + return inherited::info(inf); } typedef std::vector intvector; ex ncmul::expand(unsigned options) const { - exvector sub_expanded_seq; - intvector positions_of_adds; - intvector number_of_add_operands; - - exvector expanded_seq=expandchildren(options); - - positions_of_adds.resize(expanded_seq.size()); - number_of_add_operands.resize(expanded_seq.size()); + // First, expand the children + std::auto_ptr vp = expandchildren(options); + const exvector &expanded_seq = vp.get() ? *vp : this->seq; + + // Now, look for all the factors that are sums and remember their + // position and number of terms. + intvector positions_of_adds(expanded_seq.size()); + intvector number_of_add_operands(expanded_seq.size()); - int number_of_adds=0; - int number_of_expanded_terms=1; + size_t number_of_adds = 0; + size_t number_of_expanded_terms = 1; - unsigned current_position=0; - exvector::const_iterator last=expanded_seq.end(); + size_t current_position = 0; + exvector::const_iterator last = expanded_seq.end(); for (exvector::const_iterator cit=expanded_seq.begin(); cit!=last; ++cit) { - if (is_ex_exactly_of_type((*cit),add)) { - positions_of_adds[number_of_adds]=current_position; - const add & expanded_addref=ex_to(*cit); - number_of_add_operands[number_of_adds]=expanded_addref.seq.size(); - number_of_expanded_terms *= expanded_addref.seq.size(); + if (is_exactly_a(*cit)) { + positions_of_adds[number_of_adds] = current_position; + size_t num_ops = cit->nops(); + number_of_add_operands[number_of_adds] = num_ops; + number_of_expanded_terms *= num_ops; number_of_adds++; } - current_position++; + ++current_position; } - if (number_of_adds==0) { - return (new ncmul(expanded_seq,1))->setflag(status_flags::dynallocated || - status_flags::expanded); + // If there are no sums, we are done + if (number_of_adds == 0) { + if (vp.get()) + return (new ncmul(vp))-> + setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0)); + else + return *this; } + // Now, form all possible products of the terms of the sums with the + // remaining factors, and add them together exvector distrseq; distrseq.reserve(number_of_expanded_terms); - intvector k; - k.resize(number_of_adds); - - int l; - for (l=0; l(expanded_seq[positions_of_adds[l]]); - term[positions_of_adds[l]]=addref.recombine_pair_to_ex(addref.seq[k[l]]); - } - distrseq.push_back((new ncmul(term,1))->setflag(status_flags::dynallocated | - status_flags::expanded)); + while (true) { + exvector term = expanded_seq; + for (size_t i=0; i + setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0))); // increment k[] - l=number_of_adds-1; - while ((l>=0)&&((++k[l])>=number_of_add_operands[l])) { - k[l]=0; + int l = number_of_adds-1; + while ((l>=0) && ((++k[l]) >= number_of_add_operands[l])) { + k[l] = 0; l--; } - if (l<0) break; + if (l<0) + break; } - return (new add(distrseq))->setflag(status_flags::dynallocated | - status_flags::expanded); + return (new add(distrseq))-> + setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0)); } int ncmul::degree(const ex & s) const { - int deg_sum=0; - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - deg_sum+=(*cit).degree(s); + // Sum up degrees of factors + int deg_sum = 0; + exvector::const_iterator i = seq.begin(), end = seq.end(); + while (i != end) { + deg_sum += i->degree(s); + ++i; } return deg_sum; } int ncmul::ldegree(const ex & s) const { - int deg_sum=0; - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - deg_sum+=(*cit).ldegree(s); + // Sum up degrees of factors + int deg_sum = 0; + exvector::const_iterator i = seq.begin(), end = seq.end(); + while (i != end) { + deg_sum += i->degree(s); + ++i; } return deg_sum; } @@ -235,7 +217,7 @@ ex ncmul::coeff(const ex & s, int n) const exvector coeffseq; coeffseq.reserve(seq.size()); - if (n==0) { + if (n == 0) { // product of individual coeffs // if a non-zero power of s is found, the resulting product will be 0 exvector::const_iterator it=seq.begin(); @@ -246,30 +228,30 @@ ex ncmul::coeff(const ex & s, int n) const return (new ncmul(coeffseq,1))->setflag(status_flags::dynallocated); } - exvector::const_iterator it=seq.begin(); - bool coeff_found=0; - while (it!=seq.end()) { - ex c=(*it).coeff(s,n); - if (!c.is_zero()) { - coeffseq.push_back(c); - coeff_found=1; + exvector::const_iterator i = seq.begin(), end = seq.end(); + bool coeff_found = false; + while (i != end) { + ex c = i->coeff(s,n); + if (c.is_zero()) { + coeffseq.push_back(*i); } else { - coeffseq.push_back(*it); + coeffseq.push_back(c); + coeff_found = true; } - ++it; + ++i; } if (coeff_found) return (new ncmul(coeffseq,1))->setflag(status_flags::dynallocated); - return _ex0(); + return _ex0; } -unsigned ncmul::count_factors(const ex & e) const +size_t ncmul::count_factors(const ex & e) const { - if ((is_ex_exactly_of_type(e,mul)&&(e.return_type()!=return_types::commutative))|| - (is_ex_exactly_of_type(e,ncmul))) { - unsigned factors=0; - for (unsigned i=0; i(e)&&(e.return_type()!=return_types::commutative))|| + (is_exactly_a(e))) { + size_t factors=0; + for (size_t i=0; i(e)&&(e.return_type()!=return_types::commutative))|| + (is_exactly_a(e))) { + for (size_t i=0; i unsignedvector; typedef std::vector exvectorvector; +/** Perform automatic term rewriting rules in this class. In the following + * x, x1, x2,... stand for a symbolic variables of type ex and c, c1, c2... + * stand for such expressions that contain a plain number. + * - ncmul(...,*(x1,x2),...,ncmul(x3,x4),...) -> ncmul(...,x1,x2,...,x3,x4,...) (associativity) + * - ncmul(x) -> x + * - ncmul() -> 1 + * - ncmul(...,c1,...,c2,...) -> *(c1,c2,ncmul(...)) (pull out commutative elements) + * - ncmul(x1,y1,x2,y2) -> *(ncmul(x1,x2),ncmul(y1,y2)) (collect elements of same type) + * - ncmul(x1,x2,x3,...) -> x::eval_ncmul(x1,x2,x3,...) + * + * @param level cut-off in recursive evaluation */ ex ncmul::eval(int level) const { - // simplifications: ncmul(...,*(x1,x2),...,ncmul(x3,x4),...) -> - // ncmul(...,x1,x2,...,x3,x4,...) (associativity) - // ncmul(x) -> x - // ncmul() -> 1 - // ncmul(...,c1,...,c2,...) - // *(c1,c2,ncmul(...)) (pull out commutative elements) - // ncmul(x1,y1,x2,y2) -> *(ncmul(x1,x2),ncmul(y1,y2)) - // (collect elements of same type) - // ncmul(x1,x2,x3,...) -> x::simplify_ncmul(x1,x2,x3,...) - // the following rule would be nice, but produces a recursion, + // The following additional rule would be nice, but produces a recursion, // which must be trapped by introducing a flag that the sub-ncmuls() // are already evaluated (maybe later...) // ncmul(x1,x2,...,X,y1,y2,...) -> @@ -317,31 +299,34 @@ ex ncmul::eval(int level) const exvector evaledseq=evalchildren(level); // ncmul(...,*(x1,x2),...,ncmul(x3,x4),...) -> - // ncmul(...,x1,x2,...,x3,x4,...) (associativity) - unsigned factors=0; - for (exvector::const_iterator cit=evaledseq.begin(); cit!=evaledseq.end(); ++cit) - factors += count_factors(*cit); + // ncmul(...,x1,x2,...,x3,x4,...) (associativity) + size_t factors = 0; + exvector::const_iterator cit = evaledseq.begin(), citend = evaledseq.end(); + while (cit != citend) + factors += count_factors(*cit++); exvector assocseq; assocseq.reserve(factors); - for (exvector::const_iterator cit=evaledseq.begin(); cit!=evaledseq.end(); ++cit) - append_factors(assocseq,*cit); + cit = evaledseq.begin(); + while (cit != citend) + append_factors(assocseq, *cit++); // ncmul(x) -> x if (assocseq.size()==1) return *(seq.begin()); // ncmul() -> 1 - if (assocseq.size()==0) return _ex1(); + if (assocseq.empty()) return _ex1; // determine return types unsignedvector rettypes; rettypes.reserve(assocseq.size()); - unsigned i=0; - unsigned count_commutative=0; - unsigned count_noncommutative=0; - unsigned count_noncommutative_composite=0; - for (exvector::const_iterator cit=assocseq.begin(); cit!=assocseq.end(); ++cit) { - switch (rettypes[i]=(*cit).return_type()) { + size_t i = 0; + size_t count_commutative=0; + size_t count_noncommutative=0; + size_t count_noncommutative_composite=0; + cit = assocseq.begin(); citend = assocseq.end(); + while (cit != citend) { + switch (rettypes[i] = cit->return_type()) { case return_types::commutative: count_commutative++; break; @@ -354,7 +339,7 @@ ex ncmul::eval(int level) const default: throw(std::logic_error("ncmul::eval(): invalid return type")); } - ++i; + ++i; ++cit; } GINAC_ASSERT(count_commutative+count_noncommutative+count_noncommutative_composite==assocseq.size()); @@ -365,7 +350,8 @@ ex ncmul::eval(int level) const commutativeseq.reserve(count_commutative+1); exvector noncommutativeseq; noncommutativeseq.reserve(assocseq.size()-count_commutative); - for (i=0; ireturn_type_tinfo(); + size_t rtt_num = rttinfos.size(); // search type in vector of known types - for (i=0; i=rttinfos.size()) { + if (i >= rtt_num) { // new type rttinfos.push_back(ti); evv.push_back(exvector()); - (*(evv.end()-1)).reserve(assocseq.size()); - (*(evv.end()-1)).push_back(*cit); + (evv.end()-1)->reserve(assoc_num); + (evv.end()-1)->push_back(*cit); } + ++cit; } + size_t evv_num = evv.size(); #ifdef DO_GINAC_ASSERT - GINAC_ASSERT(evv.size()==rttinfos.size()); - GINAC_ASSERT(evv.size()>0); - unsigned s=0; - for (i=0; i 0); + size_t s=0; + for (i=0; isetflag(status_flags::dynallocated)); - } return (new mul(splitseq))->setflag(status_flags::dynallocated); } @@ -433,10 +422,10 @@ ex ncmul::eval(int level) const status_flags::evaluated); } -ex ncmul::evalm(void) const +ex ncmul::evalm() const { // Evaluate children first - exvector *s = new exvector; + std::auto_ptr s(new exvector); s->reserve(seq.size()); exvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { @@ -446,16 +435,15 @@ ex ncmul::evalm(void) const // If there are only matrices, simply multiply them it = s->begin(); itend = s->end(); - if (is_ex_of_type(*it, matrix)) { + if (is_a(*it)) { matrix prod(ex_to(*it)); it++; while (it != itend) { - if (!is_ex_of_type(*it, matrix)) + if (!is_a(*it)) goto no_matrix; prod = prod.mul(ex_to(*it)); it++; } - delete s; return prod; } @@ -463,23 +451,55 @@ no_matrix: return (new ncmul(s))->setflag(status_flags::dynallocated); } -ex ncmul::thisexprseq(const exvector & v) const +ex ncmul::thiscontainer(const exvector & v) const { return (new ncmul(v))->setflag(status_flags::dynallocated); } -ex ncmul::thisexprseq(exvector * vp) const +ex ncmul::thiscontainer(std::auto_ptr vp) const { return (new ncmul(vp))->setflag(status_flags::dynallocated); } +ex ncmul::conjugate() const +{ + if (return_type() != return_types::noncommutative) { + return exprseq::conjugate(); + } + + if ((return_type_tinfo() & 0xffffff00U) != TINFO_clifford) { + return exprseq::conjugate(); + } + + exvector ev; + ev.reserve(nops()); + for (const_iterator i=end(); i!=begin();) { + --i; + ev.push_back(i->conjugate()); + } + return (new ncmul(ev, true))->setflag(status_flags::dynallocated).eval(); +} + // protected -/** Implementation of ex::diff() for a non-commutative product. It always returns 0. +/** Implementation of ex::diff() for a non-commutative product. It applies + * the product rule. * @see ex::diff */ ex ncmul::derivative(const symbol & s) const { - return _ex0(); + size_t num = seq.size(); + exvector addseq; + addseq.reserve(num); + + // D(a*b*c) = D(a)*b*c + a*D(b)*c + a*b*D(c) + exvector ncmulseq = seq; + for (size_t i=0; isetflag(status_flags::dynallocated)); + e.swap(ncmulseq[i]); + } + return (new add(addseq))->setflag(status_flags::dynallocated); } int ncmul::compare_same_type(const basic & other) const @@ -487,50 +507,51 @@ int ncmul::compare_same_type(const basic & other) const return inherited::compare_same_type(other); } -unsigned ncmul::return_type(void) const +unsigned ncmul::return_type() const { - if (seq.size()==0) { - // ncmul without factors: should not happen, but commutes + if (seq.empty()) return return_types::commutative; - } - bool all_commutative=1; - unsigned rt; - exvector::const_iterator cit_noncommutative_element; // point to first found nc element + bool all_commutative = true; + exvector::const_iterator noncommutative_element; // point to first found nc element - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - rt=(*cit).return_type(); - if (rt==return_types::noncommutative_composite) return rt; // one ncc -> mul also ncc - if ((rt==return_types::noncommutative)&&(all_commutative)) { + exvector::const_iterator i = seq.begin(), end = seq.end(); + while (i != end) { + unsigned rt = i->return_type(); + if (rt == return_types::noncommutative_composite) + return rt; // one ncc -> mul also ncc + if ((rt == return_types::noncommutative) && (all_commutative)) { // first nc element found, remember position - cit_noncommutative_element=cit; - all_commutative=0; + noncommutative_element = i; + all_commutative = false; } - if ((rt==return_types::noncommutative)&&(!all_commutative)) { + if ((rt == return_types::noncommutative) && (!all_commutative)) { // another nc element found, compare type_infos - if ((*cit_noncommutative_element).return_type_tinfo()!=(*cit).return_type_tinfo()) { + if (noncommutative_element->return_type_tinfo() != i->return_type_tinfo()) { // diffent types -> mul is ncc return return_types::noncommutative_composite; } } + ++i; } // all factors checked GINAC_ASSERT(!all_commutative); // not all factors should commute, because this is a ncmul(); return all_commutative ? return_types::commutative : return_types::noncommutative; } -unsigned ncmul::return_type_tinfo(void) const +unsigned ncmul::return_type_tinfo() const { - if (seq.size()==0) { - // mul without factors: should not happen + if (seq.empty()) return tinfo_key; - } + // return type_info of first noncommutative element - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - if ((*cit).return_type()==return_types::noncommutative) { - return (*cit).return_type_tinfo(); - } + exvector::const_iterator i = seq.begin(), end = seq.end(); + while (i != end) { + if (i->return_type() == return_types::noncommutative) + return i->return_type_tinfo(); + ++i; } + // no noncommutative element found, should not happen return tinfo_key; } @@ -545,19 +566,37 @@ unsigned ncmul::return_type_tinfo(void) const // non-virtual functions in this class ////////// -exvector ncmul::expandchildren(unsigned options) const +std::auto_ptr ncmul::expandchildren(unsigned options) const { - exvector s; - s.reserve(seq.size()); - exvector::const_iterator it = seq.begin(), itend = seq.end(); - while (it != itend) { - s.push_back(it->expand(options)); - it++; + const_iterator cit = this->seq.begin(), end = this->seq.end(); + while (cit != end) { + const ex & expanded_ex = cit->expand(options); + if (!are_ex_trivially_equal(*cit, expanded_ex)) { + + // copy first part of seq which hasn't changed + std::auto_ptr s(new exvector(this->seq.begin(), cit)); + reserve(*s, this->seq.size()); + + // insert changed element + s->push_back(expanded_ex); + ++cit; + + // copy rest + while (cit != end) { + s->push_back(cit->expand(options)); + ++cit; + } + + return s; + } + + ++cit; } - return s; + + return std::auto_ptr(0); // nothing has changed } -const exvector & ncmul::get_factors(void) const +const exvector & ncmul::get_factors() const { return seq; } @@ -566,20 +605,20 @@ const exvector & ncmul::get_factors(void) const // friend functions ////////// -ex nonsimplified_ncmul(const exvector & v) +ex reeval_ncmul(const exvector & v) { return (new ncmul(v))->setflag(status_flags::dynallocated); } -ex simplified_ncmul(const exvector & v) +ex hold_ncmul(const exvector & v) { - if (v.size()==0) { - return _ex1(); - } else if (v.size()==1) { + if (v.empty()) + return _ex1; + else if (v.size() == 1) return v[0]; - } - return (new ncmul(v))->setflag(status_flags::dynallocated | - status_flags::evaluated); + else + return (new ncmul(v))->setflag(status_flags::dynallocated | + status_flags::evaluated); } } // namespace GiNaC