X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fncmul.cpp;h=ccc91c490d4be13f853739e61b8d423c076e6fe4;hp=d94e61c4016aedea78a4907f000c6a09df98d178;hb=948071fb79e925111799128dacff49296c69f2ca;hpb=26741891dadf23162799009b6fd57b4984bd4ce5 diff --git a/ginac/ncmul.cpp b/ginac/ncmul.cpp index d94e61c4..ccc91c49 100644 --- a/ginac/ncmul.cpp +++ b/ginac/ncmul.cpp @@ -3,7 +3,7 @@ * Implementation of GiNaC's non-commutative products of expressions. */ /* - * GiNaC Copyright (C) 1999 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2004 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -28,56 +28,26 @@ #include "ex.h" #include "add.h" #include "mul.h" -#include "debugmsg.h" +#include "matrix.h" +#include "archive.h" +#include "utils.h" -#ifndef NO_GINAC_NAMESPACE namespace GiNaC { -#endif // ndef NO_GINAC_NAMESPACE + +GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(ncmul, exprseq, + print_func(&ncmul::do_print). + print_func(&ncmul::do_print_tree). + print_func(&ncmul::do_print_csrc). + print_func(&ncmul::do_print_csrc)) + ////////// -// default constructor, destructor, copy constructor assignment operator and helpers +// default constructor ////////// -// public - ncmul::ncmul() { - debugmsg("ncmul default constructor",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_ncmul; -} - -ncmul::~ncmul() -{ - debugmsg("ncmul destructor",LOGLEVEL_DESTRUCT); - destroy(0); -} - -ncmul::ncmul(ncmul const & other) -{ - debugmsg("ncmul copy constructor",LOGLEVEL_CONSTRUCT); - copy(other); -} - -ncmul const & ncmul::operator=(ncmul const & other) -{ - debugmsg("ncmul operator=",LOGLEVEL_ASSIGNMENT); - if (this != &other) { - destroy(1); - copy(other); - } - return *this; -} - -// protected - -void ncmul::copy(ncmul const & other) -{ - exprseq::copy(other); -} - -void ncmul::destroy(bool call_parent) -{ - if (call_parent) exprseq::destroy(call_parent); + tinfo_key = TINFO_ncmul; } ////////// @@ -86,482 +56,504 @@ void ncmul::destroy(bool call_parent) // public -ncmul::ncmul(ex const & lh, ex const & rh) : - exprseq(lh,rh) +ncmul::ncmul(const ex & lh, const ex & rh) : inherited(lh,rh) { - debugmsg("ncmul constructor from ex,ex",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_ncmul; + tinfo_key = TINFO_ncmul; } -ncmul::ncmul(ex const & f1, ex const & f2, ex const & f3) : - exprseq(f1,f2,f3) +ncmul::ncmul(const ex & f1, const ex & f2, const ex & f3) : inherited(f1,f2,f3) { - debugmsg("ncmul constructor from 3 ex",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_ncmul; + tinfo_key = TINFO_ncmul; } -ncmul::ncmul(ex const & f1, ex const & f2, ex const & f3, - ex const & f4) : exprseq(f1,f2,f3,f4) +ncmul::ncmul(const ex & f1, const ex & f2, const ex & f3, + const ex & f4) : inherited(f1,f2,f3,f4) { - debugmsg("ncmul constructor from 4 ex",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_ncmul; + tinfo_key = TINFO_ncmul; } -ncmul::ncmul(ex const & f1, ex const & f2, ex const & f3, - ex const & f4, ex const & f5) : exprseq(f1,f2,f3,f4,f5) +ncmul::ncmul(const ex & f1, const ex & f2, const ex & f3, + const ex & f4, const ex & f5) : inherited(f1,f2,f3,f4,f5) { - debugmsg("ncmul constructor from 5 ex",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_ncmul; + tinfo_key = TINFO_ncmul; } -ncmul::ncmul(ex const & f1, ex const & f2, ex const & f3, - ex const & f4, ex const & f5, ex const & f6) : - exprseq(f1,f2,f3,f4,f5,f6) +ncmul::ncmul(const ex & f1, const ex & f2, const ex & f3, + const ex & f4, const ex & f5, const ex & f6) : inherited(f1,f2,f3,f4,f5,f6) { - debugmsg("ncmul constructor from 6 ex",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_ncmul; + tinfo_key = TINFO_ncmul; } -ncmul::ncmul(exvector const & v, bool discardable) : exprseq(v,discardable) +ncmul::ncmul(const exvector & v, bool discardable) : inherited(v,discardable) { - debugmsg("ncmul constructor from exvector,bool",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_ncmul; + tinfo_key = TINFO_ncmul; } -ncmul::ncmul(exvector * vp) : exprseq(vp) +ncmul::ncmul(std::auto_ptr vp) : inherited(vp) { - debugmsg("ncmul constructor from exvector *",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_ncmul; + tinfo_key = TINFO_ncmul; } - + ////////// -// functions overriding virtual functions from bases classes +// archiving ////////// -// public - -basic * ncmul::duplicate() const -{ - debugmsg("ncmul duplicate",LOGLEVEL_ASSIGNMENT); - return new ncmul(*this); -} +DEFAULT_ARCHIVING(ncmul) + +////////// +// functions overriding virtual functions from base classes +////////// -void ncmul::print(ostream & os, unsigned upper_precedence) const -{ - debugmsg("ncmul print",LOGLEVEL_PRINT); - printseq(os,'(','%',')',precedence,upper_precedence); -} +// public -void ncmul::printraw(ostream & os) const +void ncmul::do_print(const print_context & c, unsigned level) const { - debugmsg("ncmul printraw",LOGLEVEL_PRINT); - - os << "%("; - for (exvector::const_iterator it=seq.begin(); it!=seq.end(); ++it) { - (*it).bp->printraw(os); - os << ","; - } - os << ",hash=" << hashvalue << ",flags=" << flags; - os << ")"; + printseq(c, '(', '*', ')', precedence(), level); } -void ncmul::printcsrc(ostream & os, unsigned upper_precedence) const +void ncmul::do_print_csrc(const print_context & c, unsigned level) const { - debugmsg("ncmul print csrc",LOGLEVEL_PRINT); - exvector::const_iterator it; - exvector::const_iterator itend = seq.end()-1; - os << "ncmul("; - for (it=seq.begin(); it!=itend; ++it) { - (*it).bp->printcsrc(os,precedence); - os << ","; - } - (*it).bp->printcsrc(os,precedence); - os << ")"; + c.s << class_name(); + printseq(c, '(', ',', ')', precedence(), precedence()); } bool ncmul::info(unsigned inf) const { - throw(std::logic_error("which flags have to be implemented in ncmul::info()?")); + return inherited::info(inf); } -typedef vector intvector; +typedef std::vector intvector; ex ncmul::expand(unsigned options) const { - exvector sub_expanded_seq; - intvector positions_of_adds; - intvector number_of_add_operands; - - exvector expanded_seq=expandchildren(options); - - positions_of_adds.resize(expanded_seq.size()); - number_of_add_operands.resize(expanded_seq.size()); - - int number_of_adds=0; - int number_of_expanded_terms=1; - - unsigned current_position=0; - exvector::const_iterator last=expanded_seq.end(); - for (exvector::const_iterator cit=expanded_seq.begin(); cit!=last; ++cit) { - if (is_ex_exactly_of_type((*cit),add)) { - positions_of_adds[number_of_adds]=current_position; - add const & expanded_addref=ex_to_add(*cit); - number_of_add_operands[number_of_adds]=expanded_addref.seq.size(); - number_of_expanded_terms *= expanded_addref.seq.size(); - number_of_adds++; - } - current_position++; - } - - if (number_of_adds==0) { - return (new ncmul(expanded_seq,1))->setflag(status_flags::dynallocated || - status_flags::expanded); - } - - exvector distrseq; - distrseq.reserve(number_of_expanded_terms); - - intvector k; - k.resize(number_of_adds); - - int l; - for (l=0; lsetflag(status_flags::dynallocated | - status_flags::expanded)); - - // increment k[] - l=number_of_adds-1; - while ((l>=0)&&((++k[l])>=number_of_add_operands[l])) { - k[l]=0; - l--; - } - if (l<0) break; - } - - return (new add(distrseq))->setflag(status_flags::dynallocated | - status_flags::expanded); -} - -int ncmul::degree(symbol const & s) const + // First, expand the children + std::auto_ptr vp = expandchildren(options); + const exvector &expanded_seq = vp.get() ? *vp : this->seq; + + // Now, look for all the factors that are sums and remember their + // position and number of terms. + intvector positions_of_adds(expanded_seq.size()); + intvector number_of_add_operands(expanded_seq.size()); + + size_t number_of_adds = 0; + size_t number_of_expanded_terms = 1; + + size_t current_position = 0; + exvector::const_iterator last = expanded_seq.end(); + for (exvector::const_iterator cit=expanded_seq.begin(); cit!=last; ++cit) { + if (is_exactly_a(*cit)) { + positions_of_adds[number_of_adds] = current_position; + size_t num_ops = cit->nops(); + number_of_add_operands[number_of_adds] = num_ops; + number_of_expanded_terms *= num_ops; + number_of_adds++; + } + ++current_position; + } + + // If there are no sums, we are done + if (number_of_adds == 0) { + if (vp.get()) + return (new ncmul(vp))-> + setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0)); + else + return *this; + } + + // Now, form all possible products of the terms of the sums with the + // remaining factors, and add them together + exvector distrseq; + distrseq.reserve(number_of_expanded_terms); + + intvector k(number_of_adds); + + while (true) { + exvector term = expanded_seq; + for (size_t i=0; i + setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0))); + + // increment k[] + int l = number_of_adds-1; + while ((l>=0) && ((++k[l]) >= number_of_add_operands[l])) { + k[l] = 0; + l--; + } + if (l<0) + break; + } + + return (new add(distrseq))-> + setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0)); +} + +int ncmul::degree(const ex & s) const +{ + // Sum up degrees of factors + int deg_sum = 0; + exvector::const_iterator i = seq.begin(), end = seq.end(); + while (i != end) { + deg_sum += i->degree(s); + ++i; + } + return deg_sum; +} + +int ncmul::ldegree(const ex & s) const +{ + // Sum up degrees of factors + int deg_sum = 0; + exvector::const_iterator i = seq.begin(), end = seq.end(); + while (i != end) { + deg_sum += i->degree(s); + ++i; + } + return deg_sum; +} + +ex ncmul::coeff(const ex & s, int n) const +{ + exvector coeffseq; + coeffseq.reserve(seq.size()); + + if (n == 0) { + // product of individual coeffs + // if a non-zero power of s is found, the resulting product will be 0 + exvector::const_iterator it=seq.begin(); + while (it!=seq.end()) { + coeffseq.push_back((*it).coeff(s,n)); + ++it; + } + return (new ncmul(coeffseq,1))->setflag(status_flags::dynallocated); + } + + exvector::const_iterator i = seq.begin(), end = seq.end(); + bool coeff_found = false; + while (i != end) { + ex c = i->coeff(s,n); + if (c.is_zero()) { + coeffseq.push_back(*i); + } else { + coeffseq.push_back(c); + coeff_found = true; + } + ++i; + } + + if (coeff_found) return (new ncmul(coeffseq,1))->setflag(status_flags::dynallocated); + + return _ex0; +} + +size_t ncmul::count_factors(const ex & e) const +{ + if ((is_exactly_a(e)&&(e.return_type()!=return_types::commutative))|| + (is_exactly_a(e))) { + size_t factors=0; + for (size_t i=0; i(e)&&(e.return_type()!=return_types::commutative))|| + (is_exactly_a(e))) { + for (size_t i=0; i unsignedvector; +typedef std::vector exvectorvector; + +/** Perform automatic term rewriting rules in this class. In the following + * x, x1, x2,... stand for a symbolic variables of type ex and c, c1, c2... + * stand for such expressions that contain a plain number. + * - ncmul(...,*(x1,x2),...,ncmul(x3,x4),...) -> ncmul(...,x1,x2,...,x3,x4,...) (associativity) + * - ncmul(x) -> x + * - ncmul() -> 1 + * - ncmul(...,c1,...,c2,...) -> *(c1,c2,ncmul(...)) (pull out commutative elements) + * - ncmul(x1,y1,x2,y2) -> *(ncmul(x1,x2),ncmul(y1,y2)) (collect elements of same type) + * - ncmul(x1,x2,x3,...) -> x::eval_ncmul(x1,x2,x3,...) + * + * @param level cut-off in recursive evaluation */ +ex ncmul::eval(int level) const { - int deg_sum=0; - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - deg_sum+=(*cit).degree(s); - } - return deg_sum; + // The following additional rule would be nice, but produces a recursion, + // which must be trapped by introducing a flag that the sub-ncmuls() + // are already evaluated (maybe later...) + // ncmul(x1,x2,...,X,y1,y2,...) -> + // ncmul(ncmul(x1,x2,...),X,ncmul(y1,y2,...) + // (X noncommutative_composite) + + if ((level==1) && (flags & status_flags::evaluated)) { + return *this; + } + + exvector evaledseq=evalchildren(level); + + // ncmul(...,*(x1,x2),...,ncmul(x3,x4),...) -> + // ncmul(...,x1,x2,...,x3,x4,...) (associativity) + size_t factors = 0; + exvector::const_iterator cit = evaledseq.begin(), citend = evaledseq.end(); + while (cit != citend) + factors += count_factors(*cit++); + + exvector assocseq; + assocseq.reserve(factors); + cit = evaledseq.begin(); + while (cit != citend) + append_factors(assocseq, *cit++); + + // ncmul(x) -> x + if (assocseq.size()==1) return *(seq.begin()); + + // ncmul() -> 1 + if (assocseq.empty()) return _ex1; + + // determine return types + unsignedvector rettypes; + rettypes.reserve(assocseq.size()); + size_t i = 0; + size_t count_commutative=0; + size_t count_noncommutative=0; + size_t count_noncommutative_composite=0; + cit = assocseq.begin(); citend = assocseq.end(); + while (cit != citend) { + switch (rettypes[i] = cit->return_type()) { + case return_types::commutative: + count_commutative++; + break; + case return_types::noncommutative: + count_noncommutative++; + break; + case return_types::noncommutative_composite: + count_noncommutative_composite++; + break; + default: + throw(std::logic_error("ncmul::eval(): invalid return type")); + } + ++i; ++cit; + } + GINAC_ASSERT(count_commutative+count_noncommutative+count_noncommutative_composite==assocseq.size()); + + // ncmul(...,c1,...,c2,...) -> + // *(c1,c2,ncmul(...)) (pull out commutative elements) + if (count_commutative!=0) { + exvector commutativeseq; + commutativeseq.reserve(count_commutative+1); + exvector noncommutativeseq; + noncommutativeseq.reserve(assocseq.size()-count_commutative); + size_t num = assocseq.size(); + for (size_t i=0; isetflag(status_flags::dynallocated)); + return (new mul(commutativeseq))->setflag(status_flags::dynallocated); + } + + // ncmul(x1,y1,x2,y2) -> *(ncmul(x1,x2),ncmul(y1,y2)) + // (collect elements of same type) + + if (count_noncommutative_composite==0) { + // there are neither commutative nor noncommutative_composite + // elements in assocseq + GINAC_ASSERT(count_commutative==0); + + size_t assoc_num = assocseq.size(); + exvectorvector evv; + unsignedvector rttinfos; + evv.reserve(assoc_num); + rttinfos.reserve(assoc_num); + + cit = assocseq.begin(), citend = assocseq.end(); + while (cit != citend) { + unsigned ti = cit->return_type_tinfo(); + size_t rtt_num = rttinfos.size(); + // search type in vector of known types + for (i=0; i= rtt_num) { + // new type + rttinfos.push_back(ti); + evv.push_back(exvector()); + (evv.end()-1)->reserve(assoc_num); + (evv.end()-1)->push_back(*cit); + } + ++cit; + } + + size_t evv_num = evv.size(); +#ifdef DO_GINAC_ASSERT + GINAC_ASSERT(evv_num == rttinfos.size()); + GINAC_ASSERT(evv_num > 0); + size_t s=0; + for (i=0; isetflag(status_flags::dynallocated)); + + return (new mul(splitseq))->setflag(status_flags::dynallocated); + } + + return (new ncmul(assocseq))->setflag(status_flags::dynallocated | + status_flags::evaluated); } -int ncmul::ldegree(symbol const & s) const +ex ncmul::evalm() const { - int deg_sum=0; - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - deg_sum+=(*cit).ldegree(s); - } - return deg_sum; -} + // Evaluate children first + std::auto_ptr s(new exvector); + s->reserve(seq.size()); + exvector::const_iterator it = seq.begin(), itend = seq.end(); + while (it != itend) { + s->push_back(it->evalm()); + it++; + } -ex ncmul::coeff(symbol const & s, int const n) const -{ - exvector coeffseq; - coeffseq.reserve(seq.size()); - - if (n==0) { - // product of individual coeffs - // if a non-zero power of s is found, the resulting product will be 0 - exvector::const_iterator it=seq.begin(); - while (it!=seq.end()) { - coeffseq.push_back((*it).coeff(s,n)); - ++it; - } - return (new ncmul(coeffseq,1))->setflag(status_flags::dynallocated); - } - - exvector::const_iterator it=seq.begin(); - bool coeff_found=0; - while (it!=seq.end()) { - ex c=(*it).coeff(s,n); - if (!c.is_zero()) { - coeffseq.push_back(c); - coeff_found=1; - } else { - coeffseq.push_back(*it); - } - ++it; - } - - if (coeff_found) return (new ncmul(coeffseq,1))->setflag(status_flags::dynallocated); - - return exZERO(); -} + // If there are only matrices, simply multiply them + it = s->begin(); itend = s->end(); + if (is_a(*it)) { + matrix prod(ex_to(*it)); + it++; + while (it != itend) { + if (!is_a(*it)) + goto no_matrix; + prod = prod.mul(ex_to(*it)); + it++; + } + return prod; + } -unsigned ncmul::count_factors(ex const & e) const -{ - if ((is_ex_exactly_of_type(e,mul)&&(e.return_type()!=return_types::commutative))|| - (is_ex_exactly_of_type(e,ncmul))) { - unsigned factors=0; - for (int i=0; isetflag(status_flags::dynallocated); } -typedef vector unsignedvector; -typedef vector exvectorvector; - -ex ncmul::eval(int level) const +ex ncmul::thiscontainer(const exvector & v) const { - // simplifications: ncmul(...,*(x1,x2),...,ncmul(x3,x4),...) -> - // ncmul(...,x1,x2,...,x3,x4,...) (associativity) - // ncmul(x) -> x - // ncmul() -> 1 - // ncmul(...,c1,...,c2,...) -> - // *(c1,c2,ncmul(...)) (pull out commutative elements) - // ncmul(x1,y1,x2,y2) -> *(ncmul(x1,x2),ncmul(y1,y2)) - // (collect elements of same type) - // ncmul(x1,x2,x3,...) -> x::eval_ncmul(x1,x2,x3,...) - // the following rule would be nice, but produces a recursion, - // which must be trapped by introducing a flag that the sub-ncmuls() - // are already evaluated (maybe later...) - // ncmul(x1,x2,...,X,y1,y2,...) -> - // ncmul(ncmul(x1,x2,...),X,ncmul(y1,y2,...) - // (X noncommutative_composite) - - if ((level==1)&&(flags & status_flags::evaluated)) { - return *this; - } - - exvector evaledseq=evalchildren(level); - - // ncmul(...,*(x1,x2),...,ncmul(x3,x4),...) -> - // ncmul(...,x1,x2,...,x3,x4,...) (associativity) - unsigned factors=0; - for (exvector::const_iterator cit=evaledseq.begin(); cit!=evaledseq.end(); ++cit) { - factors += count_factors(*cit); - } - - exvector assocseq; - assocseq.reserve(factors); - for (exvector::const_iterator cit=evaledseq.begin(); cit!=evaledseq.end(); ++cit) { - append_factors(assocseq,*cit); - } - - // ncmul(x) -> x - if (assocseq.size()==1) return *(seq.begin()); - - // ncmul() -> 1 - if (assocseq.size()==0) return exONE(); - - // determine return types - unsignedvector rettypes; - rettypes.reserve(assocseq.size()); - unsigned i=0; - unsigned count_commutative=0; - unsigned count_noncommutative=0; - unsigned count_noncommutative_composite=0; - for (exvector::const_iterator cit=assocseq.begin(); cit!=assocseq.end(); ++cit) { - switch (rettypes[i]=(*cit).return_type()) { - case return_types::commutative: - count_commutative++; - break; - case return_types::noncommutative: - count_noncommutative++; - break; - case return_types::noncommutative_composite: - count_noncommutative_composite++; - break; - default: - throw(std::logic_error("ncmul::eval(): invalid return type")); - } - ++i; - } - GINAC_ASSERT(count_commutative+count_noncommutative+count_noncommutative_composite==assocseq.size()); - - // ncmul(...,c1,...,c2,...) -> - // *(c1,c2,ncmul(...)) (pull out commutative elements) - if (count_commutative!=0) { - exvector commutativeseq; - commutativeseq.reserve(count_commutative+1); - exvector noncommutativeseq; - noncommutativeseq.reserve(assocseq.size()-count_commutative); - for (i=0; i - setflag(status_flags::dynallocated)); - return (new mul(commutativeseq))->setflag(status_flags::dynallocated); - } - - // ncmul(x1,y1,x2,y2) -> *(ncmul(x1,x2),ncmul(y1,y2)) - // (collect elements of same type) - - if (count_noncommutative_composite==0) { - // there are neither commutative nor noncommutative_composite - // elements in assocseq - GINAC_ASSERT(count_commutative==0); - - exvectorvector evv; - unsignedvector rttinfos; - evv.reserve(assocseq.size()); - rttinfos.reserve(assocseq.size()); - - for (exvector::const_iterator cit=assocseq.begin(); cit!=assocseq.end(); ++cit) { - unsigned ti=(*cit).return_type_tinfo(); - // search type in vector of known types - for (i=0; i=rttinfos.size()) { - // new type - rttinfos.push_back(ti); - evv.push_back(exvector()); - (*(evv.end()-1)).reserve(assocseq.size()); - (*(evv.end()-1)).push_back(*cit); - } - } - -#ifdef DO_GINAC_ASSERT - GINAC_ASSERT(evv.size()==rttinfos.size()); - GINAC_ASSERT(evv.size()>0); - unsigned s=0; - for (i=0; i - setflag(status_flags::dynallocated)); - } - - return (new mul(splitseq))->setflag(status_flags::dynallocated); - } - - return (new ncmul(assocseq))->setflag(status_flags::dynallocated | - status_flags::evaluated); + return (new ncmul(v))->setflag(status_flags::dynallocated); } -exvector ncmul::get_indices(void) const +ex ncmul::thiscontainer(std::auto_ptr vp) const { - // return union of indices of factors - exvector iv; - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - exvector subiv=(*cit).get_indices(); - iv.reserve(iv.size()+subiv.size()); - for (exvector::const_iterator cit2=subiv.begin(); cit2!=subiv.end(); ++cit2) { - iv.push_back(*cit2); - } - } - return iv; + return (new ncmul(vp))->setflag(status_flags::dynallocated); } -ex ncmul::subs(lst const & ls, lst const & lr) const +ex ncmul::conjugate() const { - return ncmul(subschildren(ls, lr)); -} + if (return_type() != return_types::noncommutative) { + return exprseq::conjugate(); + } -ex ncmul::thisexprseq(exvector const & v) const -{ - return (new ncmul(v))->setflag(status_flags::dynallocated); -} + if ((return_type_tinfo() & 0xffffff00U) != TINFO_clifford) { + return exprseq::conjugate(); + } -ex ncmul::thisexprseq(exvector * vp) const -{ - return (new ncmul(vp))->setflag(status_flags::dynallocated); + exvector ev; + ev.reserve(nops()); + for (const_iterator i=end(); i!=begin();) { + --i; + ev.push_back(i->conjugate()); + } + return (new ncmul(ev, true))->setflag(status_flags::dynallocated).eval(); } // protected -int ncmul::compare_same_type(basic const & other) const -{ - return exprseq::compare_same_type(other); -} - -unsigned ncmul::return_type(void) const -{ - if (seq.size()==0) { - // ncmul without factors: should not happen, but commutes - return return_types::commutative; - } - - bool all_commutative=1; - unsigned rt; - exvector::const_iterator cit_noncommutative_element; // point to first found nc element - - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - rt=(*cit).return_type(); - if (rt==return_types::noncommutative_composite) return rt; // one ncc -> mul also ncc - if ((rt==return_types::noncommutative)&&(all_commutative)) { - // first nc element found, remember position - cit_noncommutative_element=cit; - all_commutative=0; - } - if ((rt==return_types::noncommutative)&&(!all_commutative)) { - // another nc element found, compare type_infos - if ((*cit_noncommutative_element).return_type_tinfo()!=(*cit).return_type_tinfo()) { - // diffent types -> mul is ncc - return return_types::noncommutative_composite; - } - } - } - // all factors checked - GINAC_ASSERT(!all_commutative); // not all factors should commute, because this is a ncmul(); - return all_commutative ? return_types::commutative : return_types::noncommutative; +/** Implementation of ex::diff() for a non-commutative product. It applies + * the product rule. + * @see ex::diff */ +ex ncmul::derivative(const symbol & s) const +{ + size_t num = seq.size(); + exvector addseq; + addseq.reserve(num); + + // D(a*b*c) = D(a)*b*c + a*D(b)*c + a*b*D(c) + exvector ncmulseq = seq; + for (size_t i=0; isetflag(status_flags::dynallocated)); + e.swap(ncmulseq[i]); + } + return (new add(addseq))->setflag(status_flags::dynallocated); +} + +int ncmul::compare_same_type(const basic & other) const +{ + return inherited::compare_same_type(other); +} + +unsigned ncmul::return_type() const +{ + if (seq.empty()) + return return_types::commutative; + + bool all_commutative = true; + exvector::const_iterator noncommutative_element; // point to first found nc element + + exvector::const_iterator i = seq.begin(), end = seq.end(); + while (i != end) { + unsigned rt = i->return_type(); + if (rt == return_types::noncommutative_composite) + return rt; // one ncc -> mul also ncc + if ((rt == return_types::noncommutative) && (all_commutative)) { + // first nc element found, remember position + noncommutative_element = i; + all_commutative = false; + } + if ((rt == return_types::noncommutative) && (!all_commutative)) { + // another nc element found, compare type_infos + if (noncommutative_element->return_type_tinfo() != i->return_type_tinfo()) { + // diffent types -> mul is ncc + return return_types::noncommutative_composite; + } + } + ++i; + } + // all factors checked + GINAC_ASSERT(!all_commutative); // not all factors should commute, because this is a ncmul(); + return all_commutative ? return_types::commutative : return_types::noncommutative; } -unsigned ncmul::return_type_tinfo(void) const +unsigned ncmul::return_type_tinfo() const { - if (seq.size()==0) { - // mul without factors: should not happen - return tinfo_key; - } - // return type_info of first noncommutative element - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - if ((*cit).return_type()==return_types::noncommutative) { - return (*cit).return_type_tinfo(); - } - } - // no noncommutative element found, should not happen - return tinfo_key; + if (seq.empty()) + return tinfo_key; + + // return type_info of first noncommutative element + exvector::const_iterator i = seq.begin(), end = seq.end(); + while (i != end) { + if (i->return_type() == return_types::noncommutative) + return i->return_type_tinfo(); + ++i; + } + + // no noncommutative element found, should not happen + return tinfo_key; } ////////// @@ -574,58 +566,59 @@ unsigned ncmul::return_type_tinfo(void) const // non-virtual functions in this class ////////// -exvector ncmul::expandchildren(unsigned options) const +std::auto_ptr ncmul::expandchildren(unsigned options) const { - exvector s; - s.reserve(seq.size()); + const_iterator cit = this->seq.begin(), end = this->seq.end(); + while (cit != end) { + const ex & expanded_ex = cit->expand(options); + if (!are_ex_trivially_equal(*cit, expanded_ex)) { - for (exvector::const_iterator it=seq.begin(); it!=seq.end(); ++it) { - s.push_back((*it).expand(options)); - } - return s; -} + // copy first part of seq which hasn't changed + std::auto_ptr s(new exvector(this->seq.begin(), cit)); + reserve(*s, this->seq.size()); -exvector const & ncmul::get_factors(void) const -{ - return seq; -} + // insert changed element + s->push_back(expanded_ex); + ++cit; -////////// -// static member variables -////////// - -// protected + // copy rest + while (cit != end) { + s->push_back(cit->expand(options)); + ++cit; + } -unsigned ncmul::precedence=50; + return s; + } + ++cit; + } -////////// -// global constants -////////// + return std::auto_ptr(0); // nothing has changed +} -const ncmul some_ncmul; -type_info const & typeid_ncmul=typeid(some_ncmul); +const exvector & ncmul::get_factors() const +{ + return seq; +} ////////// // friend functions ////////// -ex nonsimplified_ncmul(exvector const & v) +ex reeval_ncmul(const exvector & v) { - return (new ncmul(v))->setflag(status_flags::dynallocated); + return (new ncmul(v))->setflag(status_flags::dynallocated); } -ex simplified_ncmul(exvector const & v) +ex hold_ncmul(const exvector & v) { - if (v.size()==0) { - return exONE(); - } else if (v.size()==1) { - return v[0]; - } - return (new ncmul(v))->setflag(status_flags::dynallocated | - status_flags::evaluated); + if (v.empty()) + return _ex1; + else if (v.size() == 1) + return v[0]; + else + return (new ncmul(v))->setflag(status_flags::dynallocated | + status_flags::evaluated); } -#ifndef NO_GINAC_NAMESPACE } // namespace GiNaC -#endif // ndef NO_GINAC_NAMESPACE