X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fncmul.cpp;h=c4cfe69cb2a93fd3b8afe03f2e571c9a1ba0e34e;hp=560f7151c26a069835bb2bb08ee0d5284436598b;hb=b6e3c62f240698c7e9ed464c57bb6d92741765ba;hpb=6b3768e8c544739ae53321539cb4d1e3112ded1b diff --git a/ginac/ncmul.cpp b/ginac/ncmul.cpp index 560f7151..c4cfe69c 100644 --- a/ginac/ncmul.cpp +++ b/ginac/ncmul.cpp @@ -2,57 +2,54 @@ * * Implementation of GiNaC's non-commutative products of expressions. */ +/* + * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + */ + #include #include #include -#include "ginac.h" +#include "ncmul.h" +#include "ex.h" +#include "add.h" +#include "mul.h" +#include "matrix.h" +#include "print.h" +#include "archive.h" +#include "debugmsg.h" +#include "utils.h" + +namespace GiNaC { + +GINAC_IMPLEMENT_REGISTERED_CLASS(ncmul, exprseq) ////////// // default constructor, destructor, copy constructor assignment operator and helpers ////////// -// public - ncmul::ncmul() { - debugmsg("ncmul default constructor",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_NCMUL; -} - -ncmul::~ncmul() -{ - debugmsg("ncmul destructor",LOGLEVEL_DESTRUCT); - destroy(0); -} - -ncmul::ncmul(ncmul const & other) -{ - debugmsg("ncmul copy constructor",LOGLEVEL_CONSTRUCT); - copy(other); + debugmsg("ncmul default constructor",LOGLEVEL_CONSTRUCT); + tinfo_key = TINFO_ncmul; } -ncmul const & ncmul::operator=(ncmul const & other) -{ - debugmsg("ncmul operator=",LOGLEVEL_ASSIGNMENT); - if (this != &other) { - destroy(1); - copy(other); - } - return *this; -} - -// protected - -void ncmul::copy(ncmul const & other) -{ - exprseq::copy(other); -} - -void ncmul::destroy(bool call_parent) -{ - if (call_parent) exprseq::destroy(call_parent); -} +DEFAULT_COPY(ncmul) +DEFAULT_DESTROY(ncmul) ////////// // other constructors @@ -60,449 +57,507 @@ void ncmul::destroy(bool call_parent) // public -ncmul::ncmul(ex const & lh, ex const & rh) : - exprseq(lh,rh) +ncmul::ncmul(const ex & lh, const ex & rh) : inherited(lh,rh) { - debugmsg("ncmul constructor from ex,ex",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_NCMUL; + debugmsg("ncmul constructor from ex,ex",LOGLEVEL_CONSTRUCT); + tinfo_key = TINFO_ncmul; } -ncmul::ncmul(ex const & f1, ex const & f2, ex const & f3) : - exprseq(f1,f2,f3) +ncmul::ncmul(const ex & f1, const ex & f2, const ex & f3) : inherited(f1,f2,f3) { - debugmsg("ncmul constructor from 3 ex",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_NCMUL; + debugmsg("ncmul constructor from 3 ex",LOGLEVEL_CONSTRUCT); + tinfo_key = TINFO_ncmul; } -ncmul::ncmul(ex const & f1, ex const & f2, ex const & f3, - ex const & f4) : exprseq(f1,f2,f3,f4) +ncmul::ncmul(const ex & f1, const ex & f2, const ex & f3, + const ex & f4) : inherited(f1,f2,f3,f4) { - debugmsg("ncmul constructor from 4 ex",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_NCMUL; + debugmsg("ncmul constructor from 4 ex",LOGLEVEL_CONSTRUCT); + tinfo_key = TINFO_ncmul; } -ncmul::ncmul(ex const & f1, ex const & f2, ex const & f3, - ex const & f4, ex const & f5) : exprseq(f1,f2,f3,f4,f5) +ncmul::ncmul(const ex & f1, const ex & f2, const ex & f3, + const ex & f4, const ex & f5) : inherited(f1,f2,f3,f4,f5) { - debugmsg("ncmul constructor from 5 ex",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_NCMUL; + debugmsg("ncmul constructor from 5 ex",LOGLEVEL_CONSTRUCT); + tinfo_key = TINFO_ncmul; } -ncmul::ncmul(ex const & f1, ex const & f2, ex const & f3, - ex const & f4, ex const & f5, ex const & f6) : - exprseq(f1,f2,f3,f4,f5,f6) +ncmul::ncmul(const ex & f1, const ex & f2, const ex & f3, + const ex & f4, const ex & f5, const ex & f6) : inherited(f1,f2,f3,f4,f5,f6) { - debugmsg("ncmul constructor from 6 ex",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_NCMUL; + debugmsg("ncmul constructor from 6 ex",LOGLEVEL_CONSTRUCT); + tinfo_key = TINFO_ncmul; } -ncmul::ncmul(exvector const & v, bool discardable) : exprseq(v,discardable) +ncmul::ncmul(const exvector & v, bool discardable) : inherited(v,discardable) { - debugmsg("ncmul constructor from exvector,bool",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_NCMUL; + debugmsg("ncmul constructor from exvector,bool",LOGLEVEL_CONSTRUCT); + tinfo_key = TINFO_ncmul; } -ncmul::ncmul(exvector * vp) : exprseq(vp) +ncmul::ncmul(exvector * vp) : inherited(vp) { - debugmsg("ncmul constructor from exvector *",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_NCMUL; + debugmsg("ncmul constructor from exvector *",LOGLEVEL_CONSTRUCT); + tinfo_key = TINFO_ncmul; } - + +////////// +// archiving +////////// + +DEFAULT_ARCHIVING(ncmul) + ////////// // functions overriding virtual functions from bases classes ////////// // public -basic * ncmul::duplicate() const -{ - debugmsg("ncmul duplicate",LOGLEVEL_ASSIGNMENT); - return new ncmul(*this); -} - -bool ncmul::info(unsigned inf) const +void ncmul::print(const print_context & c, unsigned level) const { - throw(std::logic_error("which flags have to be implemented in ncmul::info()?")); -} + debugmsg("ncmul print", LOGLEVEL_PRINT); -typedef vector intvector; + if (is_of_type(c, print_tree)) { -ex ncmul::expand(unsigned options) const -{ - exvector sub_expanded_seq; - intvector positions_of_adds; - intvector number_of_add_operands; - - exvector expanded_seq=expandchildren(options); - - positions_of_adds.resize(expanded_seq.size()); - number_of_add_operands.resize(expanded_seq.size()); - - int number_of_adds=0; - int number_of_expanded_terms=1; - - unsigned current_position=0; - exvector::const_iterator last=expanded_seq.end(); - for (exvector::const_iterator cit=expanded_seq.begin(); cit!=last; ++cit) { - if (is_ex_exactly_of_type((*cit),add)) { - positions_of_adds[number_of_adds]=current_position; - add const & expanded_addref=ex_to_add(*cit); - number_of_add_operands[number_of_adds]=expanded_addref.seq.size(); - number_of_expanded_terms *= expanded_addref.seq.size(); - number_of_adds++; - } - current_position++; - } - - if (number_of_adds==0) { - return (new ncmul(expanded_seq,1))->setflag(status_flags::dynallocated || - status_flags::expanded); - } - - exvector distrseq; - distrseq.reserve(number_of_expanded_terms); - - intvector k; - k.resize(number_of_adds); - - int l; - for (l=0; lsetflag(status_flags::dynallocated | - status_flags::expanded)); - - // increment k[] - l=number_of_adds-1; - while ((l>=0)&&((++k[l])>=number_of_add_operands[l])) { - k[l]=0; - l--; - } - if (l<0) break; - } - - return (new add(distrseq))->setflag(status_flags::dynallocated | - status_flags::expanded); -} + inherited::print(c, level); -int ncmul::degree(symbol const & s) const -{ - int deg_sum=0; - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - deg_sum+=(*cit).degree(s); - } - return deg_sum; -} + } else if (is_of_type(c, print_csrc)) { -int ncmul::ldegree(symbol const & s) const -{ - int deg_sum=0; - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - deg_sum+=(*cit).ldegree(s); - } - return deg_sum; -} + c.s << "ncmul("; + exvector::const_iterator it = seq.begin(), itend = seq.end()-1; + while (it != itend) { + it->print(c, precedence()); + c.s << ","; + it++; + } + it->print(c, precedence()); + c.s << ")"; -ex ncmul::coeff(symbol const & s, int const n) const -{ - exvector coeffseq; - coeffseq.reserve(seq.size()); - - if (n==0) { - // product of individual coeffs - // if a non-zero power of s is found, the resulting product will be 0 - exvector::const_iterator it=seq.begin(); - while (it!=seq.end()) { - coeffseq.push_back((*it).coeff(s,n)); - ++it; - } - return (new ncmul(coeffseq,1))->setflag(status_flags::dynallocated); - } - - exvector::const_iterator it=seq.begin(); - bool coeff_found=0; - while (it!=seq.end()) { - ex c=(*it).coeff(s,n); - if (!c.is_zero()) { - coeffseq.push_back(c); - coeff_found=1; - } else { - coeffseq.push_back(*it); - } - ++it; - } - - if (coeff_found) return (new ncmul(coeffseq,1))->setflag(status_flags::dynallocated); - - return exZERO(); + } else + printseq(c, '(', '*', ')', precedence(), level); } -unsigned ncmul::count_factors(ex const & e) const -{ - if ((is_ex_exactly_of_type(e,mul)&&(e.return_type()!=return_types::commutative))|| - (is_ex_exactly_of_type(e,ncmul))) { - unsigned factors=0; - for (int i=0; i unsignedvector; -typedef vector exvectorvector; +typedef std::vector intvector; -ex ncmul::eval(int level) const +ex ncmul::expand(unsigned options) const { - // simplifications: ncmul(...,*(x1,x2),...,ncmul(x3,x4),...) -> - // ncmul(...,x1,x2,...,x3,x4,...) (associativity) - // ncmul(x) -> x - // ncmul() -> 1 - // ncmul(...,c1,...,c2,...) -> - // *(c1,c2,ncmul(...)) (pull out commutative elements) - // ncmul(x1,y1,x2,y2) -> *(ncmul(x1,x2),ncmul(y1,y2)) - // (collect elements of same type) - // ncmul(x1,x2,x3,...) -> x::eval_ncmul(x1,x2,x3,...) - // the following rule would be nice, but produces a recursion, - // which must be trapped by introducing a flag that the sub-ncmuls() - // are already evaluated (maybe later...) - // ncmul(x1,x2,...,X,y1,y2,...) -> - // ncmul(ncmul(x1,x2,...),X,ncmul(y1,y2,...) - // (X noncommutative_composite) - - if ((level==1)&&(flags & status_flags::evaluated)) { - return *this; - } - - exvector evaledseq=evalchildren(level); - - // ncmul(...,*(x1,x2),...,ncmul(x3,x4),...) -> - // ncmul(...,x1,x2,...,x3,x4,...) (associativity) - unsigned factors=0; - for (exvector::const_iterator cit=evaledseq.begin(); cit!=evaledseq.end(); ++cit) { - factors += count_factors(*cit); - } - - exvector assocseq; - assocseq.reserve(factors); - for (exvector::const_iterator cit=evaledseq.begin(); cit!=evaledseq.end(); ++cit) { - append_factors(assocseq,*cit); - } - - // ncmul(x) -> x - if (assocseq.size()==1) return *(seq.begin()); - - // ncmul() -> 1 - if (assocseq.size()==0) return exONE(); - - // determine return types - unsignedvector rettypes; - rettypes.reserve(assocseq.size()); - unsigned i=0; - unsigned count_commutative=0; - unsigned count_noncommutative=0; - unsigned count_noncommutative_composite=0; - for (exvector::const_iterator cit=assocseq.begin(); cit!=assocseq.end(); ++cit) { - switch (rettypes[i]=(*cit).return_type()) { - case return_types::commutative: - count_commutative++; - break; - case return_types::noncommutative: - count_noncommutative++; - break; - case return_types::noncommutative_composite: - count_noncommutative_composite++; - break; - default: - throw(std::logic_error("ncmul::eval(): invalid return type")); - } - ++i; - } - ASSERT(count_commutative+count_noncommutative+count_noncommutative_composite==assocseq.size()); - - // ncmul(...,c1,...,c2,...) -> - // *(c1,c2,ncmul(...)) (pull out commutative elements) - if (count_commutative!=0) { - exvector commutativeseq; - commutativeseq.reserve(count_commutative+1); - exvector noncommutativeseq; - noncommutativeseq.reserve(assocseq.size()-count_commutative); - for (i=0; i - setflag(status_flags::dynallocated)); - return (new mul(commutativeseq))->setflag(status_flags::dynallocated); - } - - // ncmul(x1,y1,x2,y2) -> *(ncmul(x1,x2),ncmul(y1,y2)) - // (collect elements of same type) - - if (count_noncommutative_composite==0) { - // there are neither commutative nor noncommutative_composite - // elements in assocseq - ASSERT(count_commutative==0); - - exvectorvector evv; - unsignedvector rttinfos; - evv.reserve(assocseq.size()); - rttinfos.reserve(assocseq.size()); - - for (exvector::const_iterator cit=assocseq.begin(); cit!=assocseq.end(); ++cit) { - unsigned ti=(*cit).return_type_tinfo(); - // search type in vector of known types - for (i=0; i=rttinfos.size()) { - // new type - rttinfos.push_back(ti); - evv.push_back(exvector()); - (*(evv.end()-1)).reserve(assocseq.size()); - (*(evv.end()-1)).push_back(*cit); - } - } - -#ifdef DOASSERT - ASSERT(evv.size()==rttinfos.size()); - ASSERT(evv.size()>0); - unsigned s=0; - for (i=0; i - setflag(status_flags::dynallocated)); - } - - return (new mul(splitseq))->setflag(status_flags::dynallocated); - } - - return (new ncmul(assocseq))->setflag(status_flags::dynallocated | - status_flags::evaluated); -} + // First, expand the children + exvector expanded_seq = expandchildren(options); + + // Now, look for all the factors that are sums and remember their + // position and number of terms. One remark is in order here: we do not + // take into account the overall_coeff of the add objects. This is + // because in GiNaC, all terms of a sum must be of the same type, so + // a non-zero overall_coeff (which can only be numeric) would imply that + // the sum only has commutative terms. But then it would never appear + // as a factor of an ncmul. + intvector positions_of_adds(expanded_seq.size()); + intvector number_of_add_operands(expanded_seq.size()); + + int number_of_adds = 0; + int number_of_expanded_terms = 1; + + unsigned current_position = 0; + exvector::const_iterator last = expanded_seq.end(); + for (exvector::const_iterator cit=expanded_seq.begin(); cit!=last; ++cit) { + if (is_ex_exactly_of_type(*cit, add)) { + positions_of_adds[number_of_adds] = current_position; + const add & expanded_addref = ex_to(*cit); + number_of_add_operands[number_of_adds] = expanded_addref.seq.size(); + number_of_expanded_terms *= expanded_addref.seq.size(); + number_of_adds++; + } + current_position++; + } + + // If there are no sums, we are done + if (number_of_adds == 0) + return (new ncmul(expanded_seq, true))-> + setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0)); + + // Now, form all possible products of the terms of the sums with the + // remaining factors, and add them together + exvector distrseq; + distrseq.reserve(number_of_expanded_terms); + + intvector k(number_of_adds); + + while (true) { + exvector term = expanded_seq; + for (int i=0; i(expanded_seq[positions_of_adds[i]]); + term[positions_of_adds[i]] = addref.recombine_pair_to_ex(addref.seq[k[i]]); + } + distrseq.push_back((new ncmul(term, true))-> + setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0))); + + // increment k[] + int l = number_of_adds-1; + while ((l>=0) && ((++k[l]) >= number_of_add_operands[l])) { + k[l] = 0; + l--; + } + if (l<0) + break; + } + + return (new add(distrseq))-> + setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0)); +} + +int ncmul::degree(const ex & s) const +{ + // Sum up degrees of factors + int deg_sum = 0; + exvector::const_iterator i = seq.begin(), end = seq.end(); + while (i != end) { + deg_sum += i->degree(s); + ++i; + } + return deg_sum; +} + +int ncmul::ldegree(const ex & s) const +{ + // Sum up degrees of factors + int deg_sum = 0; + exvector::const_iterator i = seq.begin(), end = seq.end(); + while (i != end) { + deg_sum += i->degree(s); + ++i; + } + return deg_sum; +} + +ex ncmul::coeff(const ex & s, int n) const +{ + exvector coeffseq; + coeffseq.reserve(seq.size()); + + if (n == 0) { + // product of individual coeffs + // if a non-zero power of s is found, the resulting product will be 0 + exvector::const_iterator it=seq.begin(); + while (it!=seq.end()) { + coeffseq.push_back((*it).coeff(s,n)); + ++it; + } + return (new ncmul(coeffseq,1))->setflag(status_flags::dynallocated); + } + + exvector::const_iterator i = seq.begin(), end = seq.end(); + bool coeff_found = false; + while (i != end) { + ex c = i->coeff(s,n); + if (c.is_zero()) { + coeffseq.push_back(*i); + } else { + coeffseq.push_back(c); + coeff_found = true; + } + ++i; + } + + if (coeff_found) return (new ncmul(coeffseq,1))->setflag(status_flags::dynallocated); + + return _ex0(); +} + +unsigned ncmul::count_factors(const ex & e) const +{ + if ((is_ex_exactly_of_type(e,mul)&&(e.return_type()!=return_types::commutative))|| + (is_ex_exactly_of_type(e,ncmul))) { + unsigned factors=0; + for (unsigned i=0; i unsignedvector; +typedef std::vector exvectorvector; -exvector ncmul::get_indices(void) const +ex ncmul::eval(int level) const { - // return union of indices of factors - exvector iv; - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - exvector subiv=(*cit).get_indices(); - iv.reserve(iv.size()+subiv.size()); - for (exvector::const_iterator cit2=subiv.begin(); cit2!=subiv.end(); ++cit2) { - iv.push_back(*cit2); - } - } - return iv; + // simplifications: ncmul(...,*(x1,x2),...,ncmul(x3,x4),...) -> + // ncmul(...,x1,x2,...,x3,x4,...) (associativity) + // ncmul(x) -> x + // ncmul() -> 1 + // ncmul(...,c1,...,c2,...) + // *(c1,c2,ncmul(...)) (pull out commutative elements) + // ncmul(x1,y1,x2,y2) -> *(ncmul(x1,x2),ncmul(y1,y2)) + // (collect elements of same type) + // ncmul(x1,x2,x3,...) -> x::simplify_ncmul(x1,x2,x3,...) + // the following rule would be nice, but produces a recursion, + // which must be trapped by introducing a flag that the sub-ncmuls() + // are already evaluated (maybe later...) + // ncmul(x1,x2,...,X,y1,y2,...) -> + // ncmul(ncmul(x1,x2,...),X,ncmul(y1,y2,...) + // (X noncommutative_composite) + + if ((level==1) && (flags & status_flags::evaluated)) { + return *this; + } + + exvector evaledseq=evalchildren(level); + + // ncmul(...,*(x1,x2),...,ncmul(x3,x4),...) -> + // ncmul(...,x1,x2,...,x3,x4,...) (associativity) + unsigned factors = 0; + exvector::const_iterator cit = evaledseq.begin(), citend = evaledseq.end(); + while (cit != citend) + factors += count_factors(*cit++); + + exvector assocseq; + assocseq.reserve(factors); + cit = evaledseq.begin(); + while (cit != citend) + append_factors(assocseq, *cit++); + + // ncmul(x) -> x + if (assocseq.size()==1) return *(seq.begin()); + + // ncmul() -> 1 + if (assocseq.empty()) return _ex1(); + + // determine return types + unsignedvector rettypes; + rettypes.reserve(assocseq.size()); + unsigned i = 0; + unsigned count_commutative=0; + unsigned count_noncommutative=0; + unsigned count_noncommutative_composite=0; + cit = assocseq.begin(); citend = assocseq.end(); + while (cit != citend) { + switch (rettypes[i] = cit->return_type()) { + case return_types::commutative: + count_commutative++; + break; + case return_types::noncommutative: + count_noncommutative++; + break; + case return_types::noncommutative_composite: + count_noncommutative_composite++; + break; + default: + throw(std::logic_error("ncmul::eval(): invalid return type")); + } + ++i; ++cit; + } + GINAC_ASSERT(count_commutative+count_noncommutative+count_noncommutative_composite==assocseq.size()); + + // ncmul(...,c1,...,c2,...) -> + // *(c1,c2,ncmul(...)) (pull out commutative elements) + if (count_commutative!=0) { + exvector commutativeseq; + commutativeseq.reserve(count_commutative+1); + exvector noncommutativeseq; + noncommutativeseq.reserve(assocseq.size()-count_commutative); + unsigned num = assocseq.size(); + for (unsigned i=0; isetflag(status_flags::dynallocated)); + return (new mul(commutativeseq))->setflag(status_flags::dynallocated); + } + + // ncmul(x1,y1,x2,y2) -> *(ncmul(x1,x2),ncmul(y1,y2)) + // (collect elements of same type) + + if (count_noncommutative_composite==0) { + // there are neither commutative nor noncommutative_composite + // elements in assocseq + GINAC_ASSERT(count_commutative==0); + + unsigned assoc_num = assocseq.size(); + exvectorvector evv; + unsignedvector rttinfos; + evv.reserve(assoc_num); + rttinfos.reserve(assoc_num); + + cit = assocseq.begin(), citend = assocseq.end(); + while (cit != citend) { + unsigned ti = cit->return_type_tinfo(); + unsigned rtt_num = rttinfos.size(); + // search type in vector of known types + for (i=0; i= rtt_num) { + // new type + rttinfos.push_back(ti); + evv.push_back(exvector()); + (evv.end()-1)->reserve(assoc_num); + (evv.end()-1)->push_back(*cit); + } + ++cit; + } + + unsigned evv_num = evv.size(); +#ifdef DO_GINAC_ASSERT + GINAC_ASSERT(evv_num == rttinfos.size()); + GINAC_ASSERT(evv_num > 0); + unsigned s=0; + for (i=0; isetflag(status_flags::dynallocated)); + + return (new mul(splitseq))->setflag(status_flags::dynallocated); + } + + return (new ncmul(assocseq))->setflag(status_flags::dynallocated | + status_flags::evaluated); +} + +ex ncmul::evalm(void) const +{ + // Evaluate children first + exvector *s = new exvector; + s->reserve(seq.size()); + exvector::const_iterator it = seq.begin(), itend = seq.end(); + while (it != itend) { + s->push_back(it->evalm()); + it++; + } + + // If there are only matrices, simply multiply them + it = s->begin(); itend = s->end(); + if (is_ex_of_type(*it, matrix)) { + matrix prod(ex_to(*it)); + it++; + while (it != itend) { + if (!is_ex_of_type(*it, matrix)) + goto no_matrix; + prod = prod.mul(ex_to(*it)); + it++; + } + delete s; + return prod; + } + +no_matrix: + return (new ncmul(s))->setflag(status_flags::dynallocated); +} + +ex ncmul::thisexprseq(const exvector & v) const +{ + return (new ncmul(v))->setflag(status_flags::dynallocated); } -ex ncmul::subs(lst const & ls, lst const & lr) const +ex ncmul::thisexprseq(exvector * vp) const { - return ncmul(subschildren(ls, lr)); + return (new ncmul(vp))->setflag(status_flags::dynallocated); } -ex ncmul::thisexprseq(exvector const & v) const -{ - return (new ncmul(v))->setflag(status_flags::dynallocated); -} +// protected -ex ncmul::thisexprseq(exvector * vp) const +/** Implementation of ex::diff() for a non-commutative product. It applies + * the product rule. + * @see ex::diff */ +ex ncmul::derivative(const symbol & s) const { - return (new ncmul(vp))->setflag(status_flags::dynallocated); + unsigned num = seq.size(); + exvector addseq; + addseq.reserve(num); + + // D(a*b*c) = D(a)*b*c + a*D(b)*c + a*b*D(c) + exvector ncmulseq = seq; + for (unsigned i=0; isetflag(status_flags::dynallocated)); + e.swap(ncmulseq[i]); + } + return (new add(addseq))->setflag(status_flags::dynallocated); } -// protected - -int ncmul::compare_same_type(basic const & other) const +int ncmul::compare_same_type(const basic & other) const { - return exprseq::compare_same_type(other); + return inherited::compare_same_type(other); } unsigned ncmul::return_type(void) const { - if (seq.size()==0) { - // ncmul without factors: should not happen, but commutes - return return_types::commutative; - } - - bool all_commutative=1; - unsigned rt; - exvector::const_iterator cit_noncommutative_element; // point to first found nc element - - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - rt=(*cit).return_type(); - if (rt==return_types::noncommutative_composite) return rt; // one ncc -> mul also ncc - if ((rt==return_types::noncommutative)&&(all_commutative)) { - // first nc element found, remember position - cit_noncommutative_element=cit; - all_commutative=0; - } - if ((rt==return_types::noncommutative)&&(!all_commutative)) { - // another nc element found, compare type_infos - if ((*cit_noncommutative_element).return_type_tinfo()!=(*cit).return_type_tinfo()) { - // diffent types -> mul is ncc - return return_types::noncommutative_composite; - } - } - } - // all factors checked - ASSERT(!all_commutative); // not all factors should commute, because this is a ncmul(); - return all_commutative ? return_types::commutative : return_types::noncommutative; + if (seq.empty()) + return return_types::commutative; + + bool all_commutative = true; + exvector::const_iterator noncommutative_element; // point to first found nc element + + exvector::const_iterator i = seq.begin(), end = seq.end(); + while (i != end) { + unsigned rt = i->return_type(); + if (rt == return_types::noncommutative_composite) + return rt; // one ncc -> mul also ncc + if ((rt == return_types::noncommutative) && (all_commutative)) { + // first nc element found, remember position + noncommutative_element = i; + all_commutative = false; + } + if ((rt == return_types::noncommutative) && (!all_commutative)) { + // another nc element found, compare type_infos + if (noncommutative_element->return_type_tinfo() != i->return_type_tinfo()) { + // diffent types -> mul is ncc + return return_types::noncommutative_composite; + } + } + ++i; + } + // all factors checked + GINAC_ASSERT(!all_commutative); // not all factors should commute, because this is a ncmul(); + return all_commutative ? return_types::commutative : return_types::noncommutative; } unsigned ncmul::return_type_tinfo(void) const { - if (seq.size()==0) { - // mul without factors: should not happen - return tinfo_key; - } - // return type_info of first noncommutative element - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - if ((*cit).return_type()==return_types::noncommutative) { - return (*cit).return_type_tinfo(); - } - } - // no noncommutative element found, should not happen - return tinfo_key; + if (seq.empty()) + return tinfo_key; + + // return type_info of first noncommutative element + exvector::const_iterator i = seq.begin(), end = seq.end(); + while (i != end) { + if (i->return_type() == return_types::noncommutative) + return i->return_type_tinfo(); + ++i; + } + + // no noncommutative element found, should not happen + return tinfo_key; } ////////// @@ -517,54 +572,39 @@ unsigned ncmul::return_type_tinfo(void) const exvector ncmul::expandchildren(unsigned options) const { - exvector s; - s.reserve(seq.size()); - - for (exvector::const_iterator it=seq.begin(); it!=seq.end(); ++it) { - s.push_back((*it).expand(options)); - } - return s; + exvector s; + s.reserve(seq.size()); + exvector::const_iterator it = seq.begin(), itend = seq.end(); + while (it != itend) { + s.push_back(it->expand(options)); + it++; + } + return s; } -exvector const & ncmul::get_factors(void) const +const exvector & ncmul::get_factors(void) const { - return seq; + return seq; } -////////// -// static member variables -////////// - -// protected - -unsigned ncmul::precedence=50; - - -////////// -// global constants -////////// - -const ncmul some_ncmul; -type_info const & typeid_ncmul=typeid(some_ncmul); - ////////// // friend functions ////////// -ex nonsimplified_ncmul(exvector const & v) +ex nonsimplified_ncmul(const exvector & v) { - return (new ncmul(v))->setflag(status_flags::dynallocated); + return (new ncmul(v))->setflag(status_flags::dynallocated); } -ex simplified_ncmul(exvector const & v) +ex simplified_ncmul(const exvector & v) { - if (v.size()==0) { - return exONE(); - } else if (v.size()==1) { - return v[0]; - } - return (new ncmul(v))->setflag(status_flags::dynallocated | - status_flags::evaluated); + if (v.empty()) + return _ex1(); + else if (v.size() == 1) + return v[0]; + else + return (new ncmul(v))->setflag(status_flags::dynallocated | + status_flags::evaluated); } - +} // namespace GiNaC