X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fncmul.cpp;h=1433a3a883132a36a3c3e744a0bafa9ba7ce1fa7;hp=515a870c301bf673d3be831d74af8058c6b89a8e;hb=094911eb78cacb6f2877a70c9ac74766df58ccea;hpb=24fe247f9ed16114a765a01c593fec5c4a2f591c diff --git a/ginac/ncmul.cpp b/ginac/ncmul.cpp index 515a870c..1433a3a8 100644 --- a/ginac/ncmul.cpp +++ b/ginac/ncmul.cpp @@ -3,7 +3,7 @@ * Implementation of GiNaC's non-commutative products of expressions. */ /* - * GiNaC Copyright (C) 1999 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -28,10 +28,14 @@ #include "ex.h" #include "add.h" #include "mul.h" +#include "archive.h" #include "debugmsg.h" +#include "utils.h" namespace GiNaC { +GINAC_IMPLEMENT_REGISTERED_CLASS(ncmul, exprseq) + ////////// // default constructor, destructor, copy constructor assignment operator and helpers ////////// @@ -40,42 +44,20 @@ namespace GiNaC { ncmul::ncmul() { - debugmsg("ncmul default constructor",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_ncmul; -} - -ncmul::~ncmul() -{ - debugmsg("ncmul destructor",LOGLEVEL_DESTRUCT); - destroy(0); -} - -ncmul::ncmul(ncmul const & other) -{ - debugmsg("ncmul copy constructor",LOGLEVEL_CONSTRUCT); - copy(other); -} - -ncmul const & ncmul::operator=(ncmul const & other) -{ - debugmsg("ncmul operator=",LOGLEVEL_ASSIGNMENT); - if (this != &other) { - destroy(1); - copy(other); - } - return *this; + debugmsg("ncmul default constructor",LOGLEVEL_CONSTRUCT); + tinfo_key = TINFO_ncmul; } // protected -void ncmul::copy(ncmul const & other) +void ncmul::copy(const ncmul & other) { - exprseq::copy(other); + inherited::copy(other); } void ncmul::destroy(bool call_parent) { - if (call_parent) exprseq::destroy(call_parent); + if (call_parent) inherited::destroy(call_parent); } ////////// @@ -84,449 +66,486 @@ void ncmul::destroy(bool call_parent) // public -ncmul::ncmul(ex const & lh, ex const & rh) : - exprseq(lh,rh) +ncmul::ncmul(const ex & lh, const ex & rh) : inherited(lh,rh) { - debugmsg("ncmul constructor from ex,ex",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_ncmul; + debugmsg("ncmul constructor from ex,ex",LOGLEVEL_CONSTRUCT); + tinfo_key = TINFO_ncmul; } -ncmul::ncmul(ex const & f1, ex const & f2, ex const & f3) : - exprseq(f1,f2,f3) +ncmul::ncmul(const ex & f1, const ex & f2, const ex & f3) : inherited(f1,f2,f3) { - debugmsg("ncmul constructor from 3 ex",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_ncmul; + debugmsg("ncmul constructor from 3 ex",LOGLEVEL_CONSTRUCT); + tinfo_key = TINFO_ncmul; } -ncmul::ncmul(ex const & f1, ex const & f2, ex const & f3, - ex const & f4) : exprseq(f1,f2,f3,f4) +ncmul::ncmul(const ex & f1, const ex & f2, const ex & f3, + const ex & f4) : inherited(f1,f2,f3,f4) { - debugmsg("ncmul constructor from 4 ex",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_ncmul; + debugmsg("ncmul constructor from 4 ex",LOGLEVEL_CONSTRUCT); + tinfo_key = TINFO_ncmul; } -ncmul::ncmul(ex const & f1, ex const & f2, ex const & f3, - ex const & f4, ex const & f5) : exprseq(f1,f2,f3,f4,f5) +ncmul::ncmul(const ex & f1, const ex & f2, const ex & f3, + const ex & f4, const ex & f5) : inherited(f1,f2,f3,f4,f5) { - debugmsg("ncmul constructor from 5 ex",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_ncmul; + debugmsg("ncmul constructor from 5 ex",LOGLEVEL_CONSTRUCT); + tinfo_key = TINFO_ncmul; } -ncmul::ncmul(ex const & f1, ex const & f2, ex const & f3, - ex const & f4, ex const & f5, ex const & f6) : - exprseq(f1,f2,f3,f4,f5,f6) +ncmul::ncmul(const ex & f1, const ex & f2, const ex & f3, + const ex & f4, const ex & f5, const ex & f6) : inherited(f1,f2,f3,f4,f5,f6) +{ + debugmsg("ncmul constructor from 6 ex",LOGLEVEL_CONSTRUCT); + tinfo_key = TINFO_ncmul; +} + +ncmul::ncmul(const exvector & v, bool discardable) : inherited(v,discardable) +{ + debugmsg("ncmul constructor from exvector,bool",LOGLEVEL_CONSTRUCT); + tinfo_key = TINFO_ncmul; +} + +ncmul::ncmul(exvector * vp) : inherited(vp) +{ + debugmsg("ncmul constructor from exvector *",LOGLEVEL_CONSTRUCT); + tinfo_key = TINFO_ncmul; +} + +////////// +// archiving +////////// + +/** Construct object from archive_node. */ +ncmul::ncmul(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) { - debugmsg("ncmul constructor from 6 ex",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_ncmul; + debugmsg("ncmul constructor from archive_node", LOGLEVEL_CONSTRUCT); } -ncmul::ncmul(exvector const & v, bool discardable) : exprseq(v,discardable) +/** Unarchive the object. */ +ex ncmul::unarchive(const archive_node &n, const lst &sym_lst) { - debugmsg("ncmul constructor from exvector,bool",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_ncmul; + return (new ncmul(n, sym_lst))->setflag(status_flags::dynallocated); } -ncmul::ncmul(exvector * vp) : exprseq(vp) +/** Archive the object. */ +void ncmul::archive(archive_node &n) const { - debugmsg("ncmul constructor from exvector *",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_ncmul; + inherited::archive(n); } - + + ////////// // functions overriding virtual functions from bases classes ////////// // public -basic * ncmul::duplicate() const +void ncmul::print(std::ostream & os, unsigned upper_precedence) const +{ + debugmsg("ncmul print",LOGLEVEL_PRINT); + printseq(os,'(','%',')',precedence,upper_precedence); +} + +void ncmul::printraw(std::ostream & os) const { - debugmsg("ncmul duplicate",LOGLEVEL_ASSIGNMENT); - return new ncmul(*this); + debugmsg("ncmul printraw",LOGLEVEL_PRINT); + os << "%("; + for (exvector::const_iterator it=seq.begin(); it!=seq.end(); ++it) { + (*it).bp->printraw(os); + os << ","; + } + os << ",hash=" << hashvalue << ",flags=" << flags; + os << ")"; +} + +void ncmul::printcsrc(std::ostream & os, unsigned type, unsigned upper_precedence) const +{ + debugmsg("ncmul print csrc",LOGLEVEL_PRINT); + exvector::const_iterator it; + exvector::const_iterator itend = seq.end()-1; + os << "ncmul("; + for (it=seq.begin(); it!=itend; ++it) { + (*it).bp->printcsrc(os,precedence); + os << ","; + } + (*it).bp->printcsrc(os,precedence); + os << ")"; } bool ncmul::info(unsigned inf) const { - throw(std::logic_error("which flags have to be implemented in ncmul::info()?")); + throw(std::logic_error("which flags have to be implemented in ncmul::info()?")); } -typedef vector intvector; +typedef std::vector intvector; ex ncmul::expand(unsigned options) const { - exvector sub_expanded_seq; - intvector positions_of_adds; - intvector number_of_add_operands; - - exvector expanded_seq=expandchildren(options); - - positions_of_adds.resize(expanded_seq.size()); - number_of_add_operands.resize(expanded_seq.size()); - - int number_of_adds=0; - int number_of_expanded_terms=1; - - unsigned current_position=0; - exvector::const_iterator last=expanded_seq.end(); - for (exvector::const_iterator cit=expanded_seq.begin(); cit!=last; ++cit) { - if (is_ex_exactly_of_type((*cit),add)) { - positions_of_adds[number_of_adds]=current_position; - add const & expanded_addref=ex_to_add(*cit); - number_of_add_operands[number_of_adds]=expanded_addref.seq.size(); - number_of_expanded_terms *= expanded_addref.seq.size(); - number_of_adds++; - } - current_position++; - } - - if (number_of_adds==0) { - return (new ncmul(expanded_seq,1))->setflag(status_flags::dynallocated || - status_flags::expanded); - } - - exvector distrseq; - distrseq.reserve(number_of_expanded_terms); - - intvector k; - k.resize(number_of_adds); - - int l; - for (l=0; lsetflag(status_flags::dynallocated | - status_flags::expanded)); - - // increment k[] - l=number_of_adds-1; - while ((l>=0)&&((++k[l])>=number_of_add_operands[l])) { - k[l]=0; - l--; - } - if (l<0) break; - } - - return (new add(distrseq))->setflag(status_flags::dynallocated | - status_flags::expanded); -} - -int ncmul::degree(symbol const & s) const -{ - int deg_sum=0; - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - deg_sum+=(*cit).degree(s); - } - return deg_sum; -} - -int ncmul::ldegree(symbol const & s) const -{ - int deg_sum=0; - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - deg_sum+=(*cit).ldegree(s); - } - return deg_sum; -} - -ex ncmul::coeff(symbol const & s, int const n) const -{ - exvector coeffseq; - coeffseq.reserve(seq.size()); - - if (n==0) { - // product of individual coeffs - // if a non-zero power of s is found, the resulting product will be 0 - exvector::const_iterator it=seq.begin(); - while (it!=seq.end()) { - coeffseq.push_back((*it).coeff(s,n)); - ++it; - } - return (new ncmul(coeffseq,1))->setflag(status_flags::dynallocated); - } - - exvector::const_iterator it=seq.begin(); - bool coeff_found=0; - while (it!=seq.end()) { - ex c=(*it).coeff(s,n); - if (!c.is_zero()) { - coeffseq.push_back(c); - coeff_found=1; - } else { - coeffseq.push_back(*it); - } - ++it; - } - - if (coeff_found) return (new ncmul(coeffseq,1))->setflag(status_flags::dynallocated); - - return exZERO(); -} - -unsigned ncmul::count_factors(ex const & e) const -{ - if ((is_ex_exactly_of_type(e,mul)&&(e.return_type()!=return_types::commutative))|| - (is_ex_exactly_of_type(e,ncmul))) { - unsigned factors=0; - for (int i=0; i unsignedvector; -typedef vector exvectorvector; + exvector sub_expanded_seq; + intvector positions_of_adds; + intvector number_of_add_operands; + + exvector expanded_seq=expandchildren(options); + + positions_of_adds.resize(expanded_seq.size()); + number_of_add_operands.resize(expanded_seq.size()); + + int number_of_adds=0; + int number_of_expanded_terms=1; + + unsigned current_position=0; + exvector::const_iterator last=expanded_seq.end(); + for (exvector::const_iterator cit=expanded_seq.begin(); cit!=last; ++cit) { + if (is_ex_exactly_of_type((*cit),add)) { + positions_of_adds[number_of_adds]=current_position; + const add & expanded_addref=ex_to_add(*cit); + number_of_add_operands[number_of_adds]=expanded_addref.seq.size(); + number_of_expanded_terms *= expanded_addref.seq.size(); + number_of_adds++; + } + current_position++; + } + + if (number_of_adds==0) { + return (new ncmul(expanded_seq,1))->setflag(status_flags::dynallocated || + status_flags::expanded); + } + + exvector distrseq; + distrseq.reserve(number_of_expanded_terms); + + intvector k; + k.resize(number_of_adds); + + int l; + for (l=0; lsetflag(status_flags::dynallocated | + status_flags::expanded)); + + // increment k[] + l=number_of_adds-1; + while ((l>=0)&&((++k[l])>=number_of_add_operands[l])) { + k[l]=0; + l--; + } + if (l<0) break; + } + + return (new add(distrseq))->setflag(status_flags::dynallocated | + status_flags::expanded); +} + +int ncmul::degree(const symbol & s) const +{ + int deg_sum=0; + for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { + deg_sum+=(*cit).degree(s); + } + return deg_sum; +} + +int ncmul::ldegree(const symbol & s) const +{ + int deg_sum=0; + for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { + deg_sum+=(*cit).ldegree(s); + } + return deg_sum; +} + +ex ncmul::coeff(const symbol & s, int n) const +{ + exvector coeffseq; + coeffseq.reserve(seq.size()); + + if (n==0) { + // product of individual coeffs + // if a non-zero power of s is found, the resulting product will be 0 + exvector::const_iterator it=seq.begin(); + while (it!=seq.end()) { + coeffseq.push_back((*it).coeff(s,n)); + ++it; + } + return (new ncmul(coeffseq,1))->setflag(status_flags::dynallocated); + } + + exvector::const_iterator it=seq.begin(); + bool coeff_found=0; + while (it!=seq.end()) { + ex c=(*it).coeff(s,n); + if (!c.is_zero()) { + coeffseq.push_back(c); + coeff_found=1; + } else { + coeffseq.push_back(*it); + } + ++it; + } + + if (coeff_found) return (new ncmul(coeffseq,1))->setflag(status_flags::dynallocated); + + return _ex0(); +} + +unsigned ncmul::count_factors(const ex & e) const +{ + if ((is_ex_exactly_of_type(e,mul)&&(e.return_type()!=return_types::commutative))|| + (is_ex_exactly_of_type(e,ncmul))) { + unsigned factors=0; + for (unsigned i=0; i unsignedvector; +typedef std::vector exvectorvector; ex ncmul::eval(int level) const { - // simplifications: ncmul(...,*(x1,x2),...,ncmul(x3,x4),...) -> - // ncmul(...,x1,x2,...,x3,x4,...) (associativity) - // ncmul(x) -> x - // ncmul() -> 1 - // ncmul(...,c1,...,c2,...) -> - // *(c1,c2,ncmul(...)) (pull out commutative elements) - // ncmul(x1,y1,x2,y2) -> *(ncmul(x1,x2),ncmul(y1,y2)) - // (collect elements of same type) - // ncmul(x1,x2,x3,...) -> x::eval_ncmul(x1,x2,x3,...) - // the following rule would be nice, but produces a recursion, - // which must be trapped by introducing a flag that the sub-ncmuls() - // are already evaluated (maybe later...) - // ncmul(x1,x2,...,X,y1,y2,...) -> - // ncmul(ncmul(x1,x2,...),X,ncmul(y1,y2,...) - // (X noncommutative_composite) - - if ((level==1)&&(flags & status_flags::evaluated)) { - return *this; - } - - exvector evaledseq=evalchildren(level); - - // ncmul(...,*(x1,x2),...,ncmul(x3,x4),...) -> - // ncmul(...,x1,x2,...,x3,x4,...) (associativity) - unsigned factors=0; - for (exvector::const_iterator cit=evaledseq.begin(); cit!=evaledseq.end(); ++cit) { - factors += count_factors(*cit); - } - - exvector assocseq; - assocseq.reserve(factors); - for (exvector::const_iterator cit=evaledseq.begin(); cit!=evaledseq.end(); ++cit) { - append_factors(assocseq,*cit); - } - - // ncmul(x) -> x - if (assocseq.size()==1) return *(seq.begin()); - - // ncmul() -> 1 - if (assocseq.size()==0) return exONE(); - - // determine return types - unsignedvector rettypes; - rettypes.reserve(assocseq.size()); - unsigned i=0; - unsigned count_commutative=0; - unsigned count_noncommutative=0; - unsigned count_noncommutative_composite=0; - for (exvector::const_iterator cit=assocseq.begin(); cit!=assocseq.end(); ++cit) { - switch (rettypes[i]=(*cit).return_type()) { - case return_types::commutative: - count_commutative++; - break; - case return_types::noncommutative: - count_noncommutative++; - break; - case return_types::noncommutative_composite: - count_noncommutative_composite++; - break; - default: - throw(std::logic_error("ncmul::eval(): invalid return type")); - } - ++i; - } - GINAC_ASSERT(count_commutative+count_noncommutative+count_noncommutative_composite==assocseq.size()); - - // ncmul(...,c1,...,c2,...) -> - // *(c1,c2,ncmul(...)) (pull out commutative elements) - if (count_commutative!=0) { - exvector commutativeseq; - commutativeseq.reserve(count_commutative+1); - exvector noncommutativeseq; - noncommutativeseq.reserve(assocseq.size()-count_commutative); - for (i=0; i - setflag(status_flags::dynallocated)); - return (new mul(commutativeseq))->setflag(status_flags::dynallocated); - } - - // ncmul(x1,y1,x2,y2) -> *(ncmul(x1,x2),ncmul(y1,y2)) - // (collect elements of same type) - - if (count_noncommutative_composite==0) { - // there are neither commutative nor noncommutative_composite - // elements in assocseq - GINAC_ASSERT(count_commutative==0); - - exvectorvector evv; - unsignedvector rttinfos; - evv.reserve(assocseq.size()); - rttinfos.reserve(assocseq.size()); - - for (exvector::const_iterator cit=assocseq.begin(); cit!=assocseq.end(); ++cit) { - unsigned ti=(*cit).return_type_tinfo(); - // search type in vector of known types - for (i=0; i=rttinfos.size()) { - // new type - rttinfos.push_back(ti); - evv.push_back(exvector()); - (*(evv.end()-1)).reserve(assocseq.size()); - (*(evv.end()-1)).push_back(*cit); - } - } + // simplifications: ncmul(...,*(x1,x2),...,ncmul(x3,x4),...) -> + // ncmul(...,x1,x2,...,x3,x4,...) (associativity) + // ncmul(x) -> x + // ncmul() -> 1 + // ncmul(...,c1,...,c2,...) + // *(c1,c2,ncmul(...)) (pull out commutative elements) + // ncmul(x1,y1,x2,y2) -> *(ncmul(x1,x2),ncmul(y1,y2)) + // (collect elements of same type) + // ncmul(x1,x2,x3,...) -> x::eval_ncmul(x1,x2,x3,...) + // the following rule would be nice, but produces a recursion, + // which must be trapped by introducing a flag that the sub-ncmuls() + // are already evaluated (maybe later...) + // ncmul(x1,x2,...,X,y1,y2,...) -> + // ncmul(ncmul(x1,x2,...),X,ncmul(y1,y2,...) + // (X noncommutative_composite) + + if ((level==1)&&(flags & status_flags::evaluated)) { + return *this; + } + + exvector evaledseq=evalchildren(level); + + // ncmul(...,*(x1,x2),...,ncmul(x3,x4),...) -> + // ncmul(...,x1,x2,...,x3,x4,...) (associativity) + unsigned factors=0; + for (exvector::const_iterator cit=evaledseq.begin(); cit!=evaledseq.end(); ++cit) { + factors += count_factors(*cit); + } + + exvector assocseq; + assocseq.reserve(factors); + for (exvector::const_iterator cit=evaledseq.begin(); cit!=evaledseq.end(); ++cit) { + append_factors(assocseq,*cit); + } + + // ncmul(x) -> x + if (assocseq.size()==1) return *(seq.begin()); + + // ncmul() -> 1 + if (assocseq.size()==0) return _ex1(); + + // determine return types + unsignedvector rettypes; + rettypes.reserve(assocseq.size()); + unsigned i=0; + unsigned count_commutative=0; + unsigned count_noncommutative=0; + unsigned count_noncommutative_composite=0; + for (exvector::const_iterator cit=assocseq.begin(); cit!=assocseq.end(); ++cit) { + switch (rettypes[i]=(*cit).return_type()) { + case return_types::commutative: + count_commutative++; + break; + case return_types::noncommutative: + count_noncommutative++; + break; + case return_types::noncommutative_composite: + count_noncommutative_composite++; + break; + default: + throw(std::logic_error("ncmul::eval(): invalid return type")); + } + ++i; + } + GINAC_ASSERT(count_commutative+count_noncommutative+count_noncommutative_composite==assocseq.size()); + + // ncmul(...,c1,...,c2,...) -> + // *(c1,c2,ncmul(...)) (pull out commutative elements) + if (count_commutative!=0) { + exvector commutativeseq; + commutativeseq.reserve(count_commutative+1); + exvector noncommutativeseq; + noncommutativeseq.reserve(assocseq.size()-count_commutative); + for (i=0; isetflag(status_flags::dynallocated)); + return (new mul(commutativeseq))->setflag(status_flags::dynallocated); + } + + // ncmul(x1,y1,x2,y2) -> *(ncmul(x1,x2),ncmul(y1,y2)) + // (collect elements of same type) + + if (count_noncommutative_composite==0) { + // there are neither commutative nor noncommutative_composite + // elements in assocseq + GINAC_ASSERT(count_commutative==0); + + exvectorvector evv; + unsignedvector rttinfos; + evv.reserve(assocseq.size()); + rttinfos.reserve(assocseq.size()); + + for (exvector::const_iterator cit=assocseq.begin(); cit!=assocseq.end(); ++cit) { + unsigned ti=(*cit).return_type_tinfo(); + // search type in vector of known types + for (i=0; i=rttinfos.size()) { + // new type + rttinfos.push_back(ti); + evv.push_back(exvector()); + (*(evv.end()-1)).reserve(assocseq.size()); + (*(evv.end()-1)).push_back(*cit); + } + } #ifdef DO_GINAC_ASSERT - GINAC_ASSERT(evv.size()==rttinfos.size()); - GINAC_ASSERT(evv.size()>0); - unsigned s=0; - for (i=0; i0); + unsigned s=0; + for (i=0; i - setflag(status_flags::dynallocated)); - } - - return (new mul(splitseq))->setflag(status_flags::dynallocated); - } - - return (new ncmul(assocseq))->setflag(status_flags::dynallocated | - status_flags::evaluated); -} + + // if all elements are of same type, simplify the string + if (evv.size()==1) { + return evv[0][0].simplify_ncmul(evv[0]); + } + + exvector splitseq; + splitseq.reserve(evv.size()); + for (i=0; isetflag(status_flags::dynallocated)); + } -exvector ncmul::get_indices(void) const -{ - // return union of indices of factors - exvector iv; - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - exvector subiv=(*cit).get_indices(); - iv.reserve(iv.size()+subiv.size()); - for (exvector::const_iterator cit2=subiv.begin(); cit2!=subiv.end(); ++cit2) { - iv.push_back(*cit2); - } - } - return iv; + return (new mul(splitseq))->setflag(status_flags::dynallocated); + } + + return (new ncmul(assocseq))->setflag(status_flags::dynallocated | + status_flags::evaluated); } -ex ncmul::subs(lst const & ls, lst const & lr) const +ex ncmul::subs(const lst & ls, const lst & lr) const { - return ncmul(subschildren(ls, lr)); + return ncmul(subschildren(ls, lr)); } -ex ncmul::thisexprseq(exvector const & v) const +ex ncmul::thisexprseq(const exvector & v) const { - return (new ncmul(v))->setflag(status_flags::dynallocated); + return (new ncmul(v))->setflag(status_flags::dynallocated); } ex ncmul::thisexprseq(exvector * vp) const { - return (new ncmul(vp))->setflag(status_flags::dynallocated); + return (new ncmul(vp))->setflag(status_flags::dynallocated); } // protected -int ncmul::compare_same_type(basic const & other) const +/** Implementation of ex::diff() for a non-commutative product. It always returns 0. + * @see ex::diff */ +ex ncmul::derivative(const symbol & s) const +{ + return _ex0(); +} + +int ncmul::compare_same_type(const basic & other) const { - return exprseq::compare_same_type(other); + return inherited::compare_same_type(other); } unsigned ncmul::return_type(void) const { - if (seq.size()==0) { - // ncmul without factors: should not happen, but commutes - return return_types::commutative; - } - - bool all_commutative=1; - unsigned rt; - exvector::const_iterator cit_noncommutative_element; // point to first found nc element - - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - rt=(*cit).return_type(); - if (rt==return_types::noncommutative_composite) return rt; // one ncc -> mul also ncc - if ((rt==return_types::noncommutative)&&(all_commutative)) { - // first nc element found, remember position - cit_noncommutative_element=cit; - all_commutative=0; - } - if ((rt==return_types::noncommutative)&&(!all_commutative)) { - // another nc element found, compare type_infos - if ((*cit_noncommutative_element).return_type_tinfo()!=(*cit).return_type_tinfo()) { - // diffent types -> mul is ncc - return return_types::noncommutative_composite; - } - } - } - // all factors checked - GINAC_ASSERT(!all_commutative); // not all factors should commute, because this is a ncmul(); - return all_commutative ? return_types::commutative : return_types::noncommutative; + if (seq.size()==0) { + // ncmul without factors: should not happen, but commutes + return return_types::commutative; + } + + bool all_commutative=1; + unsigned rt; + exvector::const_iterator cit_noncommutative_element; // point to first found nc element + + for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { + rt=(*cit).return_type(); + if (rt==return_types::noncommutative_composite) return rt; // one ncc -> mul also ncc + if ((rt==return_types::noncommutative)&&(all_commutative)) { + // first nc element found, remember position + cit_noncommutative_element=cit; + all_commutative=0; + } + if ((rt==return_types::noncommutative)&&(!all_commutative)) { + // another nc element found, compare type_infos + if ((*cit_noncommutative_element).return_type_tinfo()!=(*cit).return_type_tinfo()) { + // diffent types -> mul is ncc + return return_types::noncommutative_composite; + } + } + } + // all factors checked + GINAC_ASSERT(!all_commutative); // not all factors should commute, because this is a ncmul(); + return all_commutative ? return_types::commutative : return_types::noncommutative; } unsigned ncmul::return_type_tinfo(void) const { - if (seq.size()==0) { - // mul without factors: should not happen - return tinfo_key; - } - // return type_info of first noncommutative element - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - if ((*cit).return_type()==return_types::noncommutative) { - return (*cit).return_type_tinfo(); - } - } - // no noncommutative element found, should not happen - return tinfo_key; + if (seq.size()==0) { + // mul without factors: should not happen + return tinfo_key; + } + // return type_info of first noncommutative element + for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { + if ((*cit).return_type()==return_types::noncommutative) { + return (*cit).return_type_tinfo(); + } + } + // no noncommutative element found, should not happen + return tinfo_key; } ////////// @@ -541,18 +560,18 @@ unsigned ncmul::return_type_tinfo(void) const exvector ncmul::expandchildren(unsigned options) const { - exvector s; - s.reserve(seq.size()); + exvector s; + s.reserve(seq.size()); - for (exvector::const_iterator it=seq.begin(); it!=seq.end(); ++it) { - s.push_back((*it).expand(options)); - } - return s; + for (exvector::const_iterator it=seq.begin(); it!=seq.end(); ++it) { + s.push_back((*it).expand(options)); + } + return s; } -exvector const & ncmul::get_factors(void) const +const exvector & ncmul::get_factors(void) const { - return seq; + return seq; } ////////// @@ -561,34 +580,26 @@ exvector const & ncmul::get_factors(void) const // protected -unsigned ncmul::precedence=50; - - -////////// -// global constants -////////// - -const ncmul some_ncmul; -type_info const & typeid_ncmul=typeid(some_ncmul); +unsigned ncmul::precedence = 50; ////////// // friend functions ////////// -ex nonsimplified_ncmul(exvector const & v) +ex nonsimplified_ncmul(const exvector & v) { - return (new ncmul(v))->setflag(status_flags::dynallocated); + return (new ncmul(v))->setflag(status_flags::dynallocated); } -ex simplified_ncmul(exvector const & v) +ex simplified_ncmul(const exvector & v) { - if (v.size()==0) { - return exONE(); - } else if (v.size()==1) { - return v[0]; - } - return (new ncmul(v))->setflag(status_flags::dynallocated | - status_flags::evaluated); + if (v.size()==0) { + return _ex1(); + } else if (v.size()==1) { + return v[0]; + } + return (new ncmul(v))->setflag(status_flags::dynallocated | + status_flags::evaluated); } } // namespace GiNaC