X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fmul.cpp;h=f8ddd9b2eb8ce2a86a84aecf7547ed7696a7a87b;hp=24cd2fc4384e1e7f5cfbb04a4c030058daa9f111;hb=24064b43ff0aebda40b1b4605fa6abc2920b4518;hpb=2afa71937b3c12cdc70f01213baa8a92be4b604a diff --git a/ginac/mul.cpp b/ginac/mul.cpp index 24cd2fc4..f8ddd9b2 100644 --- a/ginac/mul.cpp +++ b/ginac/mul.cpp @@ -89,11 +89,10 @@ mul::mul(const epvector & v, const ex & oc, bool do_index_renaming) GINAC_ASSERT(is_canonical()); } -mul::mul(std::auto_ptr vp, const ex & oc, bool do_index_renaming) +mul::mul(epvector && vp, const ex & oc, bool do_index_renaming) { - GINAC_ASSERT(vp.get()!=0); overall_coeff = oc; - construct_from_epvector(*vp, do_index_renaming); + construct_from_epvector(std::move(vp), do_index_renaming); GINAC_ASSERT(is_canonical()); } @@ -146,15 +145,13 @@ void mul::do_print(const print_context & c, unsigned level) const print_overall_coeff(c, "*"); - epvector::const_iterator it = seq.begin(), itend = seq.end(); bool first = true; - while (it != itend) { + for (auto & it : seq) { if (!first) c.s << '*'; else first = false; - recombine_pair_to_ex(*it).print(c, precedence()); - ++it; + recombine_pair_to_ex(it).print(c, precedence()); } if (precedence() <= level) @@ -170,15 +167,13 @@ void mul::do_print_latex(const print_latex & c, unsigned level) const // Separate factors into those with negative numeric exponent // and all others - epvector::const_iterator it = seq.begin(), itend = seq.end(); exvector neg_powers, others; - while (it != itend) { - GINAC_ASSERT(is_exactly_a(it->coeff)); - if (ex_to(it->coeff).is_negative()) - neg_powers.push_back(recombine_pair_to_ex(expair(it->rest, -(it->coeff)))); + for (auto & it : seq) { + GINAC_ASSERT(is_exactly_a(it.coeff)); + if (ex_to(it.coeff).is_negative()) + neg_powers.push_back(recombine_pair_to_ex(expair(it.rest, -it.coeff))); else - others.push_back(recombine_pair_to_ex(*it)); - ++it; + others.push_back(recombine_pair_to_ex(it)); } if (!neg_powers.empty()) { @@ -193,11 +188,9 @@ void mul::do_print_latex(const print_latex & c, unsigned level) const } else { // All other factors are printed in the ordinary way - exvector::const_iterator vit = others.begin(), vitend = others.end(); - while (vit != vitend) { + for (auto & vit : others) { c.s << ' '; - vit->print(c, precedence()); - ++vit; + vit.print(c, precedence()); } } @@ -220,7 +213,7 @@ void mul::do_print_csrc(const print_csrc & c, unsigned level) const } // Print arguments, separated by "*" or "/" - epvector::const_iterator it = seq.begin(), itend = seq.end(); + auto it = seq.begin(), itend = seq.end(); while (it != itend) { // If the first argument is a negative integer power, it gets printed as "1.0/" @@ -237,11 +230,9 @@ void mul::do_print_csrc(const print_csrc & c, unsigned level) const if (it->coeff.is_equal(_ex1) || it->coeff.is_equal(_ex_1)) it->rest.print(c, precedence()); else if (it->coeff.info(info_flags::negint)) - // Outer parens around ex needed for broken GCC parser: - (ex(power(it->rest, -ex_to(it->coeff)))).print(c, level); + ex(power(it->rest, -ex_to(it->coeff))).print(c, level); else - // Outer parens around ex needed for broken GCC parser: - (ex(power(it->rest, ex_to(it->coeff)))).print(c, level); + ex(power(it->rest, ex_to(it->coeff))).print(c, level); if (needclosingparenthesis) c.s << ")"; @@ -286,22 +277,18 @@ bool mul::info(unsigned inf) const case info_flags::even: case info_flags::crational_polynomial: case info_flags::rational_function: { - epvector::const_iterator i = seq.begin(), end = seq.end(); - while (i != end) { - if (!(recombine_pair_to_ex(*i).info(inf))) + for (auto & it : seq) { + if (!recombine_pair_to_ex(it).info(inf)) return false; - ++i; } if (overall_coeff.is_equal(*_num1_p) && inf == info_flags::even) return true; return overall_coeff.info(inf); } case info_flags::algebraic: { - epvector::const_iterator i = seq.begin(), end = seq.end(); - while (i != end) { - if ((recombine_pair_to_ex(*i).info(inf))) + for (auto & it : seq) { + if (recombine_pair_to_ex(it).info(inf)) return true; - ++i; } return false; } @@ -315,9 +302,8 @@ bool mul::info(unsigned inf) const return false; bool pos = true; - epvector::const_iterator i = seq.begin(), end = seq.end(); - while (i != end) { - const ex& factor = recombine_pair_to_ex(*i++); + for (auto & it : seq) { + const ex& factor = recombine_pair_to_ex(it); if (factor.info(info_flags::positive)) continue; else if (factor.info(info_flags::negative)) @@ -334,9 +320,8 @@ bool mul::info(unsigned inf) const if (flags & status_flags::is_positive) return true; bool pos = true; - epvector::const_iterator i = seq.begin(), end = seq.end(); - while (i != end) { - const ex& factor = recombine_pair_to_ex(*i++); + for (auto & it : seq) { + const ex& factor = recombine_pair_to_ex(it); if (factor.info(info_flags::nonnegative) || factor.info(info_flags::positive)) continue; else if (factor.info(info_flags::negative)) @@ -344,14 +329,13 @@ bool mul::info(unsigned inf) const else return false; } - return (overall_coeff.info(info_flags::negative)? pos : !pos); + return (overall_coeff.info(info_flags::negative)? !pos : pos); } case info_flags::posint: case info_flags::negint: { bool pos = true; - epvector::const_iterator i = seq.begin(), end = seq.end(); - while (i != end) { - const ex& factor = recombine_pair_to_ex(*i++); + for (auto & it : seq) { + const ex& factor = recombine_pair_to_ex(it); if (factor.info(info_flags::posint)) continue; else if (factor.info(info_flags::negint)) @@ -367,9 +351,8 @@ bool mul::info(unsigned inf) const } case info_flags::nonnegint: { bool pos = true; - epvector::const_iterator i = seq.begin(), end = seq.end(); - while (i != end) { - const ex& factor = recombine_pair_to_ex(*i++); + for (auto & it : seq) { + const ex& factor = recombine_pair_to_ex(it); if (factor.info(info_flags::nonnegint) || factor.info(info_flags::posint)) continue; else if (factor.info(info_flags::negint)) @@ -388,12 +371,10 @@ bool mul::info(unsigned inf) const return true; if (flags & (status_flags::is_positive | status_flags::is_negative)) return false; - epvector::const_iterator i = seq.begin(), end = seq.end(); - while (i != end) { - const ex& term = recombine_pair_to_ex(*i); + for (auto & it : seq) { + const ex& term = recombine_pair_to_ex(it); if (term.info(info_flags::positive) || term.info(info_flags::negative)) return false; - ++i; } setflag(status_flags::purely_indefinite); return true; @@ -404,9 +385,9 @@ bool mul::info(unsigned inf) const bool mul::is_polynomial(const ex & var) const { - for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) { - if (!i->rest.is_polynomial(var) || - (i->rest.has(var) && !i->coeff.info(info_flags::nonnegint))) { + for (auto & it : seq) { + if (!it.rest.is_polynomial(var) || + (it.rest.has(var) && !it.coeff.info(info_flags::nonnegint))) { return false; } } @@ -417,15 +398,13 @@ int mul::degree(const ex & s) const { // Sum up degrees of factors int deg_sum = 0; - epvector::const_iterator i = seq.begin(), end = seq.end(); - while (i != end) { - if (ex_to(i->coeff).is_integer()) - deg_sum += recombine_pair_to_ex(*i).degree(s); + for (auto & it : seq) { + if (ex_to(it.coeff).is_integer()) + deg_sum += recombine_pair_to_ex(it).degree(s); else { - if (i->rest.has(s)) + if (it.rest.has(s)) throw std::runtime_error("mul::degree() undefined degree because of non-integer exponent"); } - ++i; } return deg_sum; } @@ -434,15 +413,13 @@ int mul::ldegree(const ex & s) const { // Sum up degrees of factors int deg_sum = 0; - epvector::const_iterator i = seq.begin(), end = seq.end(); - while (i != end) { - if (ex_to(i->coeff).is_integer()) - deg_sum += recombine_pair_to_ex(*i).ldegree(s); + for (auto & it : seq) { + if (ex_to(it.coeff).is_integer()) + deg_sum += recombine_pair_to_ex(it).ldegree(s); else { - if (i->rest.has(s)) + if (it.rest.has(s)) throw std::runtime_error("mul::ldegree() undefined degree because of non-integer exponent"); } - ++i; } return deg_sum; } @@ -455,19 +432,15 @@ ex mul::coeff(const ex & s, int n) const if (n==0) { // product of individual coeffs // if a non-zero power of s is found, the resulting product will be 0 - epvector::const_iterator i = seq.begin(), end = seq.end(); - while (i != end) { - coeffseq.push_back(recombine_pair_to_ex(*i).coeff(s,n)); - ++i; - } + for (auto & it : seq) + coeffseq.push_back(recombine_pair_to_ex(it).coeff(s,n)); coeffseq.push_back(overall_coeff); return (new mul(coeffseq))->setflag(status_flags::dynallocated); } - epvector::const_iterator i = seq.begin(), end = seq.end(); bool coeff_found = false; - while (i != end) { - ex t = recombine_pair_to_ex(*i); + for (auto & it : seq) { + ex t = recombine_pair_to_ex(it); ex c = t.coeff(s, n); if (!c.is_zero()) { coeffseq.push_back(c); @@ -475,7 +448,6 @@ ex mul::coeff(const ex & s, int n) const } else { coeffseq.push_back(t); } - ++i; } if (coeff_found) { coeffseq.push_back(overall_coeff); @@ -496,13 +468,13 @@ ex mul::coeff(const ex & s, int n) const * @param level cut-off in recursive evaluation */ ex mul::eval(int level) const { - std::auto_ptr evaled_seqp = evalchildren(level); - if (evaled_seqp.get()) { + epvector evaled = evalchildren(level); + if (unlikely(!evaled.empty())) { // do more evaluation later - return (new mul(evaled_seqp, overall_coeff))-> - setflag(status_flags::dynallocated); + return (new mul(std::move(evaled), overall_coeff))-> + setflag(status_flags::dynallocated); } - + if (flags & status_flags::evaluated) { GINAC_ASSERT(seq.size()>0); GINAC_ASSERT(seq.size()>1 || !overall_coeff.is_equal(_ex1)); @@ -524,14 +496,12 @@ ex mul::eval(int level) const ex_to((*seq.begin()).coeff).is_equal(*_num1_p)) { // *(+(x,y,...);c) -> +(*(x,c),*(y,c),...) (c numeric(), no powers of +()) const add & addref = ex_to((*seq.begin()).rest); - std::auto_ptr distrseq(new epvector); - distrseq->reserve(addref.seq.size()); - epvector::const_iterator i = addref.seq.begin(), end = addref.seq.end(); - while (i != end) { - distrseq->push_back(addref.combine_pair_with_coeff_to_pair(*i, overall_coeff)); - ++i; + epvector distrseq; + distrseq.reserve(addref.seq.size()); + for (auto & it : addref.seq) { + distrseq.push_back(addref.combine_pair_with_coeff_to_pair(it, overall_coeff)); } - return (new add(distrseq, + return (new add(std::move(distrseq), ex_to(addref.overall_coeff). mul_dyn(ex_to(overall_coeff))) )->setflag(status_flags::dynallocated | status_flags::evaluated); @@ -539,10 +509,9 @@ ex mul::eval(int level) const // Strip the content and the unit part from each term. Thus // things like (-x+a)*(3*x-3*a) automagically turn into - 3*(x-a)^2 - epvector::const_iterator last = seq.end(); - epvector::const_iterator i = seq.begin(); - epvector::const_iterator j = seq.begin(); - std::auto_ptr s(new epvector); + auto i = seq.begin(), last = seq.end(); + auto j = seq.begin(); + epvector s; numeric oc = *_num1_p; bool something_changed = false; while (i!=last) { @@ -569,12 +538,12 @@ ex mul::eval(int level) const } if (! something_changed) { - s->reserve(seq_size); + s.reserve(seq_size); something_changed = true; } while ((j!=i) && (j!=last)) { - s->push_back(*j); + s.push_back(*j); ++j; } @@ -592,17 +561,17 @@ ex mul::eval(int level) const for (epvector::iterator ai = primitive->seq.begin(); ai != primitive->seq.end(); ++ai) ai->coeff = ex_to(ai->coeff).div_dyn(c); - s->push_back(expair(*primitive, _ex1)); + s.push_back(expair(*primitive, _ex1)); ++i; ++j; } if (something_changed) { while (j!=last) { - s->push_back(*j); + s.push_back(*j); ++j; } - return (new mul(s, ex_to(overall_coeff).mul_dyn(oc)) + return (new mul(std::move(s), ex_to(overall_coeff).mul_dyn(oc)) )->setflag(status_flags::dynallocated); } } @@ -618,28 +587,26 @@ ex mul::evalf(int level) const if (level==-max_recursion_level) throw(std::runtime_error("max recursion level reached")); - std::auto_ptr s(new epvector); - s->reserve(seq.size()); + epvector s; + s.reserve(seq.size()); --level; - epvector::const_iterator i = seq.begin(), end = seq.end(); - while (i != end) { - s->push_back(combine_ex_with_coeff_to_pair(i->rest.evalf(level), - i->coeff)); - ++i; + for (auto & it : seq) { + s.push_back(combine_ex_with_coeff_to_pair(it.rest.evalf(level), + it.coeff)); } - return mul(s, overall_coeff.evalf(level)); + return mul(std::move(s), overall_coeff.evalf(level)); } void mul::find_real_imag(ex & rp, ex & ip) const { rp = overall_coeff.real_part(); ip = overall_coeff.imag_part(); - for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) { - ex factor = recombine_pair_to_ex(*i); + for (auto & it : seq) { + ex factor = recombine_pair_to_ex(it); ex new_rp = factor.real_part(); ex new_ip = factor.imag_part(); - if(new_ip.is_zero()) { + if (new_ip.is_zero()) { rp *= new_rp; ip *= new_rp; } else { @@ -676,21 +643,19 @@ ex mul::evalm() const // Evaluate children first, look whether there are any matrices at all // (there can be either no matrices or one matrix; if there were more // than one matrix, it would be a non-commutative product) - std::auto_ptr s(new epvector); - s->reserve(seq.size()); + epvector s; + s.reserve(seq.size()); bool have_matrix = false; epvector::iterator the_matrix; - epvector::const_iterator i = seq.begin(), end = seq.end(); - while (i != end) { - const ex &m = recombine_pair_to_ex(*i).evalm(); - s->push_back(split_ex_to_pair(m)); + for (auto & it : seq) { + const ex &m = recombine_pair_to_ex(it).evalm(); + s.push_back(split_ex_to_pair(m)); if (is_a(m)) { have_matrix = true; - the_matrix = s->end() - 1; + the_matrix = s.end() - 1; } - ++i; } if (have_matrix) { @@ -698,12 +663,12 @@ ex mul::evalm() const // The product contained a matrix. We will multiply all other factors // into that matrix. matrix m = ex_to(the_matrix->rest); - s->erase(the_matrix); - ex scalar = (new mul(s, overall_coeff))->setflag(status_flags::dynallocated); + s.erase(the_matrix); + ex scalar = (new mul(std::move(s), overall_coeff))->setflag(status_flags::dynallocated); return m.mul_scalar(scalar); } else - return (new mul(s, overall_coeff))->setflag(status_flags::dynallocated); + return (new mul(std::move(s), overall_coeff))->setflag(status_flags::dynallocated); } ex mul::eval_ncmul(const exvector & v) const @@ -712,12 +677,9 @@ ex mul::eval_ncmul(const exvector & v) const return inherited::eval_ncmul(v); // Find first noncommutative element and call its eval_ncmul() - epvector::const_iterator i = seq.begin(), end = seq.end(); - while (i != end) { - if (i->rest.return_type() == return_types::noncommutative) - return i->rest.eval_ncmul(v); - ++i; - } + for (auto & it : seq) + if (it.rest.return_type() == return_types::noncommutative) + return it.rest.eval_ncmul(v); return inherited::eval_ncmul(v); } @@ -764,7 +726,7 @@ bool tryfactsubs(const ex & origfactor, const ex & patternfactor, int & nummatch return true; } -/** Checks wheter e matches to the pattern pat and the (possibly to be updated) +/** Checks whether e matches to the pattern pat and the (possibly to be updated) * list of replacements repls. This matching is in the sense of algebraic * substitutions. Matching starts with pat.op(factor) of the pattern because * the factors before this one have already been matched. The (possibly @@ -805,7 +767,7 @@ bool algebraic_match_mul_with_mul(const mul &e, const ex &pat, exmap& repls, bool mul::has(const ex & pattern, unsigned options) const { - if(!(options&has_options::algebraic)) + if(!(options & has_options::algebraic)) return basic::has(pattern,options); if(is_a(pattern)) { exmap repls; @@ -825,25 +787,25 @@ ex mul::algebraic_subs_mul(const exmap & m, unsigned options) const ex divide_by = 1; ex multiply_by = 1; - for (exmap::const_iterator it = m.begin(); it != m.end(); ++it) { + for (auto & it : m) { - if (is_exactly_a(it->first)) { + if (is_exactly_a(it.first)) { retry1: int nummatches = std::numeric_limits::max(); std::vector currsubsed(nops(), false); exmap repls; - if(!algebraic_match_mul_with_mul(*this, it->first, repls, 0, nummatches, subsed, currsubsed)) + if (!algebraic_match_mul_with_mul(*this, it.first, repls, 0, nummatches, subsed, currsubsed)) continue; for (size_t j=0; jfirst.subs(repls, subs_options::no_pattern); + = it.first.subs(repls, subs_options::no_pattern); divide_by *= power(subsed_pattern, nummatches); ex subsed_result - = it->second.subs(repls, subs_options::no_pattern); + = it.second.subs(repls, subs_options::no_pattern); multiply_by *= power(subsed_result, nummatches); goto retry1; @@ -852,13 +814,13 @@ retry1: for (size_t j=0; jnops(); j++) { int nummatches = std::numeric_limits::max(); exmap repls; - if (!subsed[j] && tryfactsubs(op(j), it->first, nummatches, repls)){ + if (!subsed[j] && tryfactsubs(op(j), it.first, nummatches, repls)){ subsed[j] = true; ex subsed_pattern - = it->first.subs(repls, subs_options::no_pattern); + = it.first.subs(repls, subs_options::no_pattern); divide_by *= power(subsed_pattern, nummatches); ex subsed_result - = it->second.subs(repls, subs_options::no_pattern); + = it.second.subs(repls, subs_options::no_pattern); multiply_by *= power(subsed_result, nummatches); } } @@ -882,8 +844,8 @@ ex mul::conjugate() const { // The base class' method is wrong here because we have to be careful at // branch cuts. power::conjugate takes care of that already, so use it. - epvector *newepv = 0; - for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) { + std::unique_ptr newepv(nullptr); + for (auto i=seq.begin(); i!=seq.end(); ++i) { if (newepv) { newepv->push_back(split_ex_to_pair(recombine_pair_to_ex(*i).conjugate())); continue; @@ -893,9 +855,9 @@ ex mul::conjugate() const if (c.is_equal(x)) { continue; } - newepv = new epvector; + newepv.reset(new epvector); newepv->reserve(seq.size()); - for (epvector::const_iterator j=seq.begin(); j!=i; ++j) { + for (auto j=seq.begin(); j!=i; ++j) { newepv->push_back(*j); } newepv->push_back(split_ex_to_pair(c)); @@ -904,9 +866,7 @@ ex mul::conjugate() const if (!newepv && are_ex_trivially_equal(x, overall_coeff)) { return *this; } - ex result = thisexpairseq(newepv ? *newepv : seq, x); - delete newepv; - return result; + return thisexpairseq(newepv ? std::move(*newepv) : seq, x); } @@ -922,8 +882,8 @@ ex mul::derivative(const symbol & s) const // D(a*b*c) = D(a)*b*c + a*D(b)*c + a*b*D(c) epvector mulseq = seq; - epvector::const_iterator i = seq.begin(), end = seq.end(); - epvector::iterator i2 = mulseq.begin(); + auto i = seq.begin(), end = seq.end(); + auto i2 = mulseq.begin(); while (i != end) { expair ep = split_ex_to_pair(power(i->rest, i->coeff - _ex1) * i->rest.diff(s)); @@ -979,12 +939,10 @@ return_type_t mul::return_type_tinfo() const return make_return_type_t(); // mul without factors: should not happen // return type_info of first noncommutative element - epvector::const_iterator i = seq.begin(), end = seq.end(); - while (i != end) { - if (i->rest.return_type() == return_types::noncommutative) - return i->rest.return_type_tinfo(); - ++i; - } + for (auto & it : seq) + if (it.rest.return_type() == return_types::noncommutative) + return it.rest.return_type_tinfo(); + // no noncommutative element found, should not happen return make_return_type_t(); } @@ -994,9 +952,9 @@ ex mul::thisexpairseq(const epvector & v, const ex & oc, bool do_index_renaming) return (new mul(v, oc, do_index_renaming))->setflag(status_flags::dynallocated); } -ex mul::thisexpairseq(std::auto_ptr vp, const ex & oc, bool do_index_renaming) const +ex mul::thisexpairseq(epvector && vp, const ex & oc, bool do_index_renaming) const { - return (new mul(vp, oc, do_index_renaming))->setflag(status_flags::dynallocated); + return (new mul(std::move(vp), oc, do_index_renaming))->setflag(status_flags::dynallocated); } expair mul::split_ex_to_pair(const ex & e) const @@ -1098,8 +1056,8 @@ bool mul::can_make_flat(const expair & p) const bool mul::can_be_further_expanded(const ex & e) { if (is_exactly_a(e)) { - for (epvector::const_iterator cit = ex_to(e).seq.begin(); cit != ex_to(e).seq.end(); ++cit) { - if (is_exactly_a(cit->rest) && cit->coeff.info(info_flags::posint)) + for (auto & it : ex_to(e).seq) { + if (is_exactly_a(it.rest) && it.coeff.info(info_flags::posint)) return true; } } else if (is_exactly_a(e)) { @@ -1130,8 +1088,8 @@ ex mul::expand(unsigned options) const const bool skip_idx_rename = !(options & expand_options::expand_rename_idx); // First, expand the children - std::auto_ptr expanded_seqp = expandchildren(options); - const epvector & expanded_seq = (expanded_seqp.get() ? *expanded_seqp : seq); + epvector expanded = expandchildren(options); + const epvector & expanded_seq = (expanded.empty() ? seq : expanded); // Now, look for all the factors that are sums and multiply each one out // with the next one that is found while collecting the factors which are @@ -1141,43 +1099,39 @@ ex mul::expand(unsigned options) const epvector non_adds; non_adds.reserve(expanded_seq.size()); - for (epvector::const_iterator cit = expanded_seq.begin(); cit != expanded_seq.end(); ++cit) { - if (is_exactly_a(cit->rest) && - (cit->coeff.is_equal(_ex1))) { + for (const auto & cit : expanded_seq) { + if (is_exactly_a(cit.rest) && + (cit.coeff.is_equal(_ex1))) { if (is_exactly_a(last_expanded)) { // Expand a product of two sums, aggressive version. // Caring for the overall coefficients in separate loops can // sometimes give a performance gain of up to 15%! - const int sizedifference = ex_to(last_expanded).seq.size()-ex_to(cit->rest).seq.size(); + const int sizedifference = ex_to(last_expanded).seq.size()-ex_to(cit.rest).seq.size(); // add2 is for the inner loop and should be the bigger of the two sums // in the presence of asymptotically good sorting: - const add& add1 = (sizedifference<0 ? ex_to(last_expanded) : ex_to(cit->rest)); - const add& add2 = (sizedifference<0 ? ex_to(cit->rest) : ex_to(last_expanded)); - const epvector::const_iterator add1begin = add1.seq.begin(); - const epvector::const_iterator add1end = add1.seq.end(); - const epvector::const_iterator add2begin = add2.seq.begin(); - const epvector::const_iterator add2end = add2.seq.end(); + const add& add1 = (sizedifference<0 ? ex_to(last_expanded) : ex_to(cit.rest)); + const add& add2 = (sizedifference<0 ? ex_to(cit.rest) : ex_to(last_expanded)); epvector distrseq; distrseq.reserve(add1.seq.size()+add2.seq.size()); // Multiply add2 with the overall coefficient of add1 and append it to distrseq: if (!add1.overall_coeff.is_zero()) { if (add1.overall_coeff.is_equal(_ex1)) - distrseq.insert(distrseq.end(),add2begin,add2end); + distrseq.insert(distrseq.end(), add2.seq.begin(), add2.seq.end()); else - for (epvector::const_iterator i=add2begin; i!=add2end; ++i) - distrseq.push_back(expair(i->rest, ex_to(i->coeff).mul_dyn(ex_to(add1.overall_coeff)))); + for (const auto & i : add2.seq) + distrseq.push_back(expair(i.rest, ex_to(i.coeff).mul_dyn(ex_to(add1.overall_coeff)))); } // Multiply add1 with the overall coefficient of add2 and append it to distrseq: if (!add2.overall_coeff.is_zero()) { if (add2.overall_coeff.is_equal(_ex1)) - distrseq.insert(distrseq.end(),add1begin,add1end); + distrseq.insert(distrseq.end(), add1.seq.begin(), add1.seq.end()); else - for (epvector::const_iterator i=add1begin; i!=add1end; ++i) - distrseq.push_back(expair(i->rest, ex_to(i->coeff).mul_dyn(ex_to(add2.overall_coeff)))); + for (const auto & i : add1.seq) + distrseq.push_back(expair(i.rest, ex_to(i.coeff).mul_dyn(ex_to(add2.overall_coeff)))); } // Compute the new overall coefficient and put it together: @@ -1187,12 +1141,12 @@ ex mul::expand(unsigned options) const lst dummy_subs; if (!skip_idx_rename) { - for (epvector::const_iterator i=add1begin; i!=add1end; ++i) { - add_indices = get_all_dummy_indices_safely(i->rest); + for (const auto & i : add1.seq) { + add_indices = get_all_dummy_indices_safely(i.rest); add1_dummy_indices.insert(add1_dummy_indices.end(), add_indices.begin(), add_indices.end()); } - for (epvector::const_iterator i=add2begin; i!=add2end; ++i) { - add_indices = get_all_dummy_indices_safely(i->rest); + for (const auto & i : add2.seq) { + add_indices = get_all_dummy_indices_safely(i.rest); add2_dummy_indices.insert(add2_dummy_indices.end(), add_indices.begin(), add_indices.end()); } @@ -1202,37 +1156,37 @@ ex mul::expand(unsigned options) const } // Multiply explicitly all non-numeric terms of add1 and add2: - for (epvector::const_iterator i2=add2begin; i2!=add2end; ++i2) { + for (const auto & i2 : add2.seq) { // We really have to combine terms here in order to compactify // the result. Otherwise it would become waayy tooo bigg. numeric oc(*_num0_p); epvector distrseq2; distrseq2.reserve(add1.seq.size()); const ex i2_new = (skip_idx_rename || (dummy_subs.op(0).nops() == 0) ? - i2->rest : - i2->rest.subs(ex_to(dummy_subs.op(0)), - ex_to(dummy_subs.op(1)), subs_options::no_pattern)); - for (epvector::const_iterator i1=add1begin; i1!=add1end; ++i1) { + i2.rest : + i2.rest.subs(ex_to(dummy_subs.op(0)), + ex_to(dummy_subs.op(1)), subs_options::no_pattern)); + for (const auto & i1 : add1.seq) { // Don't push_back expairs which might have a rest that evaluates to a numeric, // since that would violate an invariant of expairseq: - const ex rest = (new mul(i1->rest, i2_new))->setflag(status_flags::dynallocated); + const ex rest = (new mul(i1.rest, i2_new))->setflag(status_flags::dynallocated); if (is_exactly_a(rest)) { - oc += ex_to(rest).mul(ex_to(i1->coeff).mul(ex_to(i2->coeff))); + oc += ex_to(rest).mul(ex_to(i1.coeff).mul(ex_to(i2.coeff))); } else { - distrseq2.push_back(expair(rest, ex_to(i1->coeff).mul_dyn(ex_to(i2->coeff)))); + distrseq2.push_back(expair(rest, ex_to(i1.coeff).mul_dyn(ex_to(i2.coeff)))); } } tmp_accu += (new add(distrseq2, oc))->setflag(status_flags::dynallocated); - } + } last_expanded = tmp_accu; } else { if (!last_expanded.is_equal(_ex1)) non_adds.push_back(split_ex_to_pair(last_expanded)); - last_expanded = cit->rest; + last_expanded = cit.rest; } } else { - non_adds.push_back(*cit); + non_adds.push_back(cit); } } @@ -1293,46 +1247,45 @@ ex mul::expand(unsigned options) const /** Member-wise expand the expairs representing this sequence. This must be * overridden from expairseq::expandchildren() and done iteratively in order - * to allow for early cancallations and thus safe memory. + * to allow for early cancellations and thus safe memory. * * @see mul::expand() - * @return pointer to epvector containing expanded representation or zero - * pointer, if sequence is unchanged. */ -std::auto_ptr mul::expandchildren(unsigned options) const + * @return epvector containing expanded pairs, empty if no members + * had to be changed. */ +epvector mul::expandchildren(unsigned options) const { - const epvector::const_iterator last = seq.end(); - epvector::const_iterator cit = seq.begin(); + auto cit = seq.begin(), last = seq.end(); while (cit!=last) { const ex & factor = recombine_pair_to_ex(*cit); const ex & expanded_factor = factor.expand(options); if (!are_ex_trivially_equal(factor,expanded_factor)) { // something changed, copy seq, eval and return it - std::auto_ptr s(new epvector); - s->reserve(seq.size()); + epvector s; + s.reserve(seq.size()); // copy parts of seq which are known not to have changed - epvector::const_iterator cit2 = seq.begin(); + auto cit2 = seq.begin(); while (cit2!=cit) { - s->push_back(*cit2); + s.push_back(*cit2); ++cit2; } // copy first changed element - s->push_back(split_ex_to_pair(expanded_factor)); + s.push_back(split_ex_to_pair(expanded_factor)); ++cit2; // copy rest while (cit2!=last) { - s->push_back(split_ex_to_pair(recombine_pair_to_ex(*cit2).expand(options))); + s.push_back(split_ex_to_pair(recombine_pair_to_ex(*cit2).expand(options))); ++cit2; } return s; } ++cit; } - - return std::auto_ptr(0); // nothing has changed + + return epvector(); // nothing has changed } GINAC_BIND_UNARCHIVER(mul);