X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fmul.cpp;h=6f99c515062ff86c64a253ae9ce80adf512680bb;hp=7ca04ef36ecb09696bc7b8affe89c60dfa1942c8;hb=def23d34c68a383ce3d7da0227b984c8291a3bf9;hpb=35287d4fef8dc61a10966091ff662eeb9444f87a diff --git a/ginac/mul.cpp b/ginac/mul.cpp index 7ca04ef3..6f99c515 100644 --- a/ginac/mul.cpp +++ b/ginac/mul.cpp @@ -3,7 +3,7 @@ * Implementation of GiNaC's products of expressions. */ /* - * GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -23,20 +23,29 @@ #include #include #include +#include #include "mul.h" #include "add.h" #include "power.h" +#include "operators.h" #include "matrix.h" +#include "lst.h" #include "archive.h" #include "utils.h" namespace GiNaC { -GINAC_IMPLEMENT_REGISTERED_CLASS(mul, expairseq) +GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(mul, expairseq, + print_func(&mul::do_print). + print_func(&mul::do_print_latex). + print_func(&mul::do_print_csrc). + print_func(&inherited::do_print_tree). + print_func(&mul::do_print_python_repr)) + ////////// -// default ctor, dtor, copy ctor, assignment operator and helpers +// default constructor ////////// mul::mul() @@ -44,11 +53,8 @@ mul::mul() tinfo_key = TINFO_mul; } -DEFAULT_COPY(mul) -DEFAULT_DESTROY(mul) - ////////// -// other ctors +// other constructors ////////// // public @@ -85,13 +91,12 @@ mul::mul(const epvector & v, const ex & oc) GINAC_ASSERT(is_canonical()); } -mul::mul(epvector * vp, const ex & oc) +mul::mul(std::auto_ptr vp, const ex & oc) { tinfo_key = TINFO_mul; GINAC_ASSERT(vp!=0); overall_coeff = oc; construct_from_epvector(*vp); - delete vp; GINAC_ASSERT(is_canonical()); } @@ -118,121 +123,154 @@ DEFAULT_ARCHIVING(mul) // functions overriding virtual functions from base classes ////////// -// public - -void mul::print(const print_context & c, unsigned level) const +void mul::print_overall_coeff(const print_context & c, const char *mul_sym) const { - if (is_a(c)) { + const numeric &coeff = ex_to(overall_coeff); + if (coeff.csgn() == -1) + c.s << '-'; + if (!coeff.is_equal(_num1) && + !coeff.is_equal(_num_1)) { + if (coeff.is_rational()) { + if (coeff.is_negative()) + (-coeff).print(c); + else + coeff.print(c); + } else { + if (coeff.csgn() == -1) + (-coeff).print(c, precedence()); + else + coeff.print(c, precedence()); + } + c.s << mul_sym; + } +} - inherited::print(c, level); +void mul::do_print(const print_context & c, unsigned level) const +{ + if (precedence() <= level) + c.s << '('; - } else if (is_a(c)) { + print_overall_coeff(c, "*"); - if (precedence() <= level) - c.s << "("; + epvector::const_iterator it = seq.begin(), itend = seq.end(); + bool first = true; + while (it != itend) { + if (!first) + c.s << '*'; + else + first = false; + recombine_pair_to_ex(*it).print(c, precedence()); + ++it; + } - if (!overall_coeff.is_equal(_ex1)) { - overall_coeff.print(c, precedence()); - c.s << "*"; - } + if (precedence() <= level) + c.s << ')'; +} - // Print arguments, separated by "*" or "/" - epvector::const_iterator it = seq.begin(), itend = seq.end(); - while (it != itend) { +void mul::do_print_latex(const print_latex & c, unsigned level) const +{ + if (precedence() <= level) + c.s << "{("; - // If the first argument is a negative integer power, it gets printed as "1.0/" - if (it == seq.begin() && ex_to(it->coeff).is_integer() && it->coeff.info(info_flags::negative)) { - if (is_a(c)) - c.s << "recip("; - else - c.s << "1.0/"; - } + print_overall_coeff(c, " "); - // If the exponent is 1 or -1, it is left out - if (it->coeff.is_equal(_ex1) || it->coeff.is_equal(_ex_1)) - it->rest.print(c, precedence()); - else { - // Outer parens around ex needed for broken gcc-2.95 parser: - (ex(power(it->rest, abs(ex_to(it->coeff))))).print(c, level); - } + // Separate factors into those with negative numeric exponent + // and all others + epvector::const_iterator it = seq.begin(), itend = seq.end(); + exvector neg_powers, others; + while (it != itend) { + GINAC_ASSERT(is_exactly_a(it->coeff)); + if (ex_to(it->coeff).is_negative()) + neg_powers.push_back(recombine_pair_to_ex(expair(it->rest, -(it->coeff)))); + else + others.push_back(recombine_pair_to_ex(*it)); + ++it; + } - // Separator is "/" for negative integer powers, "*" otherwise - ++it; - if (it != itend) { - if (ex_to(it->coeff).is_integer() && it->coeff.info(info_flags::negative)) - c.s << "/"; - else - c.s << "*"; - } - } + if (!neg_powers.empty()) { - if (precedence() <= level) - c.s << ")"; + // Factors with negative exponent are printed as a fraction + c.s << "\\frac{"; + mul(others).eval().print(c); + c.s << "}{"; + mul(neg_powers).eval().print(c); + c.s << "}"; - } else if (is_a(c)) { - c.s << class_name() << '('; - op(0).print(c); - for (unsigned i=1; i(c)) - c.s << "{("; - else - c.s << "("; + // All other factors are printed in the ordinary way + exvector::const_iterator vit = others.begin(), vitend = others.end(); + while (vit != vitend) { + c.s << ' '; + vit->print(c, precedence()); + ++vit; } + } - bool first = true; - - // First print the overall numeric coefficient - numeric coeff = ex_to(overall_coeff); - if (coeff.csgn() == -1) - c.s << '-'; - if (!coeff.is_equal(_num1) && - !coeff.is_equal(_num_1)) { - if (coeff.is_rational()) { - if (coeff.is_negative()) - (-coeff).print(c); - else - coeff.print(c); - } else { - if (coeff.csgn() == -1) - (-coeff).print(c, precedence()); - else - coeff.print(c, precedence()); - } - if (is_a(c)) - c.s << ' '; - else - c.s << '*'; - } + if (precedence() <= level) + c.s << ")}"; +} - // Then proceed with the remaining factors - epvector::const_iterator it = seq.begin(), itend = seq.end(); - while (it != itend) { - if (!first) { - if (is_a(c)) - c.s << ' '; - else - c.s << '*'; - } else { - first = false; - } - recombine_pair_to_ex(*it).print(c, precedence()); - ++it; +void mul::do_print_csrc(const print_csrc & c, unsigned level) const +{ + if (precedence() <= level) + c.s << "("; + + if (!overall_coeff.is_equal(_ex1)) { + overall_coeff.print(c, precedence()); + c.s << "*"; + } + + // Print arguments, separated by "*" or "/" + epvector::const_iterator it = seq.begin(), itend = seq.end(); + while (it != itend) { + + // If the first argument is a negative integer power, it gets printed as "1.0/" + bool needclosingparenthesis = false; + if (it == seq.begin() && it->coeff.info(info_flags::negint)) { + if (is_a(c)) { + c.s << "recip("; + needclosingparenthesis = true; + } else + c.s << "1.0/"; } - if (precedence() <= level) { - if (is_a(c)) - c.s << ")}"; + // If the exponent is 1 or -1, it is left out + if (it->coeff.is_equal(_ex1) || it->coeff.is_equal(_ex_1)) + it->rest.print(c, precedence()); + else if (it->coeff.info(info_flags::negint)) + // Outer parens around ex needed for broken GCC parser: + (ex(power(it->rest, -ex_to(it->coeff)))).print(c, level); + else + // Outer parens around ex needed for broken GCC parser: + (ex(power(it->rest, ex_to(it->coeff)))).print(c, level); + + if (needclosingparenthesis) + c.s << ")"; + + // Separator is "/" for negative integer powers, "*" otherwise + ++it; + if (it != itend) { + if (it->coeff.info(info_flags::negint)) + c.s << "/"; else - c.s << ")"; + c.s << "*"; } } + + if (precedence() <= level) + c.s << ")"; +} + +void mul::do_print_python_repr(const print_python_repr & c, unsigned level) const +{ + c.s << class_name() << '('; + op(0).print(c); + for (size_t i=1; i evaled_seqp = evalchildren(level); + if (evaled_seqp.get()) { // do more evaluation later - return (new mul(evaled_seqp,overall_coeff))-> + return (new mul(evaled_seqp, overall_coeff))-> setflag(status_flags::dynallocated); } @@ -353,7 +391,7 @@ ex mul::eval(int level) const GINAC_ASSERT((!is_exactly_a(i->rest)) || (!(ex_to(i->coeff).is_integer()))); GINAC_ASSERT(!(i->is_canonical_numeric())); - if (is_ex_exactly_of_type(recombine_pair_to_ex(*i), numeric)) + if (is_exactly_a(recombine_pair_to_ex(*i))) print(print_tree(std::cerr)); GINAC_ASSERT(!is_exactly_a(recombine_pair_to_ex(*i))); /* for paranoia */ @@ -382,11 +420,11 @@ ex mul::eval(int level) const // *(x;1) -> x return recombine_pair_to_ex(*(seq.begin())); } else if ((seq_size==1) && - is_ex_exactly_of_type((*seq.begin()).rest,add) && + is_exactly_a((*seq.begin()).rest) && ex_to((*seq.begin()).coeff).is_equal(_num1)) { // *(+(x,y,...);c) -> +(*(x,c),*(y,c),...) (c numeric(), no powers of +()) const add & addref = ex_to((*seq.begin()).rest); - epvector *distrseq = new epvector(); + std::auto_ptr distrseq(new epvector); distrseq->reserve(addref.seq.size()); epvector::const_iterator i = addref.seq.begin(), end = addref.seq.end(); while (i != end) { @@ -409,7 +447,7 @@ ex mul::evalf(int level) const if (level==-max_recursion_level) throw(std::runtime_error("max recursion level reached")); - epvector *s = new epvector(); + std::auto_ptr s(new epvector); s->reserve(seq.size()); --level; @@ -422,17 +460,17 @@ ex mul::evalf(int level) const return mul(s, overall_coeff.evalf(level)); } -ex mul::evalm(void) const +ex mul::evalm() const { // numeric*matrix if (seq.size() == 1 && seq[0].coeff.is_equal(_ex1) - && is_ex_of_type(seq[0].rest, matrix)) + && is_a(seq[0].rest)) return ex_to(seq[0].rest).mul(ex_to(overall_coeff)); // Evaluate children first, look whether there are any matrices at all // (there can be either no matrices or one matrix; if there were more // than one matrix, it would be a non-commutative product) - epvector *s = new epvector; + std::auto_ptr s(new epvector); s->reserve(seq.size()); bool have_matrix = false; @@ -442,7 +480,7 @@ ex mul::evalm(void) const while (i != end) { const ex &m = recombine_pair_to_ex(*i).evalm(); s->push_back(split_ex_to_pair(m)); - if (is_ex_of_type(m, matrix)) { + if (is_a(m)) { have_matrix = true; the_matrix = s->end() - 1; } @@ -462,19 +500,143 @@ ex mul::evalm(void) const return (new mul(s, overall_coeff))->setflag(status_flags::dynallocated); } -ex mul::simplify_ncmul(const exvector & v) const +ex mul::eval_ncmul(const exvector & v) const { if (seq.empty()) - return inherited::simplify_ncmul(v); + return inherited::eval_ncmul(v); - // Find first noncommutative element and call its simplify_ncmul() + // Find first noncommutative element and call its eval_ncmul() epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { if (i->rest.return_type() == return_types::noncommutative) - return i->rest.simplify_ncmul(v); + return i->rest.eval_ncmul(v); ++i; } - return inherited::simplify_ncmul(v); + return inherited::eval_ncmul(v); +} + +bool tryfactsubs(const ex & origfactor, const ex & patternfactor, int & nummatches, lst & repls) +{ + ex origbase; + int origexponent; + int origexpsign; + + if (is_exactly_a(origfactor) && origfactor.op(1).info(info_flags::integer)) { + origbase = origfactor.op(0); + int expon = ex_to(origfactor.op(1)).to_int(); + origexponent = expon > 0 ? expon : -expon; + origexpsign = expon > 0 ? 1 : -1; + } else { + origbase = origfactor; + origexponent = 1; + origexpsign = 1; + } + + ex patternbase; + int patternexponent; + int patternexpsign; + + if (is_exactly_a(patternfactor) && patternfactor.op(1).info(info_flags::integer)) { + patternbase = patternfactor.op(0); + int expon = ex_to(patternfactor.op(1)).to_int(); + patternexponent = expon > 0 ? expon : -expon; + patternexpsign = expon > 0 ? 1 : -1; + } else { + patternbase = patternfactor; + patternexponent = 1; + patternexpsign = 1; + } + + lst saverepls = repls; + if (origexponent < patternexponent || origexpsign != patternexpsign || !origbase.match(patternbase,saverepls)) + return false; + repls = saverepls; + + int newnummatches = origexponent / patternexponent; + if (newnummatches < nummatches) + nummatches = newnummatches; + return true; +} + +ex mul::algebraic_subs_mul(const exmap & m, unsigned options) const +{ + std::vector subsed(seq.size(), false); + exvector subsresult(seq.size()); + + for (exmap::const_iterator it = m.begin(); it != m.end(); ++it) { + + if (is_exactly_a(it->first)) { + + int nummatches = std::numeric_limits::max(); + std::vector currsubsed(seq.size(), false); + bool succeed = true; + lst repls; + + for (size_t j=0; jfirst.nops(); j++) { + bool found=false; + for (size_t k=0; kfirst.op(j), nummatches, repls)) { + currsubsed[k] = true; + found = true; + break; + } + } + if (!found) { + succeed = false; + break; + } + } + if (!succeed) + continue; + + bool foundfirstsubsedfactor = false; + for (size_t j=0; jsecond.subs(ex(repls), subs_options::no_pattern) / it->first.subs(ex(repls), subs_options::no_pattern), nummatches); + } + subsed[j] = true; + } + } + + } else { + + int nummatches = std::numeric_limits::max(); + lst repls; + + for (size_t j=0; jnops(); j++) { + if (!subsed[j] && tryfactsubs(op(j), it->first, nummatches, repls)) { + subsed[j] = true; + subsresult[j] = op(j) * power(it->second.subs(ex(repls), subs_options::no_pattern) / it->first.subs(ex(repls), subs_options::no_pattern), nummatches); + } + } + } + } + + bool subsfound = false; + for (size_t i=0; isetflag(status_flags::dynallocated); } // protected @@ -483,7 +645,7 @@ ex mul::simplify_ncmul(const exvector & v) const * @see ex::diff */ ex mul::derivative(const symbol & s) const { - unsigned num = seq.size(); + size_t num = seq.size(); exvector addseq; addseq.reserve(num); @@ -507,12 +669,7 @@ int mul::compare_same_type(const basic & other) const return inherited::compare_same_type(other); } -bool mul::is_equal_same_type(const basic & other) const -{ - return inherited::is_equal_same_type(other); -} - -unsigned mul::return_type(void) const +unsigned mul::return_type() const { if (seq.empty()) { // mul without factors: should not happen, but commutes @@ -545,7 +702,7 @@ unsigned mul::return_type(void) const return all_commutative ? return_types::commutative : return_types::noncommutative; } -unsigned mul::return_type_tinfo(void) const +unsigned mul::return_type_tinfo() const { if (seq.empty()) return tinfo_key; // mul without factors: should not happen @@ -566,16 +723,16 @@ ex mul::thisexpairseq(const epvector & v, const ex & oc) const return (new mul(v, oc))->setflag(status_flags::dynallocated); } -ex mul::thisexpairseq(epvector * vp, const ex & oc) const +ex mul::thisexpairseq(std::auto_ptr vp, const ex & oc) const { return (new mul(vp, oc))->setflag(status_flags::dynallocated); } expair mul::split_ex_to_pair(const ex & e) const { - if (is_ex_exactly_of_type(e,power)) { + if (is_exactly_a(e)) { const power & powerref = ex_to(e); - if (is_ex_exactly_of_type(powerref.exponent,numeric)) + if (is_exactly_a(powerref.exponent)) return expair(powerref.basis,powerref.exponent); } return expair(e,_ex1); @@ -586,11 +743,11 @@ expair mul::combine_ex_with_coeff_to_pair(const ex & e, { // to avoid duplication of power simplification rules, // we create a temporary power object - // otherwise it would be hard to correctly simplify + // otherwise it would be hard to correctly evaluate // expression like (4^(1/3))^(3/2) - if (are_ex_trivially_equal(c,_ex1)) + if (c.is_equal(_ex1)) return split_ex_to_pair(e); - + return split_ex_to_pair(power(e,c)); } @@ -599,11 +756,11 @@ expair mul::combine_pair_with_coeff_to_pair(const expair & p, { // to avoid duplication of power simplification rules, // we create a temporary power object - // otherwise it would be hard to correctly simplify + // otherwise it would be hard to correctly evaluate // expression like (4^(1/3))^(3/2) - if (are_ex_trivially_equal(c,_ex1)) + if (c.is_equal(_ex1)) return p; - + return split_ex_to_pair(power(recombine_pair_to_ex(p),c)); } @@ -612,25 +769,25 @@ ex mul::recombine_pair_to_ex(const expair & p) const if (ex_to(p.coeff).is_equal(_num1)) return p.rest; else - return power(p.rest,p.coeff); + return (new power(p.rest,p.coeff))->setflag(status_flags::dynallocated); } bool mul::expair_needs_further_processing(epp it) { - if (is_ex_exactly_of_type((*it).rest,mul) && - ex_to((*it).coeff).is_integer()) { + if (is_exactly_a(it->rest) && + ex_to(it->coeff).is_integer()) { // combined pair is product with integer power -> expand it *it = split_ex_to_pair(recombine_pair_to_ex(*it)); return true; } - if (is_ex_exactly_of_type((*it).rest,numeric)) { - expair ep=split_ex_to_pair(recombine_pair_to_ex(*it)); + if (is_exactly_a(it->rest)) { + expair ep = split_ex_to_pair(recombine_pair_to_ex(*it)); if (!ep.is_equal(*it)) { // combined pair is a numeric power which can be simplified *it = ep; return true; } - if (ex_to((*it).coeff).is_equal(_num1)) { + if (it->coeff.is_equal(_ex1)) { // combined pair has coeff 1 and must be moved to the end return true; } @@ -638,7 +795,7 @@ bool mul::expair_needs_further_processing(epp it) return false; } -ex mul::default_overall_coeff(void) const +ex mul::default_overall_coeff() const { return _ex1; } @@ -670,8 +827,8 @@ bool mul::can_make_flat(const expair & p) const ex mul::expand(unsigned options) const { // First, expand the children - epvector * expanded_seqp = expandchildren(options); - const epvector & expanded_seq = (expanded_seqp == NULL) ? seq : *expanded_seqp; + std::auto_ptr expanded_seqp = expandchildren(options); + const epvector & expanded_seq = (expanded_seqp.get() ? *expanded_seqp : seq); // Now, look for all the factors that are sums and multiply each one out // with the next one that is found while collecting the factors which are @@ -682,35 +839,20 @@ ex mul::expand(unsigned options) const non_adds.reserve(expanded_seq.size()); epvector::const_iterator cit = expanded_seq.begin(), last = expanded_seq.end(); while (cit != last) { - if (is_ex_exactly_of_type(cit->rest, add) && + if (is_exactly_a(cit->rest) && (cit->coeff.is_equal(_ex1))) { ++number_of_adds; - if (is_ex_exactly_of_type(last_expanded, add)) { -#if 1 - // Expand a product of two sums, simple and robust version. - const add & add1 = ex_to(last_expanded); - const add & add2 = ex_to(cit->rest); - const int n1 = add1.nops(); - const int n2 = add2.nops(); - ex tmp_accu; - exvector distrseq; - distrseq.reserve(n2); - for (int i1=0; i1 - setflag(status_flags::dynallocated); - distrseq.clear(); - } - last_expanded = tmp_accu; -#else + if (is_exactly_a(last_expanded)) { + // Expand a product of two sums, aggressive version. - // Caring for the overall coefficients in separate loops can give - // a performance gain of up to 20%! - const add & add1 = ex_to(last_expanded); - const add & add2 = ex_to(cit->rest); + // Caring for the overall coefficients in separate loops can + // sometimes give a performance gain of up to 15%! + + const int sizedifference = ex_to(last_expanded).seq.size()-ex_to(cit->rest).seq.size(); + // add2 is for the inner loop and should be the bigger of the two sums + // in the presence of asymptotically good sorting: + const add& add1 = (sizedifference<0 ? ex_to(last_expanded) : ex_to(cit->rest)); + const add& add2 = (sizedifference<0 ? ex_to(cit->rest) : ex_to(last_expanded)); const epvector::const_iterator add1begin = add1.seq.begin(); const epvector::const_iterator add1end = add1.seq.end(); const epvector::const_iterator add2begin = add2.seq.begin(); @@ -734,8 +876,7 @@ ex mul::expand(unsigned options) const distrseq.push_back(expair(i->rest, ex_to(i->coeff).mul_dyn(ex_to(add2.overall_coeff)))); } // Compute the new overall coefficient and put it together: - ex tmp_accu = (new add(distrseq, ex_to(add1.overall_coeff).mul(ex_to(add2.overall_coeff))))-> - setflag(status_flags::dynallocated); + ex tmp_accu = (new add(distrseq, add1.overall_coeff*add2.overall_coeff))->setflag(status_flags::dynallocated); // Multiply explicitly all non-numeric terms of add1 and add2: for (epvector::const_iterator i1=add1begin; i1!=add1end; ++i1) { // We really have to combine terms here in order to compactify @@ -746,15 +887,15 @@ ex mul::expand(unsigned options) const // Don't push_back expairs which might have a rest that evaluates to a numeric, // since that would violate an invariant of expairseq: const ex rest = (new mul(i1->rest, i2->rest))->setflag(status_flags::dynallocated); - if (is_ex_exactly_of_type(rest, numeric)) - oc *= ex_to(rest).mul_dyn(ex_to(i1->coeff).mul_dyn(ex_to(i2->coeff))); + if (is_exactly_a(rest)) + oc += ex_to(rest).mul(ex_to(i1->coeff).mul(ex_to(i2->coeff))); else distrseq.push_back(expair(rest, ex_to(i1->coeff).mul_dyn(ex_to(i2->coeff)))); } tmp_accu += (new add(distrseq, oc))->setflag(status_flags::dynallocated); } last_expanded = tmp_accu; -#endif + } else { non_adds.push_back(split_ex_to_pair(last_expanded)); last_expanded = cit->rest; @@ -764,17 +905,15 @@ ex mul::expand(unsigned options) const } ++cit; } - if (expanded_seqp) - delete expanded_seqp; // Now the only remaining thing to do is to multiply the factors which // were not sums into the "last_expanded" sum - if (is_ex_exactly_of_type(last_expanded, add)) { + if (is_exactly_a(last_expanded)) { const add & finaladd = ex_to(last_expanded); exvector distrseq; - int n = finaladd.nops(); + size_t n = finaladd.nops(); distrseq.reserve(n); - for (int i=0; i @@ -807,7 +946,7 @@ ex mul::expand(unsigned options) const * @see mul::expand() * @return pointer to epvector containing expanded representation or zero * pointer, if sequence is unchanged. */ -epvector * mul::expandchildren(unsigned options) const +std::auto_ptr mul::expandchildren(unsigned options) const { const epvector::const_iterator last = seq.end(); epvector::const_iterator cit = seq.begin(); @@ -817,7 +956,7 @@ epvector * mul::expandchildren(unsigned options) const if (!are_ex_trivially_equal(factor,expanded_factor)) { // something changed, copy seq, eval and return it - epvector *s = new epvector; + std::auto_ptr s(new epvector); s->reserve(seq.size()); // copy parts of seq which are known not to have changed @@ -826,9 +965,11 @@ epvector * mul::expandchildren(unsigned options) const s->push_back(*cit2); ++cit2; } + // copy first changed element s->push_back(split_ex_to_pair(expanded_factor)); ++cit2; + // copy rest while (cit2!=last) { s->push_back(split_ex_to_pair(recombine_pair_to_ex(*cit2).expand(options))); @@ -839,7 +980,7 @@ epvector * mul::expandchildren(unsigned options) const ++cit; } - return 0; // nothing has changed + return std::auto_ptr(0); // nothing has changed } } // namespace GiNaC