X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fmul.cpp;h=53c381152b46095c4ecfb47830de69fc8f7e8b57;hp=da23307e186a0526608f38dadedb814f25bc78a6;hb=9d92d4b442fc4c1a95685884be4ba0494cd02bbe;hpb=d448856f20cb58f939ddbf636e7f72e3599b1468 diff --git a/ginac/mul.cpp b/ginac/mul.cpp index da23307e..53c38115 100644 --- a/ginac/mul.cpp +++ b/ginac/mul.cpp @@ -3,7 +3,7 @@ * Implementation of GiNaC's products of expressions. */ /* - * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2008 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -17,100 +17,94 @@ * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ +#include #include #include +#include #include "mul.h" #include "add.h" #include "power.h" +#include "operators.h" #include "matrix.h" +#include "indexed.h" +#include "lst.h" #include "archive.h" -#include "debugmsg.h" #include "utils.h" +#include "symbol.h" +#include "compiler.h" namespace GiNaC { -GINAC_IMPLEMENT_REGISTERED_CLASS(mul, expairseq) +GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(mul, expairseq, + print_func(&mul::do_print). + print_func(&mul::do_print_latex). + print_func(&mul::do_print_csrc). + print_func(&mul::do_print_tree). + print_func(&mul::do_print_python_repr)) + ////////// -// default ctor, dctor, copy ctor assignment operator and helpers +// default constructor ////////// mul::mul() { - debugmsg("mul default ctor",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_mul; } -DEFAULT_COPY(mul) -DEFAULT_DESTROY(mul) - ////////// -// other ctors +// other constructors ////////// // public mul::mul(const ex & lh, const ex & rh) { - debugmsg("mul ctor from ex,ex",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_mul; - overall_coeff = _ex1(); + overall_coeff = _ex1; construct_from_2_ex(lh,rh); GINAC_ASSERT(is_canonical()); } mul::mul(const exvector & v) { - debugmsg("mul ctor from exvector",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_mul; - overall_coeff = _ex1(); + overall_coeff = _ex1; construct_from_exvector(v); GINAC_ASSERT(is_canonical()); } mul::mul(const epvector & v) { - debugmsg("mul ctor from epvector",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_mul; - overall_coeff = _ex1(); + overall_coeff = _ex1; construct_from_epvector(v); GINAC_ASSERT(is_canonical()); } -mul::mul(const epvector & v, const ex & oc) +mul::mul(const epvector & v, const ex & oc, bool do_index_renaming) { - debugmsg("mul ctor from epvector,ex",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_mul; overall_coeff = oc; - construct_from_epvector(v); + construct_from_epvector(v, do_index_renaming); GINAC_ASSERT(is_canonical()); } -mul::mul(epvector * vp, const ex & oc) +mul::mul(std::auto_ptr vp, const ex & oc, bool do_index_renaming) { - debugmsg("mul ctor from epvector *,ex",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_mul; - GINAC_ASSERT(vp!=0); + GINAC_ASSERT(vp.get()!=0); overall_coeff = oc; - construct_from_epvector(*vp); - delete vp; + construct_from_epvector(*vp, do_index_renaming); GINAC_ASSERT(is_canonical()); } mul::mul(const ex & lh, const ex & mh, const ex & rh) { - debugmsg("mul ctor from ex,ex,ex",LOGLEVEL_CONSTRUCT); - tinfo_key = TINFO_mul; exvector factors; factors.reserve(3); factors.push_back(lh); factors.push_back(mh); factors.push_back(rh); - overall_coeff = _ex1(); + overall_coeff = _ex1; construct_from_exvector(factors); GINAC_ASSERT(is_canonical()); } @@ -119,121 +113,162 @@ mul::mul(const ex & lh, const ex & mh, const ex & rh) // archiving ////////// -DEFAULT_ARCHIVING(mul) - ////////// // functions overriding virtual functions from base classes ////////// -// public +void mul::print_overall_coeff(const print_context & c, const char *mul_sym) const +{ + const numeric &coeff = ex_to(overall_coeff); + if (coeff.csgn() == -1) + c.s << '-'; + if (!coeff.is_equal(*_num1_p) && + !coeff.is_equal(*_num_1_p)) { + if (coeff.is_rational()) { + if (coeff.is_negative()) + (-coeff).print(c); + else + coeff.print(c); + } else { + if (coeff.csgn() == -1) + (-coeff).print(c, precedence()); + else + coeff.print(c, precedence()); + } + c.s << mul_sym; + } +} -void mul::print(const print_context & c, unsigned level) const +void mul::do_print(const print_context & c, unsigned level) const { - debugmsg("mul print", LOGLEVEL_PRINT); + if (precedence() <= level) + c.s << '('; + + print_overall_coeff(c, "*"); + + epvector::const_iterator it = seq.begin(), itend = seq.end(); + bool first = true; + while (it != itend) { + if (!first) + c.s << '*'; + else + first = false; + recombine_pair_to_ex(*it).print(c, precedence()); + ++it; + } - if (is_a(c)) { + if (precedence() <= level) + c.s << ')'; +} - inherited::print(c, level); +void mul::do_print_latex(const print_latex & c, unsigned level) const +{ + if (precedence() <= level) + c.s << "{("; + + print_overall_coeff(c, " "); + + // Separate factors into those with negative numeric exponent + // and all others + epvector::const_iterator it = seq.begin(), itend = seq.end(); + exvector neg_powers, others; + while (it != itend) { + GINAC_ASSERT(is_exactly_a(it->coeff)); + if (ex_to(it->coeff).is_negative()) + neg_powers.push_back(recombine_pair_to_ex(expair(it->rest, -(it->coeff)))); + else + others.push_back(recombine_pair_to_ex(*it)); + ++it; + } - } else if (is_a(c)) { + if (!neg_powers.empty()) { - if (precedence() <= level) - c.s << "("; + // Factors with negative exponent are printed as a fraction + c.s << "\\frac{"; + mul(others).eval().print(c); + c.s << "}{"; + mul(neg_powers).eval().print(c); + c.s << "}"; - if (!overall_coeff.is_equal(_ex1())) { - overall_coeff.print(c, precedence()); - c.s << "*"; + } else { + + // All other factors are printed in the ordinary way + exvector::const_iterator vit = others.begin(), vitend = others.end(); + while (vit != vitend) { + c.s << ' '; + vit->print(c, precedence()); + ++vit; } + } - // Print arguments, separated by "*" or "/" - epvector::const_iterator it = seq.begin(), itend = seq.end(); - while (it != itend) { + if (precedence() <= level) + c.s << ")}"; +} - // If the first argument is a negative integer power, it gets printed as "1.0/" - if (it == seq.begin() && ex_to(it->coeff).is_integer() && it->coeff.compare(_num0()) < 0) { - if (is_a(c)) - c.s << "recip("; - else - c.s << "1.0/"; - } +void mul::do_print_csrc(const print_csrc & c, unsigned level) const +{ + if (precedence() <= level) + c.s << "("; - // If the exponent is 1 or -1, it is left out - if (it->coeff.compare(_ex1()) == 0 || it->coeff.compare(_num_1()) == 0) - it->rest.print(c, precedence()); - else { - // Outer parens around ex needed for broken gcc-2.95 parser: - (ex(power(it->rest, abs(ex_to(it->coeff))))).print(c, level); - } + if (!overall_coeff.is_equal(_ex1)) { + if (overall_coeff.is_equal(_ex_1)) + c.s << "-"; + else { + overall_coeff.print(c, precedence()); + c.s << "*"; + } + } - // Separator is "/" for negative integer powers, "*" otherwise - ++it; - if (it != itend) { - if (ex_to(it->coeff).is_integer() && it->coeff.compare(_num0()) < 0) - c.s << "/"; - else - c.s << "*"; - } + // Print arguments, separated by "*" or "/" + epvector::const_iterator it = seq.begin(), itend = seq.end(); + while (it != itend) { + + // If the first argument is a negative integer power, it gets printed as "1.0/" + bool needclosingparenthesis = false; + if (it == seq.begin() && it->coeff.info(info_flags::negint)) { + if (is_a(c)) { + c.s << "recip("; + needclosingparenthesis = true; + } else + c.s << "1.0/"; } - if (precedence() <= level) + // If the exponent is 1 or -1, it is left out + if (it->coeff.is_equal(_ex1) || it->coeff.is_equal(_ex_1)) + it->rest.print(c, precedence()); + else if (it->coeff.info(info_flags::negint)) + // Outer parens around ex needed for broken GCC parser: + (ex(power(it->rest, -ex_to(it->coeff)))).print(c, level); + else + // Outer parens around ex needed for broken GCC parser: + (ex(power(it->rest, ex_to(it->coeff)))).print(c, level); + + if (needclosingparenthesis) c.s << ")"; - } else { - - if (precedence() <= level) { - if (is_a(c)) - c.s << "{("; + // Separator is "/" for negative integer powers, "*" otherwise + ++it; + if (it != itend) { + if (it->coeff.info(info_flags::negint)) + c.s << "/"; else - c.s << "("; - } - - bool first = true; - - // First print the overall numeric coefficient - numeric coeff = ex_to(overall_coeff); - if (coeff.csgn() == -1) - c.s << '-'; - if (!coeff.is_equal(_num1()) && - !coeff.is_equal(_num_1())) { - if (coeff.is_rational()) { - if (coeff.is_negative()) - (-coeff).print(c); - else - coeff.print(c); - } else { - if (coeff.csgn() == -1) - (-coeff).print(c, precedence()); - else - coeff.print(c, precedence()); - } - if (is_a(c)) - c.s << ' '; - else - c.s << '*'; + c.s << "*"; } + } - // Then proceed with the remaining factors - epvector::const_iterator it = seq.begin(), itend = seq.end(); - while (it != itend) { - if (!first) { - if (is_a(c)) - c.s << ' '; - else - c.s << '*'; - } else { - first = false; - } - recombine_pair_to_ex(*it).print(c, precedence()); - ++it; - } + if (precedence() <= level) + c.s << ")"; +} - if (precedence() <= level) { - if (is_a(c)) - c.s << ")}"; - else - c.s << ")"; - } +void mul::do_print_python_repr(const print_python_repr & c, unsigned level) const +{ + c.s << class_name() << '('; + op(0).print(c); + for (size_t i=1; i(i->coeff).is_integer()) - deg_sum += i->rest.degree(s) * ex_to(i->coeff).to_int(); + deg_sum += recombine_pair_to_ex(*i).degree(s); + else { + if (i->rest.has(s)) + throw std::runtime_error("mul::degree() undefined degree because of non-integer exponent"); + } ++i; } return deg_sum; @@ -286,7 +325,11 @@ int mul::ldegree(const ex & s) const epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { if (ex_to(i->coeff).is_integer()) - deg_sum += i->rest.ldegree(s) * ex_to(i->coeff).to_int(); + deg_sum += recombine_pair_to_ex(*i).ldegree(s); + else { + if (i->rest.has(s)) + throw std::runtime_error("mul::ldegree() undefined degree because of non-integer exponent"); + } ++i; } return deg_sum; @@ -327,7 +370,7 @@ ex mul::coeff(const ex & s, int n) const return (new mul(coeffseq))->setflag(status_flags::dynallocated); } - return _ex0(); + return _ex0; } /** Perform automatic term rewriting rules in this class. In the following @@ -341,12 +384,10 @@ ex mul::coeff(const ex & s, int n) const * @param level cut-off in recursive evaluation */ ex mul::eval(int level) const { - debugmsg("mul eval",LOGLEVEL_MEMBER_FUNCTION); - - epvector *evaled_seqp = evalchildren(level); - if (evaled_seqp) { + std::auto_ptr evaled_seqp = evalchildren(level); + if (evaled_seqp.get()) { // do more evaluation later - return (new mul(evaled_seqp,overall_coeff))-> + return (new mul(evaled_seqp, overall_coeff))-> setflag(status_flags::dynallocated); } @@ -356,7 +397,7 @@ ex mul::eval(int level) const GINAC_ASSERT((!is_exactly_a(i->rest)) || (!(ex_to(i->coeff).is_integer()))); GINAC_ASSERT(!(i->is_canonical_numeric())); - if (is_ex_exactly_of_type(recombine_pair_to_ex(*i), numeric)) + if (is_exactly_a(recombine_pair_to_ex(*i))) print(print_tree(std::cerr)); GINAC_ASSERT(!is_exactly_a(recombine_pair_to_ex(*i))); /* for paranoia */ @@ -370,26 +411,26 @@ ex mul::eval(int level) const if (flags & status_flags::evaluated) { GINAC_ASSERT(seq.size()>0); - GINAC_ASSERT(seq.size()>1 || !overall_coeff.is_equal(_ex1())); + GINAC_ASSERT(seq.size()>1 || !overall_coeff.is_equal(_ex1)); return *this; } - int seq_size = seq.size(); + size_t seq_size = seq.size(); if (overall_coeff.is_zero()) { // *(...,x;0) -> 0 - return _ex0(); + return _ex0; } else if (seq_size==0) { // *(;c) -> c return overall_coeff; - } else if (seq_size==1 && overall_coeff.is_equal(_ex1())) { + } else if (seq_size==1 && overall_coeff.is_equal(_ex1)) { // *(x;1) -> x return recombine_pair_to_ex(*(seq.begin())); } else if ((seq_size==1) && - is_ex_exactly_of_type((*seq.begin()).rest,add) && - ex_to((*seq.begin()).coeff).is_equal(_num1())) { + is_exactly_a((*seq.begin()).rest) && + ex_to((*seq.begin()).coeff).is_equal(*_num1_p)) { // *(+(x,y,...);c) -> +(*(x,c),*(y,c),...) (c numeric(), no powers of +()) const add & addref = ex_to((*seq.begin()).rest); - epvector *distrseq = new epvector(); + std::auto_ptr distrseq(new epvector); distrseq->reserve(addref.seq.size()); epvector::const_iterator i = addref.seq.begin(), end = addref.seq.end(); while (i != end) { @@ -398,9 +439,81 @@ ex mul::eval(int level) const } return (new add(distrseq, ex_to(addref.overall_coeff). - mul_dyn(ex_to(overall_coeff)))) - ->setflag(status_flags::dynallocated | status_flags::evaluated); + mul_dyn(ex_to(overall_coeff))) + )->setflag(status_flags::dynallocated | status_flags::evaluated); + } else if ((seq_size >= 2) && (! (flags & status_flags::expanded))) { + // Strip the content and the unit part from each term. Thus + // things like (-x+a)*(3*x-3*a) automagically turn into - 3*(x-a)2 + + epvector::const_iterator last = seq.end(); + epvector::const_iterator i = seq.begin(); + epvector::const_iterator j = seq.begin(); + std::auto_ptr s(new epvector); + numeric oc = *_num1_p; + bool something_changed = false; + while (i!=last) { + if (likely(! (is_a(i->rest) && i->coeff.is_equal(_ex1)))) { + // power::eval has such a rule, no need to handle powers here + ++i; + continue; + } + + // XXX: What is the best way to check if the polynomial is a primitive? + numeric c = i->rest.integer_content(); + const numeric lead_coeff = + ex_to(ex_to(i->rest).seq.begin()->coeff).div(c); + const bool canonicalizable = lead_coeff.is_integer(); + + // XXX: The main variable is chosen in a random way, so this code + // does NOT transform the term into the canonical form (thus, in some + // very unlucky event it can even loop forever). Hopefully the main + // variable will be the same for all terms in *this + const bool unit_normal = lead_coeff.is_pos_integer(); + if (likely((c == *_num1_p) && ((! canonicalizable) || unit_normal))) { + ++i; + continue; + } + + if (! something_changed) { + s->reserve(seq_size); + something_changed = true; + } + + while ((j!=i) && (j!=last)) { + s->push_back(*j); + ++j; + } + + if (! unit_normal) + c = c.mul(*_num_1_p); + + oc = oc.mul(c); + + // divide add by the number in place to save at least 2 .eval() calls + const add& addref = ex_to(i->rest); + add* primitive = new add(addref); + primitive->setflag(status_flags::dynallocated); + primitive->clearflag(status_flags::hash_calculated); + primitive->overall_coeff = ex_to(primitive->overall_coeff).div_dyn(c); + for (epvector::iterator ai = primitive->seq.begin(); + ai != primitive->seq.end(); ++ai) + ai->coeff = ex_to(ai->coeff).div_dyn(c); + + s->push_back(expair(*primitive, _ex1)); + + ++i; + ++j; + } + if (something_changed) { + while (j!=last) { + s->push_back(*j); + ++j; + } + return (new mul(s, ex_to(overall_coeff).mul_dyn(oc)) + )->setflag(status_flags::dynallocated); + } } + return this->hold(); } @@ -412,7 +525,7 @@ ex mul::evalf(int level) const if (level==-max_recursion_level) throw(std::runtime_error("max recursion level reached")); - epvector *s = new epvector(); + std::auto_ptr s(new epvector); s->reserve(seq.size()); --level; @@ -425,17 +538,52 @@ ex mul::evalf(int level) const return mul(s, overall_coeff.evalf(level)); } -ex mul::evalm(void) const +void mul::find_real_imag(ex & rp, ex & ip) const +{ + rp = overall_coeff.real_part(); + ip = overall_coeff.imag_part(); + for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) { + ex factor = recombine_pair_to_ex(*i); + ex new_rp = factor.real_part(); + ex new_ip = factor.imag_part(); + if(new_ip.is_zero()) { + rp *= new_rp; + ip *= new_rp; + } else { + ex temp = rp*new_rp - ip*new_ip; + ip = ip*new_rp + rp*new_ip; + rp = temp; + } + } + rp = rp.expand(); + ip = ip.expand(); +} + +ex mul::real_part() const +{ + ex rp, ip; + find_real_imag(rp, ip); + return rp; +} + +ex mul::imag_part() const +{ + ex rp, ip; + find_real_imag(rp, ip); + return ip; +} + +ex mul::evalm() const { // numeric*matrix - if (seq.size() == 1 && seq[0].coeff.is_equal(_ex1()) - && is_ex_of_type(seq[0].rest, matrix)) + if (seq.size() == 1 && seq[0].coeff.is_equal(_ex1) + && is_a(seq[0].rest)) return ex_to(seq[0].rest).mul(ex_to(overall_coeff)); // Evaluate children first, look whether there are any matrices at all // (there can be either no matrices or one matrix; if there were more // than one matrix, it would be a non-commutative product) - epvector *s = new epvector; + std::auto_ptr s(new epvector); s->reserve(seq.size()); bool have_matrix = false; @@ -445,7 +593,7 @@ ex mul::evalm(void) const while (i != end) { const ex &m = recombine_pair_to_ex(*i).evalm(); s->push_back(split_ex_to_pair(m)); - if (is_ex_of_type(m, matrix)) { + if (is_a(m)) { have_matrix = true; the_matrix = s->end() - 1; } @@ -465,19 +613,174 @@ ex mul::evalm(void) const return (new mul(s, overall_coeff))->setflag(status_flags::dynallocated); } -ex mul::simplify_ncmul(const exvector & v) const +ex mul::eval_ncmul(const exvector & v) const { if (seq.empty()) - return inherited::simplify_ncmul(v); + return inherited::eval_ncmul(v); - // Find first noncommutative element and call its simplify_ncmul() + // Find first noncommutative element and call its eval_ncmul() epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { if (i->rest.return_type() == return_types::noncommutative) - return i->rest.simplify_ncmul(v); + return i->rest.eval_ncmul(v); ++i; } - return inherited::simplify_ncmul(v); + return inherited::eval_ncmul(v); +} + +bool tryfactsubs(const ex & origfactor, const ex & patternfactor, int & nummatches, exmap& repls) +{ + ex origbase; + int origexponent; + int origexpsign; + + if (is_exactly_a(origfactor) && origfactor.op(1).info(info_flags::integer)) { + origbase = origfactor.op(0); + int expon = ex_to(origfactor.op(1)).to_int(); + origexponent = expon > 0 ? expon : -expon; + origexpsign = expon > 0 ? 1 : -1; + } else { + origbase = origfactor; + origexponent = 1; + origexpsign = 1; + } + + ex patternbase; + int patternexponent; + int patternexpsign; + + if (is_exactly_a(patternfactor) && patternfactor.op(1).info(info_flags::integer)) { + patternbase = patternfactor.op(0); + int expon = ex_to(patternfactor.op(1)).to_int(); + patternexponent = expon > 0 ? expon : -expon; + patternexpsign = expon > 0 ? 1 : -1; + } else { + patternbase = patternfactor; + patternexponent = 1; + patternexpsign = 1; + } + + exmap saverepls = repls; + if (origexponent < patternexponent || origexpsign != patternexpsign || !origbase.match(patternbase,saverepls)) + return false; + repls = saverepls; + + int newnummatches = origexponent / patternexponent; + if (newnummatches < nummatches) + nummatches = newnummatches; + return true; +} + +/** Checks wheter e matches to the pattern pat and the (possibly to be updated) + * list of replacements repls. This matching is in the sense of algebraic + * substitutions. Matching starts with pat.op(factor) of the pattern because + * the factors before this one have already been matched. The (possibly + * updated) number of matches is in nummatches. subsed[i] is true for factors + * that already have been replaced by previous substitutions and matched[i] + * is true for factors that have been matched by the current match. + */ +bool algebraic_match_mul_with_mul(const mul &e, const ex &pat, exmap& repls, + int factor, int &nummatches, const std::vector &subsed, + std::vector &matched) +{ + if (factor == pat.nops()) + return true; + + for (size_t i=0; i(pattern)) { + exmap repls; + int nummatches = std::numeric_limits::max(); + std::vector subsed(seq.size(), false); + std::vector matched(seq.size(), false); + if(algebraic_match_mul_with_mul(*this, pattern, repls, 0, nummatches, + subsed, matched)) + return true; + } + return basic::has(pattern, options); +} + +ex mul::algebraic_subs_mul(const exmap & m, unsigned options) const +{ + std::vector subsed(seq.size(), false); + exvector subsresult(seq.size()); + ex divide_by = 1; + ex multiply_by = 1; + + for (exmap::const_iterator it = m.begin(); it != m.end(); ++it) { + + if (is_exactly_a(it->first)) { +retry1: + int nummatches = std::numeric_limits::max(); + std::vector currsubsed(seq.size(), false); + exmap repls; + + if(!algebraic_match_mul_with_mul(*this, it->first, repls, 0, nummatches, subsed, currsubsed)) + continue; + + for (size_t j=0; jfirst.subs(repls, subs_options::no_pattern); + divide_by *= power(subsed_pattern, nummatches); + ex subsed_result + = it->second.subs(repls, subs_options::no_pattern); + multiply_by *= power(subsed_result, nummatches); + goto retry1; + + } else { + + for (size_t j=0; jnops(); j++) { + int nummatches = std::numeric_limits::max(); + exmap repls; + if (!subsed[j] && tryfactsubs(op(j), it->first, nummatches, repls)){ + subsed[j] = true; + ex subsed_pattern + = it->first.subs(repls, subs_options::no_pattern); + divide_by *= power(subsed_pattern, nummatches); + ex subsed_result + = it->second.subs(repls, subs_options::no_pattern); + multiply_by *= power(subsed_result, nummatches); + } + } + } + } + + bool subsfound = false; + for (size_t i=0; irest, i->coeff - _ex1()) * + expair ep = split_ex_to_pair(power(i->rest, i->coeff - _ex1) * i->rest.diff(s)); ep.swap(*i2); addseq.push_back((new mul(mulseq, overall_coeff * i->coeff))->setflag(status_flags::dynallocated)); @@ -510,15 +813,10 @@ int mul::compare_same_type(const basic & other) const return inherited::compare_same_type(other); } -bool mul::is_equal_same_type(const basic & other) const -{ - return inherited::is_equal_same_type(other); -} - -unsigned mul::return_type(void) const +unsigned mul::return_type() const { if (seq.empty()) { - // mul without factors: should not happen, but commutes + // mul without factors: should not happen, but commutates return return_types::commutative; } @@ -538,8 +836,8 @@ unsigned mul::return_type(void) const if ((rt == return_types::noncommutative) && (!all_commutative)) { // another nc element found, compare type_infos if (noncommutative_element->rest.return_type_tinfo() != i->rest.return_type_tinfo()) { - // diffent types -> mul is ncc - return return_types::noncommutative_composite; + // different types -> mul is ncc + return return_types::noncommutative_composite; } } ++i; @@ -548,10 +846,10 @@ unsigned mul::return_type(void) const return all_commutative ? return_types::commutative : return_types::noncommutative; } -unsigned mul::return_type_tinfo(void) const +return_type_t mul::return_type_tinfo() const { if (seq.empty()) - return tinfo_key; // mul without factors: should not happen + return make_return_type_t(); // mul without factors: should not happen // return type_info of first noncommutative element epvector::const_iterator i = seq.begin(), end = seq.end(); @@ -561,27 +859,27 @@ unsigned mul::return_type_tinfo(void) const ++i; } // no noncommutative element found, should not happen - return tinfo_key; + return make_return_type_t(); } -ex mul::thisexpairseq(const epvector & v, const ex & oc) const +ex mul::thisexpairseq(const epvector & v, const ex & oc, bool do_index_renaming) const { - return (new mul(v, oc))->setflag(status_flags::dynallocated); + return (new mul(v, oc, do_index_renaming))->setflag(status_flags::dynallocated); } -ex mul::thisexpairseq(epvector * vp, const ex & oc) const +ex mul::thisexpairseq(std::auto_ptr vp, const ex & oc, bool do_index_renaming) const { - return (new mul(vp, oc))->setflag(status_flags::dynallocated); + return (new mul(vp, oc, do_index_renaming))->setflag(status_flags::dynallocated); } expair mul::split_ex_to_pair(const ex & e) const { - if (is_ex_exactly_of_type(e,power)) { + if (is_exactly_a(e)) { const power & powerref = ex_to(e); - if (is_ex_exactly_of_type(powerref.exponent,numeric)) + if (is_exactly_a(powerref.exponent)) return expair(powerref.basis,powerref.exponent); } - return expair(e,_ex1()); + return expair(e,_ex1); } expair mul::combine_ex_with_coeff_to_pair(const ex & e, @@ -589,11 +887,11 @@ expair mul::combine_ex_with_coeff_to_pair(const ex & e, { // to avoid duplication of power simplification rules, // we create a temporary power object - // otherwise it would be hard to correctly simplify + // otherwise it would be hard to correctly evaluate // expression like (4^(1/3))^(3/2) - if (are_ex_trivially_equal(c,_ex1())) + if (c.is_equal(_ex1)) return split_ex_to_pair(e); - + return split_ex_to_pair(power(e,c)); } @@ -602,38 +900,38 @@ expair mul::combine_pair_with_coeff_to_pair(const expair & p, { // to avoid duplication of power simplification rules, // we create a temporary power object - // otherwise it would be hard to correctly simplify + // otherwise it would be hard to correctly evaluate // expression like (4^(1/3))^(3/2) - if (are_ex_trivially_equal(c,_ex1())) + if (c.is_equal(_ex1)) return p; - + return split_ex_to_pair(power(recombine_pair_to_ex(p),c)); } ex mul::recombine_pair_to_ex(const expair & p) const { - if (ex_to(p.coeff).is_equal(_num1())) + if (ex_to(p.coeff).is_equal(*_num1_p)) return p.rest; else - return power(p.rest,p.coeff); + return (new power(p.rest,p.coeff))->setflag(status_flags::dynallocated); } bool mul::expair_needs_further_processing(epp it) { - if (is_ex_exactly_of_type((*it).rest,mul) && - ex_to((*it).coeff).is_integer()) { + if (is_exactly_a(it->rest) && + ex_to(it->coeff).is_integer()) { // combined pair is product with integer power -> expand it *it = split_ex_to_pair(recombine_pair_to_ex(*it)); return true; } - if (is_ex_exactly_of_type((*it).rest,numeric)) { - expair ep=split_ex_to_pair(recombine_pair_to_ex(*it)); + if (is_exactly_a(it->rest)) { + expair ep = split_ex_to_pair(recombine_pair_to_ex(*it)); if (!ep.is_equal(*it)) { // combined pair is a numeric power which can be simplified *it = ep; return true; } - if (ex_to((*it).coeff).is_equal(_num1())) { + if (it->coeff.is_equal(_ex1)) { // combined pair has coeff 1 and must be moved to the end return true; } @@ -641,9 +939,9 @@ bool mul::expair_needs_further_processing(epp it) return false; } -ex mul::default_overall_coeff(void) const +ex mul::default_overall_coeff() const { - return _ex1(); + return _ex1; } void mul::combine_overall_coeff(const ex & c) @@ -667,72 +965,191 @@ bool mul::can_make_flat(const expair & p) const // this assertion will probably fail somewhere // it would require a more careful make_flat, obeying the power laws // probably should return true only if p.coeff is integer - return ex_to(p.coeff).is_equal(_num1()); + return ex_to(p.coeff).is_equal(*_num1_p); +} + +bool mul::can_be_further_expanded(const ex & e) +{ + if (is_exactly_a(e)) { + for (epvector::const_iterator cit = ex_to(e).seq.begin(); cit != ex_to(e).seq.end(); ++cit) { + if (is_exactly_a(cit->rest) && cit->coeff.info(info_flags::posint)) + return true; + } + } else if (is_exactly_a(e)) { + if (is_exactly_a(e.op(0)) && e.op(1).info(info_flags::posint)) + return true; + } + return false; } ex mul::expand(unsigned options) const { + { + // trivial case: expanding the monomial (~ 30% of all calls) + epvector::const_iterator i = seq.begin(), seq_end = seq.end(); + while ((i != seq.end()) && is_a(i->rest) && i->coeff.info(info_flags::integer)) + ++i; + if (i == seq_end) { + setflag(status_flags::expanded); + return *this; + } + } + + // do not rename indices if the object has no indices at all + if ((!(options & expand_options::expand_rename_idx)) && + this->info(info_flags::has_indices)) + options |= expand_options::expand_rename_idx; + + const bool skip_idx_rename = !(options & expand_options::expand_rename_idx); + // First, expand the children - epvector * expanded_seqp = expandchildren(options); - const epvector & expanded_seq = (expanded_seqp == NULL) ? seq : *expanded_seqp; + std::auto_ptr expanded_seqp = expandchildren(options); + const epvector & expanded_seq = (expanded_seqp.get() ? *expanded_seqp : seq); // Now, look for all the factors that are sums and multiply each one out // with the next one that is found while collecting the factors which are // not sums - int number_of_adds = 0; - ex last_expanded = _ex1(); + ex last_expanded = _ex1; + epvector non_adds; non_adds.reserve(expanded_seq.size()); - epvector::const_iterator cit = expanded_seq.begin(), last = expanded_seq.end(); - while (cit != last) { - if (is_ex_exactly_of_type(cit->rest, add) && - (cit->coeff.is_equal(_ex1()))) { - ++number_of_adds; - if (is_ex_exactly_of_type(last_expanded, add)) { - const add & add1 = ex_to(last_expanded); - const add & add2 = ex_to(cit->rest); - int n1 = add1.nops(); - int n2 = add2.nops(); - exvector distrseq; - distrseq.reserve(n1*n2); - for (int i1=0; i1(cit->rest) && + (cit->coeff.is_equal(_ex1))) { + if (is_exactly_a(last_expanded)) { + + // Expand a product of two sums, aggressive version. + // Caring for the overall coefficients in separate loops can + // sometimes give a performance gain of up to 15%! + + const int sizedifference = ex_to(last_expanded).seq.size()-ex_to(cit->rest).seq.size(); + // add2 is for the inner loop and should be the bigger of the two sums + // in the presence of asymptotically good sorting: + const add& add1 = (sizedifference<0 ? ex_to(last_expanded) : ex_to(cit->rest)); + const add& add2 = (sizedifference<0 ? ex_to(cit->rest) : ex_to(last_expanded)); + const epvector::const_iterator add1begin = add1.seq.begin(); + const epvector::const_iterator add1end = add1.seq.end(); + const epvector::const_iterator add2begin = add2.seq.begin(); + const epvector::const_iterator add2end = add2.seq.end(); + epvector distrseq; + distrseq.reserve(add1.seq.size()+add2.seq.size()); + + // Multiply add2 with the overall coefficient of add1 and append it to distrseq: + if (!add1.overall_coeff.is_zero()) { + if (add1.overall_coeff.is_equal(_ex1)) + distrseq.insert(distrseq.end(),add2begin,add2end); + else + for (epvector::const_iterator i=add2begin; i!=add2end; ++i) + distrseq.push_back(expair(i->rest, ex_to(i->coeff).mul_dyn(ex_to(add1.overall_coeff)))); + } + + // Multiply add1 with the overall coefficient of add2 and append it to distrseq: + if (!add2.overall_coeff.is_zero()) { + if (add2.overall_coeff.is_equal(_ex1)) + distrseq.insert(distrseq.end(),add1begin,add1end); + else + for (epvector::const_iterator i=add1begin; i!=add1end; ++i) + distrseq.push_back(expair(i->rest, ex_to(i->coeff).mul_dyn(ex_to(add2.overall_coeff)))); + } + + // Compute the new overall coefficient and put it together: + ex tmp_accu = (new add(distrseq, add1.overall_coeff*add2.overall_coeff))->setflag(status_flags::dynallocated); + + exvector add1_dummy_indices, add2_dummy_indices, add_indices; + lst dummy_subs; + + if (!skip_idx_rename) { + for (epvector::const_iterator i=add1begin; i!=add1end; ++i) { + add_indices = get_all_dummy_indices_safely(i->rest); + add1_dummy_indices.insert(add1_dummy_indices.end(), add_indices.begin(), add_indices.end()); + } + for (epvector::const_iterator i=add2begin; i!=add2end; ++i) { + add_indices = get_all_dummy_indices_safely(i->rest); + add2_dummy_indices.insert(add2_dummy_indices.end(), add_indices.begin(), add_indices.end()); } + + sort(add1_dummy_indices.begin(), add1_dummy_indices.end(), ex_is_less()); + sort(add2_dummy_indices.begin(), add2_dummy_indices.end(), ex_is_less()); + dummy_subs = rename_dummy_indices_uniquely(add1_dummy_indices, add2_dummy_indices); } - last_expanded = (new add(distrseq))-> - setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0)); + + // Multiply explicitly all non-numeric terms of add1 and add2: + for (epvector::const_iterator i2=add2begin; i2!=add2end; ++i2) { + // We really have to combine terms here in order to compactify + // the result. Otherwise it would become waayy tooo bigg. + numeric oc(*_num0_p); + epvector distrseq2; + distrseq2.reserve(add1.seq.size()); + const ex i2_new = (skip_idx_rename || (dummy_subs.op(0).nops() == 0) ? + i2->rest : + i2->rest.subs(ex_to(dummy_subs.op(0)), + ex_to(dummy_subs.op(1)), subs_options::no_pattern)); + for (epvector::const_iterator i1=add1begin; i1!=add1end; ++i1) { + // Don't push_back expairs which might have a rest that evaluates to a numeric, + // since that would violate an invariant of expairseq: + const ex rest = (new mul(i1->rest, i2_new))->setflag(status_flags::dynallocated); + if (is_exactly_a(rest)) { + oc += ex_to(rest).mul(ex_to(i1->coeff).mul(ex_to(i2->coeff))); + } else { + distrseq2.push_back(expair(rest, ex_to(i1->coeff).mul_dyn(ex_to(i2->coeff)))); + } + } + tmp_accu += (new add(distrseq2, oc))->setflag(status_flags::dynallocated); + } + last_expanded = tmp_accu; } else { - non_adds.push_back(split_ex_to_pair(last_expanded)); + if (!last_expanded.is_equal(_ex1)) + non_adds.push_back(split_ex_to_pair(last_expanded)); last_expanded = cit->rest; } + } else { non_adds.push_back(*cit); } - ++cit; } - if (expanded_seqp) - delete expanded_seqp; - + // Now the only remaining thing to do is to multiply the factors which // were not sums into the "last_expanded" sum - if (is_ex_exactly_of_type(last_expanded, add)) { - const add & finaladd = ex_to(last_expanded); + if (is_exactly_a(last_expanded)) { + size_t n = last_expanded.nops(); exvector distrseq; - int n = finaladd.nops(); distrseq.reserve(n); - for (int i=0; i - setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0))); + if (skip_idx_rename) + factors.push_back(split_ex_to_pair(last_expanded.op(i))); + else + factors.push_back(split_ex_to_pair(rename_dummy_indices_uniquely(va, last_expanded.op(i)))); + ex term = (new mul(factors, overall_coeff))->setflag(status_flags::dynallocated); + if (can_be_further_expanded(term)) { + distrseq.push_back(term.expand()); + } else { + if (options == 0) + ex_to(term).setflag(status_flags::expanded); + distrseq.push_back(term); + } } + return ((new add(distrseq))-> setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0))); } + non_adds.push_back(split_ex_to_pair(last_expanded)); - return (new mul(non_adds, overall_coeff))-> - setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0)); + ex result = (new mul(non_adds, overall_coeff))->setflag(status_flags::dynallocated); + if (can_be_further_expanded(result)) { + return result.expand(); + } else { + if (options == 0) + ex_to(result).setflag(status_flags::expanded); + return result; + } } @@ -754,9 +1171,9 @@ ex mul::expand(unsigned options) const * @see mul::expand() * @return pointer to epvector containing expanded representation or zero * pointer, if sequence is unchanged. */ -epvector * mul::expandchildren(unsigned options) const +std::auto_ptr mul::expandchildren(unsigned options) const { - epvector::const_iterator last = seq.end(); + const epvector::const_iterator last = seq.end(); epvector::const_iterator cit = seq.begin(); while (cit!=last) { const ex & factor = recombine_pair_to_ex(*cit); @@ -764,7 +1181,7 @@ epvector * mul::expandchildren(unsigned options) const if (!are_ex_trivially_equal(factor,expanded_factor)) { // something changed, copy seq, eval and return it - epvector *s = new epvector; + std::auto_ptr s(new epvector); s->reserve(seq.size()); // copy parts of seq which are known not to have changed @@ -773,9 +1190,11 @@ epvector * mul::expandchildren(unsigned options) const s->push_back(*cit2); ++cit2; } + // copy first changed element s->push_back(split_ex_to_pair(expanded_factor)); ++cit2; + // copy rest while (cit2!=last) { s->push_back(split_ex_to_pair(recombine_pair_to_ex(*cit2).expand(options))); @@ -786,7 +1205,9 @@ epvector * mul::expandchildren(unsigned options) const ++cit; } - return 0; // nothing has changed + return std::auto_ptr(0); // nothing has changed } +GINAC_BIND_UNARCHIVER(mul); + } // namespace GiNaC