X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fmul.cpp;h=16bbc5b229ac9f21c26bcadbfacb1a26c5b6790f;hp=64b090af6ecdd1f721e69617b022625c1ef5df26;hb=8cffcdf13d817a47f217f1a1043317d95969e070;hpb=9bf900398c9e10c1cd486377038c24f9410fcb08 diff --git a/ginac/mul.cpp b/ginac/mul.cpp index 64b090af..16bbc5b2 100644 --- a/ginac/mul.cpp +++ b/ginac/mul.cpp @@ -3,7 +3,7 @@ * Implementation of GiNaC's products of expressions. */ /* - * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2019 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -17,45 +17,52 @@ * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ -#include -#include -#include - #include "mul.h" #include "add.h" #include "power.h" +#include "operators.h" #include "matrix.h" +#include "indexed.h" +#include "lst.h" #include "archive.h" #include "utils.h" +#include "symbol.h" +#include "compiler.h" + +#include +#include +#include +#include namespace GiNaC { -GINAC_IMPLEMENT_REGISTERED_CLASS(mul, expairseq) +GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(mul, expairseq, + print_func(&mul::do_print). + print_func(&mul::do_print_latex). + print_func(&mul::do_print_csrc). + print_func(&mul::do_print_tree). + print_func(&mul::do_print_python_repr)) + ////////// -// default ctor, dtor, copy ctor, assignment operator and helpers +// default constructor ////////// mul::mul() { - tinfo_key = TINFO_mul; } -DEFAULT_COPY(mul) -DEFAULT_DESTROY(mul) - ////////// -// other ctors +// other constructors ////////// // public mul::mul(const ex & lh, const ex & rh) { - tinfo_key = TINFO_mul; overall_coeff = _ex1; construct_from_2_ex(lh,rh); GINAC_ASSERT(is_canonical()); @@ -63,7 +70,6 @@ mul::mul(const ex & lh, const ex & rh) mul::mul(const exvector & v) { - tinfo_key = TINFO_mul; overall_coeff = _ex1; construct_from_exvector(v); GINAC_ASSERT(is_canonical()); @@ -71,33 +77,34 @@ mul::mul(const exvector & v) mul::mul(const epvector & v) { - tinfo_key = TINFO_mul; overall_coeff = _ex1; construct_from_epvector(v); GINAC_ASSERT(is_canonical()); } -mul::mul(const epvector & v, const ex & oc) +mul::mul(const epvector & v, const ex & oc, bool do_index_renaming) { - tinfo_key = TINFO_mul; overall_coeff = oc; - construct_from_epvector(v); + construct_from_epvector(v, do_index_renaming); GINAC_ASSERT(is_canonical()); } -mul::mul(epvector * vp, const ex & oc) +mul::mul(epvector && vp) +{ + overall_coeff = _ex1; + construct_from_epvector(std::move(vp)); + GINAC_ASSERT(is_canonical()); +} + +mul::mul(epvector && vp, const ex & oc, bool do_index_renaming) { - tinfo_key = TINFO_mul; - GINAC_ASSERT(vp!=0); overall_coeff = oc; - construct_from_epvector(*vp); - delete vp; + construct_from_epvector(std::move(vp), do_index_renaming); GINAC_ASSERT(is_canonical()); } mul::mul(const ex & lh, const ex & mh, const ex & rh) { - tinfo_key = TINFO_mul; exvector factors; factors.reserve(3); factors.push_back(lh); @@ -112,119 +119,154 @@ mul::mul(const ex & lh, const ex & mh, const ex & rh) // archiving ////////// -DEFAULT_ARCHIVING(mul) - ////////// // functions overriding virtual functions from base classes ////////// -// public - -void mul::print(const print_context & c, unsigned level) const +void mul::print_overall_coeff(const print_context & c, const char *mul_sym) const { - if (is_a(c)) { - - inherited::print(c, level); - - } else if (is_a(c)) { - - if (precedence() <= level) - c.s << "("; - - if (!overall_coeff.is_equal(_ex1)) { - overall_coeff.print(c, precedence()); - c.s << "*"; + const numeric &coeff = ex_to(overall_coeff); + if (coeff.csgn() == -1) + c.s << '-'; + if (!coeff.is_equal(*_num1_p) && + !coeff.is_equal(*_num_1_p)) { + if (coeff.is_rational()) { + if (coeff.is_negative()) + (-coeff).print(c); + else + coeff.print(c); + } else { + if (coeff.csgn() == -1) + (-coeff).print(c, precedence()); + else + coeff.print(c, precedence()); } + c.s << mul_sym; + } +} - // Print arguments, separated by "*" or "/" - epvector::const_iterator it = seq.begin(), itend = seq.end(); - while (it != itend) { +void mul::do_print(const print_context & c, unsigned level) const +{ + if (precedence() <= level) + c.s << '('; + + print_overall_coeff(c, "*"); + + bool first = true; + for (auto & it : seq) { + if (!first) + c.s << '*'; + else + first = false; + recombine_pair_to_ex(it).print(c, precedence()); + } - // If the first argument is a negative integer power, it gets printed as "1.0/" - if (it == seq.begin() && ex_to(it->coeff).is_integer() && it->coeff.compare(_num0) < 0) { - if (is_a(c)) - c.s << "recip("; - else - c.s << "1.0/"; - } + if (precedence() <= level) + c.s << ')'; +} - // If the exponent is 1 or -1, it is left out - if (it->coeff.compare(_ex1) == 0 || it->coeff.compare(_num_1) == 0) - it->rest.print(c, precedence()); - else { - // Outer parens around ex needed for broken gcc-2.95 parser: - (ex(power(it->rest, abs(ex_to(it->coeff))))).print(c, level); - } +void mul::do_print_latex(const print_latex & c, unsigned level) const +{ + if (precedence() <= level) + c.s << "{("; + + print_overall_coeff(c, " "); + + // Separate factors into those with negative numeric exponent + // and all others + exvector neg_powers, others; + for (auto & it : seq) { + GINAC_ASSERT(is_exactly_a(it.coeff)); + if (ex_to(it.coeff).is_negative()) + neg_powers.push_back(recombine_pair_to_ex(expair(it.rest, -it.coeff))); + else + others.push_back(recombine_pair_to_ex(it)); + } - // Separator is "/" for negative integer powers, "*" otherwise - ++it; - if (it != itend) { - if (ex_to(it->coeff).is_integer() && it->coeff.compare(_num0) < 0) - c.s << "/"; - else - c.s << "*"; - } - } + if (!neg_powers.empty()) { - if (precedence() <= level) - c.s << ")"; + // Factors with negative exponent are printed as a fraction + c.s << "\\frac{"; + mul(others).eval().print(c); + c.s << "}{"; + mul(neg_powers).eval().print(c); + c.s << "}"; } else { - if (precedence() <= level) { - if (is_a(c)) - c.s << "{("; - else - c.s << "("; + // All other factors are printed in the ordinary way + for (auto & vit : others) { + c.s << ' '; + vit.print(c, precedence()); } + } - bool first = true; + if (precedence() <= level) + c.s << ")}"; +} - // First print the overall numeric coefficient - numeric coeff = ex_to(overall_coeff); - if (coeff.csgn() == -1) - c.s << '-'; - if (!coeff.is_equal(_num1) && - !coeff.is_equal(_num_1)) { - if (coeff.is_rational()) { - if (coeff.is_negative()) - (-coeff).print(c); - else - coeff.print(c); - } else { - if (coeff.csgn() == -1) - (-coeff).print(c, precedence()); - else - coeff.print(c, precedence()); - } - if (is_a(c)) - c.s << ' '; - else - c.s << '*'; +void mul::do_print_csrc(const print_csrc & c, unsigned level) const +{ + if (precedence() <= level) + c.s << "("; + + if (!overall_coeff.is_equal(_ex1)) { + if (overall_coeff.is_equal(_ex_1)) + c.s << "-"; + else { + overall_coeff.print(c, precedence()); + c.s << "*"; } + } - // Then proceed with the remaining factors - epvector::const_iterator it = seq.begin(), itend = seq.end(); - while (it != itend) { - if (!first) { - if (is_a(c)) - c.s << ' '; - else - c.s << '*'; - } else { - first = false; - } - recombine_pair_to_ex(*it).print(c, precedence()); - ++it; + // Print arguments, separated by "*" or "/" + auto it = seq.begin(), itend = seq.end(); + while (it != itend) { + + // If the first argument is a negative integer power, it gets printed as "1.0/" + bool needclosingparenthesis = false; + if (it == seq.begin() && it->coeff.info(info_flags::negint)) { + if (is_a(c)) { + c.s << "recip("; + needclosingparenthesis = true; + } else + c.s << "1.0/"; } - if (precedence() <= level) { - if (is_a(c)) - c.s << ")}"; + // If the exponent is 1 or -1, it is left out + if (it->coeff.is_equal(_ex1) || it->coeff.is_equal(_ex_1)) + it->rest.print(c, precedence()); + else if (it->coeff.info(info_flags::negint)) + ex(power(it->rest, -ex_to(it->coeff))).print(c, level); + else + ex(power(it->rest, ex_to(it->coeff))).print(c, level); + + if (needclosingparenthesis) + c.s << ")"; + + // Separator is "/" for negative integer powers, "*" otherwise + ++it; + if (it != itend) { + if (it->coeff.info(info_flags::negint)) + c.s << "/"; else - c.s << ")"; + c.s << "*"; } } + + if (precedence() <= level) + c.s << ")"; +} + +void mul::do_print_python_repr(const print_python_repr & c, unsigned level) const +{ + c.s << class_name() << '('; + op(0).print(c); + for (size_t i=1; i(i->coeff).is_integer()) - deg_sum += i->rest.degree(s) * ex_to(i->coeff).to_int(); - ++i; + for (auto & it : seq) { + if (ex_to(it.coeff).is_integer()) + deg_sum += recombine_pair_to_ex(it).degree(s); + else { + if (it.rest.has(s)) + throw std::runtime_error("mul::degree() undefined degree because of non-integer exponent"); + } } return deg_sum; } @@ -274,11 +413,13 @@ int mul::ldegree(const ex & s) const { // Sum up degrees of factors int deg_sum = 0; - epvector::const_iterator i = seq.begin(), end = seq.end(); - while (i != end) { - if (ex_to(i->coeff).is_integer()) - deg_sum += i->rest.ldegree(s) * ex_to(i->coeff).to_int(); - ++i; + for (auto & it : seq) { + if (ex_to(it.coeff).is_integer()) + deg_sum += recombine_pair_to_ex(it).ldegree(s); + else { + if (it.rest.has(s)) + throw std::runtime_error("mul::ldegree() undefined degree because of non-integer exponent"); + } } return deg_sum; } @@ -291,19 +432,15 @@ ex mul::coeff(const ex & s, int n) const if (n==0) { // product of individual coeffs // if a non-zero power of s is found, the resulting product will be 0 - epvector::const_iterator i = seq.begin(), end = seq.end(); - while (i != end) { - coeffseq.push_back(recombine_pair_to_ex(*i).coeff(s,n)); - ++i; - } + for (auto & it : seq) + coeffseq.push_back(recombine_pair_to_ex(it).coeff(s,n)); coeffseq.push_back(overall_coeff); - return (new mul(coeffseq))->setflag(status_flags::dynallocated); + return dynallocate(coeffseq); } - epvector::const_iterator i = seq.begin(), end = seq.end(); bool coeff_found = false; - while (i != end) { - ex t = recombine_pair_to_ex(*i); + for (auto & it : seq) { + ex t = recombine_pair_to_ex(it); ex c = t.coeff(s, n); if (!c.is_zero()) { coeffseq.push_back(c); @@ -311,11 +448,10 @@ ex mul::coeff(const ex & s, int n) const } else { coeffseq.push_back(t); } - ++i; } if (coeff_found) { coeffseq.push_back(overall_coeff); - return (new mul(coeffseq))->setflag(status_flags::dynallocated); + return dynallocate(coeffseq); } return _ex0; @@ -328,42 +464,22 @@ ex mul::coeff(const ex & s, int n) const * - *(+(x1,x2,...);c) -> *(+(*(x1,c),*(x2,c),...)) * - *(x;1) -> x * - *(;c) -> c - * - * @param level cut-off in recursive evaluation */ -ex mul::eval(int level) const + */ +ex mul::eval() const { - epvector *evaled_seqp = evalchildren(level); - if (evaled_seqp) { - // do more evaluation later - return (new mul(evaled_seqp,overall_coeff))-> - setflag(status_flags::dynallocated); - } - -#ifdef DO_GINAC_ASSERT - epvector::const_iterator i = seq.begin(), end = seq.end(); - while (i != end) { - GINAC_ASSERT((!is_exactly_a(i->rest)) || - (!(ex_to(i->coeff).is_integer()))); - GINAC_ASSERT(!(i->is_canonical_numeric())); - if (is_ex_exactly_of_type(recombine_pair_to_ex(*i), numeric)) - print(print_tree(std::cerr)); - GINAC_ASSERT(!is_exactly_a(recombine_pair_to_ex(*i))); - /* for paranoia */ - expair p = split_ex_to_pair(recombine_pair_to_ex(*i)); - GINAC_ASSERT(p.rest.is_equal(i->rest)); - GINAC_ASSERT(p.coeff.is_equal(i->coeff)); - /* end paranoia */ - ++i; - } -#endif // def DO_GINAC_ASSERT - if (flags & status_flags::evaluated) { GINAC_ASSERT(seq.size()>0); GINAC_ASSERT(seq.size()>1 || !overall_coeff.is_equal(_ex1)); return *this; } - - int seq_size = seq.size(); + + const epvector evaled = evalchildren(); + if (unlikely(!evaled.empty())) { + // start over evaluating a new object + return dynallocate(std::move(evaled), overall_coeff); + } + + size_t seq_size = seq.size(); if (overall_coeff.is_zero()) { // *(...,x;0) -> 0 return _ex0; @@ -374,71 +490,158 @@ ex mul::eval(int level) const // *(x;1) -> x return recombine_pair_to_ex(*(seq.begin())); } else if ((seq_size==1) && - is_ex_exactly_of_type((*seq.begin()).rest,add) && - ex_to((*seq.begin()).coeff).is_equal(_num1)) { + is_exactly_a((*seq.begin()).rest) && + ex_to((*seq.begin()).coeff).is_equal(*_num1_p)) { // *(+(x,y,...);c) -> +(*(x,c),*(y,c),...) (c numeric(), no powers of +()) const add & addref = ex_to((*seq.begin()).rest); - epvector *distrseq = new epvector(); - distrseq->reserve(addref.seq.size()); - epvector::const_iterator i = addref.seq.begin(), end = addref.seq.end(); - while (i != end) { - distrseq->push_back(addref.combine_pair_with_coeff_to_pair(*i, overall_coeff)); + epvector distrseq; + distrseq.reserve(addref.seq.size()); + for (auto & it : addref.seq) { + distrseq.push_back(addref.combine_pair_with_coeff_to_pair(it, overall_coeff)); + } + return dynallocate(std::move(distrseq), + ex_to(addref.overall_coeff).mul_dyn(ex_to(overall_coeff))) + .setflag(status_flags::evaluated); + } else if ((seq_size >= 2) && (! (flags & status_flags::expanded))) { + // Strip the content and the unit part from each term. Thus + // things like (-x+a)*(3*x-3*a) automagically turn into - 3*(x-a)^2 + + auto i = seq.begin(), last = seq.end(); + auto j = seq.begin(); + epvector s; + numeric oc = *_num1_p; + bool something_changed = false; + while (i!=last) { + if (likely(! (is_a(i->rest) && i->coeff.is_equal(_ex1)))) { + // power::eval has such a rule, no need to handle powers here + ++i; + continue; + } + + // XXX: What is the best way to check if the polynomial is a primitive? + numeric c = i->rest.integer_content(); + const numeric lead_coeff = + ex_to(ex_to(i->rest).seq.begin()->coeff).div(c); + const bool canonicalizable = lead_coeff.is_integer(); + + // XXX: The main variable is chosen in a random way, so this code + // does NOT transform the term into the canonical form (thus, in some + // very unlucky event it can even loop forever). Hopefully the main + // variable will be the same for all terms in *this + const bool unit_normal = lead_coeff.is_pos_integer(); + if (likely((c == *_num1_p) && ((! canonicalizable) || unit_normal))) { + ++i; + continue; + } + + if (! something_changed) { + s.reserve(seq_size); + something_changed = true; + } + + while ((j!=i) && (j!=last)) { + s.push_back(*j); + ++j; + } + + if (! unit_normal) + c = c.mul(*_num_1_p); + + oc = oc.mul(c); + + // divide add by the number in place to save at least 2 .eval() calls + const add& addref = ex_to(i->rest); + add & primitive = dynallocate(addref); + primitive.clearflag(status_flags::hash_calculated); + primitive.overall_coeff = ex_to(primitive.overall_coeff).div_dyn(c); + for (auto & ai : primitive.seq) + ai.coeff = ex_to(ai.coeff).div_dyn(c); + + s.push_back(expair(primitive, _ex1)); + ++i; + ++j; + } + if (something_changed) { + while (j!=last) { + s.push_back(*j); + ++j; + } + return dynallocate(std::move(s), ex_to(overall_coeff).mul_dyn(oc)); } - return (new add(distrseq, - ex_to(addref.overall_coeff). - mul_dyn(ex_to(overall_coeff)))) - ->setflag(status_flags::dynallocated | status_flags::evaluated); } + return this->hold(); } -ex mul::evalf(int level) const +ex mul::evalf() const { - if (level==1) - return mul(seq,overall_coeff); - - if (level==-max_recursion_level) - throw(std::runtime_error("max recursion level reached")); - - epvector *s = new epvector(); - s->reserve(seq.size()); + epvector s; + s.reserve(seq.size()); - --level; - epvector::const_iterator i = seq.begin(), end = seq.end(); - while (i != end) { - s->push_back(combine_ex_with_coeff_to_pair(i->rest.evalf(level), - i->coeff)); - ++i; + for (auto & it : seq) + s.push_back(expair(it.rest.evalf(), it.coeff)); + return dynallocate(std::move(s), overall_coeff.evalf()); +} + +void mul::find_real_imag(ex & rp, ex & ip) const +{ + rp = overall_coeff.real_part(); + ip = overall_coeff.imag_part(); + for (auto & it : seq) { + ex factor = recombine_pair_to_ex(it); + ex new_rp = factor.real_part(); + ex new_ip = factor.imag_part(); + if (new_ip.is_zero()) { + rp *= new_rp; + ip *= new_rp; + } else { + ex temp = rp*new_rp - ip*new_ip; + ip = ip*new_rp + rp*new_ip; + rp = temp; + } } - return mul(s, overall_coeff.evalf(level)); + rp = rp.expand(); + ip = ip.expand(); +} + +ex mul::real_part() const +{ + ex rp, ip; + find_real_imag(rp, ip); + return rp; +} + +ex mul::imag_part() const +{ + ex rp, ip; + find_real_imag(rp, ip); + return ip; } -ex mul::evalm(void) const +ex mul::evalm() const { // numeric*matrix if (seq.size() == 1 && seq[0].coeff.is_equal(_ex1) - && is_ex_of_type(seq[0].rest, matrix)) + && is_a(seq[0].rest)) return ex_to(seq[0].rest).mul(ex_to(overall_coeff)); // Evaluate children first, look whether there are any matrices at all // (there can be either no matrices or one matrix; if there were more // than one matrix, it would be a non-commutative product) - epvector *s = new epvector; - s->reserve(seq.size()); + epvector s; + s.reserve(seq.size()); bool have_matrix = false; epvector::iterator the_matrix; - epvector::const_iterator i = seq.begin(), end = seq.end(); - while (i != end) { - const ex &m = recombine_pair_to_ex(*i).evalm(); - s->push_back(split_ex_to_pair(m)); - if (is_ex_of_type(m, matrix)) { + for (auto & it : seq) { + const ex &m = recombine_pair_to_ex(it).evalm(); + s.push_back(split_ex_to_pair(m)); + if (is_a(m)) { have_matrix = true; - the_matrix = s->end() - 1; + the_matrix = s.end() - 1; } - ++i; } if (have_matrix) { @@ -446,52 +649,236 @@ ex mul::evalm(void) const // The product contained a matrix. We will multiply all other factors // into that matrix. matrix m = ex_to(the_matrix->rest); - s->erase(the_matrix); - ex scalar = (new mul(s, overall_coeff))->setflag(status_flags::dynallocated); + s.erase(the_matrix); + ex scalar = dynallocate(std::move(s), overall_coeff); return m.mul_scalar(scalar); } else - return (new mul(s, overall_coeff))->setflag(status_flags::dynallocated); + return dynallocate(std::move(s), overall_coeff); } -ex mul::simplify_ncmul(const exvector & v) const +ex mul::eval_ncmul(const exvector & v) const { if (seq.empty()) - return inherited::simplify_ncmul(v); + return inherited::eval_ncmul(v); - // Find first noncommutative element and call its simplify_ncmul() - epvector::const_iterator i = seq.begin(), end = seq.end(); - while (i != end) { - if (i->rest.return_type() == return_types::noncommutative) - return i->rest.simplify_ncmul(v); - ++i; + // Find first noncommutative element and call its eval_ncmul() + for (auto & it : seq) + if (it.rest.return_type() == return_types::noncommutative) + return it.rest.eval_ncmul(v); + return inherited::eval_ncmul(v); +} + +bool tryfactsubs(const ex & origfactor, const ex & patternfactor, int & nummatches, exmap& repls) +{ + ex origbase; + int origexponent; + int origexpsign; + + if (is_exactly_a(origfactor) && origfactor.op(1).info(info_flags::integer)) { + origbase = origfactor.op(0); + int expon = ex_to(origfactor.op(1)).to_int(); + origexponent = expon > 0 ? expon : -expon; + origexpsign = expon > 0 ? 1 : -1; + } else { + origbase = origfactor; + origexponent = 1; + origexpsign = 1; } - return inherited::simplify_ncmul(v); + + ex patternbase; + int patternexponent; + int patternexpsign; + + if (is_exactly_a(patternfactor) && patternfactor.op(1).info(info_flags::integer)) { + patternbase = patternfactor.op(0); + int expon = ex_to(patternfactor.op(1)).to_int(); + patternexponent = expon > 0 ? expon : -expon; + patternexpsign = expon > 0 ? 1 : -1; + } else { + patternbase = patternfactor; + patternexponent = 1; + patternexpsign = 1; + } + + exmap saverepls = repls; + if (origexponent < patternexponent || origexpsign != patternexpsign || !origbase.match(patternbase,saverepls)) + return false; + repls = saverepls; + + int newnummatches = origexponent / patternexponent; + if (newnummatches < nummatches) + nummatches = newnummatches; + return true; +} + +/** Checks whether e matches to the pattern pat and the (possibly to be updated) + * list of replacements repls. This matching is in the sense of algebraic + * substitutions. Matching starts with pat.op(factor) of the pattern because + * the factors before this one have already been matched. The (possibly + * updated) number of matches is in nummatches. subsed[i] is true for factors + * that already have been replaced by previous substitutions and matched[i] + * is true for factors that have been matched by the current match. + */ +bool algebraic_match_mul_with_mul(const mul &e, const ex &pat, exmap& repls, + int factor, int &nummatches, const std::vector &subsed, + std::vector &matched) +{ + GINAC_ASSERT(subsed.size() == e.nops()); + GINAC_ASSERT(matched.size() == e.nops()); + + if (factor == (int)pat.nops()) + return true; + + for (size_t i=0; i(pattern)) { + exmap repls; + int nummatches = std::numeric_limits::max(); + std::vector subsed(nops(), false); + std::vector matched(nops(), false); + if(algebraic_match_mul_with_mul(*this, pattern, repls, 0, nummatches, + subsed, matched)) + return true; + } + return basic::has(pattern, options); +} + +ex mul::algebraic_subs_mul(const exmap & m, unsigned options) const +{ + std::vector subsed(nops(), false); + ex divide_by = 1; + ex multiply_by = 1; + + for (auto & it : m) { + + if (is_exactly_a(it.first)) { +retry1: + int nummatches = std::numeric_limits::max(); + std::vector currsubsed(nops(), false); + exmap repls; + + if (!algebraic_match_mul_with_mul(*this, it.first, repls, 0, nummatches, subsed, currsubsed)) + continue; + + for (size_t j=0; jnops(); j++) { + int nummatches = std::numeric_limits::max(); + exmap repls; + if (!subsed[j] && tryfactsubs(op(j), it.first, nummatches, repls)){ + subsed[j] = true; + ex subsed_pattern + = it.first.subs(repls, subs_options::no_pattern); + divide_by *= pow(subsed_pattern, nummatches); + ex subsed_result + = it.second.subs(repls, subs_options::no_pattern); + multiply_by *= pow(subsed_result, nummatches); + } + } + } + } + + bool subsfound = false; + for (size_t i=0; i newepv(nullptr); + for (auto i=seq.begin(); i!=seq.end(); ++i) { + if (newepv) { + newepv->push_back(split_ex_to_pair(recombine_pair_to_ex(*i).conjugate())); + continue; + } + ex x = recombine_pair_to_ex(*i); + ex c = x.conjugate(); + if (c.is_equal(x)) { + continue; + } + newepv.reset(new epvector); + newepv->reserve(seq.size()); + for (auto j=seq.begin(); j!=i; ++j) { + newepv->push_back(*j); + } + newepv->push_back(split_ex_to_pair(c)); + } + ex x = overall_coeff.conjugate(); + if (!newepv && are_ex_trivially_equal(x, overall_coeff)) { + return *this; + } + return thisexpairseq(newepv ? std::move(*newepv) : seq, x); +} + + // protected /** Implementation of ex::diff() for a product. It applies the product rule. * @see ex::diff */ ex mul::derivative(const symbol & s) const { - unsigned num = seq.size(); + size_t num = seq.size(); exvector addseq; addseq.reserve(num); // D(a*b*c) = D(a)*b*c + a*D(b)*c + a*b*D(c) epvector mulseq = seq; - epvector::const_iterator i = seq.begin(), end = seq.end(); - epvector::iterator i2 = mulseq.begin(); + auto i = seq.begin(), end = seq.end(); + auto i2 = mulseq.begin(); while (i != end) { - expair ep = split_ex_to_pair(power(i->rest, i->coeff - _ex1) * + expair ep = split_ex_to_pair(pow(i->rest, i->coeff - _ex1) * i->rest.diff(s)); ep.swap(*i2); - addseq.push_back((new mul(mulseq, overall_coeff * i->coeff))->setflag(status_flags::dynallocated)); + addseq.push_back(dynallocate(mulseq, overall_coeff * i->coeff)); ep.swap(*i2); ++i; ++i2; } - return (new add(addseq))->setflag(status_flags::dynallocated); + return dynallocate(addseq); } int mul::compare_same_type(const basic & other) const @@ -499,15 +886,10 @@ int mul::compare_same_type(const basic & other) const return inherited::compare_same_type(other); } -bool mul::is_equal_same_type(const basic & other) const -{ - return inherited::is_equal_same_type(other); -} - -unsigned mul::return_type(void) const +unsigned mul::return_type() const { if (seq.empty()) { - // mul without factors: should not happen, but commutes + // mul without factors: should not happen, but commutates return return_types::commutative; } @@ -527,8 +909,8 @@ unsigned mul::return_type(void) const if ((rt == return_types::noncommutative) && (!all_commutative)) { // another nc element found, compare type_infos if (noncommutative_element->rest.return_type_tinfo() != i->rest.return_type_tinfo()) { - // diffent types -> mul is ncc - return return_types::noncommutative_composite; + // different types -> mul is ncc + return return_types::noncommutative_composite; } } ++i; @@ -536,101 +918,116 @@ unsigned mul::return_type(void) const // all factors checked return all_commutative ? return_types::commutative : return_types::noncommutative; } - -unsigned mul::return_type_tinfo(void) const + +return_type_t mul::return_type_tinfo() const { if (seq.empty()) - return tinfo_key; // mul without factors: should not happen + return make_return_type_t(); // mul without factors: should not happen // return type_info of first noncommutative element - epvector::const_iterator i = seq.begin(), end = seq.end(); - while (i != end) { - if (i->rest.return_type() == return_types::noncommutative) - return i->rest.return_type_tinfo(); - ++i; - } + for (auto & it : seq) + if (it.rest.return_type() == return_types::noncommutative) + return it.rest.return_type_tinfo(); + // no noncommutative element found, should not happen - return tinfo_key; + return make_return_type_t(); } -ex mul::thisexpairseq(const epvector & v, const ex & oc) const +ex mul::thisexpairseq(const epvector & v, const ex & oc, bool do_index_renaming) const { - return (new mul(v, oc))->setflag(status_flags::dynallocated); + return dynallocate(v, oc, do_index_renaming); } -ex mul::thisexpairseq(epvector * vp, const ex & oc) const +ex mul::thisexpairseq(epvector && vp, const ex & oc, bool do_index_renaming) const { - return (new mul(vp, oc))->setflag(status_flags::dynallocated); + return dynallocate(std::move(vp), oc, do_index_renaming); } expair mul::split_ex_to_pair(const ex & e) const { - if (is_ex_exactly_of_type(e,power)) { + if (is_exactly_a(e)) { const power & powerref = ex_to(e); - if (is_ex_exactly_of_type(powerref.exponent,numeric)) + if (is_exactly_a(powerref.exponent)) return expair(powerref.basis,powerref.exponent); } return expair(e,_ex1); } - + expair mul::combine_ex_with_coeff_to_pair(const ex & e, const ex & c) const { + GINAC_ASSERT(is_exactly_a(c)); + + // First, try a common shortcut: + if (is_exactly_a(e)) + return expair(e, c); + + // trivial case: exponent 1 + if (c.is_equal(_ex1)) + return split_ex_to_pair(e); + // to avoid duplication of power simplification rules, // we create a temporary power object - // otherwise it would be hard to correctly simplify + // otherwise it would be hard to correctly evaluate // expression like (4^(1/3))^(3/2) - if (are_ex_trivially_equal(c,_ex1)) - return split_ex_to_pair(e); - - return split_ex_to_pair(power(e,c)); + return split_ex_to_pair(pow(e,c)); } - + expair mul::combine_pair_with_coeff_to_pair(const expair & p, const ex & c) const { + GINAC_ASSERT(is_exactly_a(p.coeff)); + GINAC_ASSERT(is_exactly_a(c)); + + // First, try a common shortcut: + if (is_exactly_a(p.rest)) + return expair(p.rest, p.coeff * c); + + // trivial case: exponent 1 + if (c.is_equal(_ex1)) + return p; + if (p.coeff.is_equal(_ex1)) + return expair(p.rest, c); + // to avoid duplication of power simplification rules, // we create a temporary power object - // otherwise it would be hard to correctly simplify + // otherwise it would be hard to correctly evaluate // expression like (4^(1/3))^(3/2) - if (are_ex_trivially_equal(c,_ex1)) - return p; - - return split_ex_to_pair(power(recombine_pair_to_ex(p),c)); + return split_ex_to_pair(pow(recombine_pair_to_ex(p),c)); } - + ex mul::recombine_pair_to_ex(const expair & p) const { - if (ex_to(p.coeff).is_equal(_num1)) + if (p.coeff.is_equal(_ex1)) return p.rest; else - return power(p.rest,p.coeff); + return dynallocate(p.rest, p.coeff); } bool mul::expair_needs_further_processing(epp it) { - if (is_ex_exactly_of_type((*it).rest,mul) && - ex_to((*it).coeff).is_integer()) { + if (is_exactly_a(it->rest) && + ex_to(it->coeff).is_integer()) { // combined pair is product with integer power -> expand it *it = split_ex_to_pair(recombine_pair_to_ex(*it)); return true; } - if (is_ex_exactly_of_type((*it).rest,numeric)) { - expair ep=split_ex_to_pair(recombine_pair_to_ex(*it)); + if (is_exactly_a(it->rest)) { + if (it->coeff.is_equal(_ex1)) { + // pair has coeff 1 and must be moved to the end + return true; + } + expair ep = split_ex_to_pair(recombine_pair_to_ex(*it)); if (!ep.is_equal(*it)) { // combined pair is a numeric power which can be simplified *it = ep; return true; } - if (ex_to((*it).coeff).is_equal(_num1)) { - // combined pair has coeff 1 and must be moved to the end - return true; - } } return false; } -ex mul::default_overall_coeff(void) const +ex mul::default_overall_coeff() const { return _ex1; } @@ -653,75 +1050,190 @@ void mul::combine_overall_coeff(const ex & c1, const ex & c2) bool mul::can_make_flat(const expair & p) const { GINAC_ASSERT(is_exactly_a(p.coeff)); - // this assertion will probably fail somewhere - // it would require a more careful make_flat, obeying the power laws - // probably should return true only if p.coeff is integer - return ex_to(p.coeff).is_equal(_num1); + + // (x*y)^c == x^c*y^c if c ∈ ℤ + return p.coeff.info(info_flags::integer); +} + +bool mul::can_be_further_expanded(const ex & e) +{ + if (is_exactly_a(e)) { + for (auto & it : ex_to(e).seq) { + if (is_exactly_a(it.rest) && it.coeff.info(info_flags::posint)) + return true; + } + } else if (is_exactly_a(e)) { + if (is_exactly_a(e.op(0)) && e.op(1).info(info_flags::posint)) + return true; + } + return false; } ex mul::expand(unsigned options) const { + // Check for trivial case: expanding the monomial (~ 30% of all calls) + bool monomial_case = true; + for (const auto & i : seq) { + if (!is_a(i.rest) || !i.coeff.info(info_flags::integer)) { + monomial_case = false; + break; + } + } + if (monomial_case) { + setflag(status_flags::expanded); + return *this; + } + + // do not rename indices if the object has no indices at all + if ((!(options & expand_options::expand_rename_idx)) && + this->info(info_flags::has_indices)) + options |= expand_options::expand_rename_idx; + + const bool skip_idx_rename = !(options & expand_options::expand_rename_idx); + // First, expand the children - epvector * expanded_seqp = expandchildren(options); - const epvector & expanded_seq = (expanded_seqp == NULL) ? seq : *expanded_seqp; + epvector expanded = expandchildren(options); + const epvector & expanded_seq = (expanded.empty() ? seq : expanded); // Now, look for all the factors that are sums and multiply each one out // with the next one that is found while collecting the factors which are // not sums - int number_of_adds = 0; ex last_expanded = _ex1; + epvector non_adds; non_adds.reserve(expanded_seq.size()); - epvector::const_iterator cit = expanded_seq.begin(), last = expanded_seq.end(); - while (cit != last) { - if (is_ex_exactly_of_type(cit->rest, add) && - (cit->coeff.is_equal(_ex1))) { - ++number_of_adds; - if (is_ex_exactly_of_type(last_expanded, add)) { - const add & add1 = ex_to(last_expanded); - const add & add2 = ex_to(cit->rest); - int n1 = add1.nops(); - int n2 = add2.nops(); - exvector distrseq; - distrseq.reserve(n1*n2); - for (int i1=0; i1(cit.rest) && + (cit.coeff.is_equal(_ex1))) { + if (is_exactly_a(last_expanded)) { + + // Expand a product of two sums, aggressive version. + // Caring for the overall coefficients in separate loops can + // sometimes give a performance gain of up to 15%! + + const int sizedifference = ex_to(last_expanded).seq.size()-ex_to(cit.rest).seq.size(); + // add2 is for the inner loop and should be the bigger of the two sums + // in the presence of asymptotically good sorting: + const add& add1 = (sizedifference<0 ? ex_to(last_expanded) : ex_to(cit.rest)); + const add& add2 = (sizedifference<0 ? ex_to(cit.rest) : ex_to(last_expanded)); + epvector distrseq; + distrseq.reserve(add1.seq.size()+add2.seq.size()); + + // Multiply add2 with the overall coefficient of add1 and append it to distrseq: + if (!add1.overall_coeff.is_zero()) { + if (add1.overall_coeff.is_equal(_ex1)) + distrseq.insert(distrseq.end(), add2.seq.begin(), add2.seq.end()); + else + for (const auto & i : add2.seq) + distrseq.push_back(expair(i.rest, ex_to(i.coeff).mul_dyn(ex_to(add1.overall_coeff)))); + } + + // Multiply add1 with the overall coefficient of add2 and append it to distrseq: + if (!add2.overall_coeff.is_zero()) { + if (add2.overall_coeff.is_equal(_ex1)) + distrseq.insert(distrseq.end(), add1.seq.begin(), add1.seq.end()); + else + for (const auto & i : add1.seq) + distrseq.push_back(expair(i.rest, ex_to(i.coeff).mul_dyn(ex_to(add2.overall_coeff)))); + } + + // Compute the new overall coefficient and put it together: + ex tmp_accu = dynallocate(distrseq, add1.overall_coeff*add2.overall_coeff); + + exvector add1_dummy_indices, add2_dummy_indices, add_indices; + lst dummy_subs; + + if (!skip_idx_rename) { + for (const auto & i : add1.seq) { + add_indices = get_all_dummy_indices_safely(i.rest); + add1_dummy_indices.insert(add1_dummy_indices.end(), add_indices.begin(), add_indices.end()); + } + for (const auto & i : add2.seq) { + add_indices = get_all_dummy_indices_safely(i.rest); + add2_dummy_indices.insert(add2_dummy_indices.end(), add_indices.begin(), add_indices.end()); + } + + sort(add1_dummy_indices.begin(), add1_dummy_indices.end(), ex_is_less()); + sort(add2_dummy_indices.begin(), add2_dummy_indices.end(), ex_is_less()); + dummy_subs = rename_dummy_indices_uniquely(add1_dummy_indices, add2_dummy_indices); + } + + // Multiply explicitly all non-numeric terms of add1 and add2: + for (const auto & i2 : add2.seq) { + // We really have to combine terms here in order to compactify + // the result. Otherwise it would become waayy tooo bigg. + numeric oc(*_num0_p); + epvector distrseq2; + distrseq2.reserve(add1.seq.size()); + const ex i2_new = (skip_idx_rename || (dummy_subs.op(0).nops() == 0) ? + i2.rest : + i2.rest.subs(ex_to(dummy_subs.op(0)), + ex_to(dummy_subs.op(1)), subs_options::no_pattern)); + for (const auto & i1 : add1.seq) { + // Don't push_back expairs which might have a rest that evaluates to a numeric, + // since that would violate an invariant of expairseq: + const ex rest = dynallocate(i1.rest, i2_new); + if (is_exactly_a(rest)) { + oc += ex_to(rest).mul(ex_to(i1.coeff).mul(ex_to(i2.coeff))); + } else { + distrseq2.push_back(expair(rest, ex_to(i1.coeff).mul_dyn(ex_to(i2.coeff)))); + } } + tmp_accu += dynallocate(std::move(distrseq2), oc); } - last_expanded = (new add(distrseq))-> - setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0)); + last_expanded = tmp_accu; } else { - non_adds.push_back(split_ex_to_pair(last_expanded)); - last_expanded = cit->rest; + if (!last_expanded.is_equal(_ex1)) + non_adds.push_back(split_ex_to_pair(last_expanded)); + last_expanded = cit.rest; } + } else { - non_adds.push_back(*cit); + non_adds.push_back(cit); } - ++cit; } - if (expanded_seqp) - delete expanded_seqp; - + // Now the only remaining thing to do is to multiply the factors which // were not sums into the "last_expanded" sum - if (is_ex_exactly_of_type(last_expanded, add)) { - const add & finaladd = ex_to(last_expanded); + if (is_exactly_a(last_expanded)) { + size_t n = last_expanded.nops(); exvector distrseq; - int n = finaladd.nops(); distrseq.reserve(n); - for (int i=0; i - setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0))); + if (skip_idx_rename) + factors.push_back(split_ex_to_pair(last_expanded.op(i))); + else + factors.push_back(split_ex_to_pair(rename_dummy_indices_uniquely(va, last_expanded.op(i)))); + ex term = dynallocate(factors, overall_coeff); + if (can_be_further_expanded(term)) { + distrseq.push_back(term.expand()); + } else { + if (options == 0) + ex_to(term).setflag(status_flags::expanded); + distrseq.push_back(term); + } } - return ((new add(distrseq))-> - setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0))); + + return dynallocate(distrseq).setflag(options == 0 ? status_flags::expanded : 0); } + non_adds.push_back(split_ex_to_pair(last_expanded)); - return (new mul(non_adds, overall_coeff))-> - setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0)); + ex result = dynallocate(non_adds, overall_coeff); + if (can_be_further_expanded(result)) { + return result.expand(); + } else { + if (options == 0) + ex_to(result).setflag(status_flags::expanded); + return result; + } } @@ -738,44 +1250,47 @@ ex mul::expand(unsigned options) const /** Member-wise expand the expairs representing this sequence. This must be * overridden from expairseq::expandchildren() and done iteratively in order - * to allow for early cancallations and thus safe memory. + * to allow for early cancellations and thus safe memory. * * @see mul::expand() - * @return pointer to epvector containing expanded representation or zero - * pointer, if sequence is unchanged. */ -epvector * mul::expandchildren(unsigned options) const + * @return epvector containing expanded pairs, empty if no members + * had to be changed. */ +epvector mul::expandchildren(unsigned options) const { - const epvector::const_iterator last = seq.end(); - epvector::const_iterator cit = seq.begin(); + auto cit = seq.begin(), last = seq.end(); while (cit!=last) { const ex & factor = recombine_pair_to_ex(*cit); const ex & expanded_factor = factor.expand(options); if (!are_ex_trivially_equal(factor,expanded_factor)) { // something changed, copy seq, eval and return it - epvector *s = new epvector; - s->reserve(seq.size()); + epvector s; + s.reserve(seq.size()); // copy parts of seq which are known not to have changed - epvector::const_iterator cit2 = seq.begin(); + auto cit2 = seq.begin(); while (cit2!=cit) { - s->push_back(*cit2); + s.push_back(*cit2); ++cit2; } + // copy first changed element - s->push_back(split_ex_to_pair(expanded_factor)); + s.push_back(split_ex_to_pair(expanded_factor)); ++cit2; + // copy rest while (cit2!=last) { - s->push_back(split_ex_to_pair(recombine_pair_to_ex(*cit2).expand(options))); + s.push_back(split_ex_to_pair(recombine_pair_to_ex(*cit2).expand(options))); ++cit2; } return s; } ++cit; } - - return 0; // nothing has changed + + return epvector(); // nothing has changed } +GINAC_BIND_UNARCHIVER(mul); + } // namespace GiNaC