X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fmatrix.cpp;h=cc80f7cae43b66d1223f0364acdac57ba533cf9f;hp=8fbe86283237c907f98eae97a28a677e272fd163;hb=35c9f72b4dca9487728170f89cd431751b17c2df;hpb=f4ea690a3f118bf364190f0ef3c3f6d2ccdf6206 diff --git a/ginac/matrix.cpp b/ginac/matrix.cpp index 8fbe8628..cc80f7ca 100644 --- a/ginac/matrix.cpp +++ b/ginac/matrix.cpp @@ -3,7 +3,7 @@ * Implementation of symbolic matrices */ /* - * GiNaC Copyright (C) 1999-2000 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -26,69 +26,51 @@ #include "matrix.h" #include "archive.h" +#include "numeric.h" +#include "lst.h" +#include "idx.h" +#include "indexed.h" #include "utils.h" #include "debugmsg.h" -#include "numeric.h" +#include "power.h" +#include "symbol.h" +#include "normal.h" -#ifndef NO_NAMESPACE_GINAC namespace GiNaC { -#endif // ndef NO_NAMESPACE_GINAC GINAC_IMPLEMENT_REGISTERED_CLASS(matrix, basic) ////////// -// default constructor, destructor, copy constructor, assignment operator -// and helpers: +// default ctor, dtor, copy ctor, assignment operator and helpers: ////////// // public /** Default ctor. Initializes to 1 x 1-dimensional zero-matrix. */ -matrix::matrix() - : inherited(TINFO_matrix), row(1), col(1) -{ - debugmsg("matrix default constructor",LOGLEVEL_CONSTRUCT); - m.push_back(_ex0()); -} - -matrix::~matrix() +matrix::matrix() : inherited(TINFO_matrix), row(1), col(1) { - debugmsg("matrix destructor",LOGLEVEL_DESTRUCT); -} - -matrix::matrix(const matrix & other) -{ - debugmsg("matrix copy constructor",LOGLEVEL_CONSTRUCT); - copy(other); -} - -const matrix & matrix::operator=(const matrix & other) -{ - debugmsg("matrix operator=",LOGLEVEL_ASSIGNMENT); - if (this != &other) { - destroy(1); - copy(other); - } - return *this; + debugmsg("matrix default ctor",LOGLEVEL_CONSTRUCT); + m.push_back(_ex0()); } // protected +/** For use by copy ctor and assignment operator. */ void matrix::copy(const matrix & other) { - inherited::copy(other); - row=other.row; - col=other.col; - m=other.m; // use STL's vector copying + inherited::copy(other); + row = other.row; + col = other.col; + m = other.m; // STL's vector copying invoked here } void matrix::destroy(bool call_parent) { - if (call_parent) inherited::destroy(call_parent); + if (call_parent) inherited::destroy(call_parent); } ////////// -// other constructors +// other ctors ////////// // public @@ -98,19 +80,38 @@ void matrix::destroy(bool call_parent) * @param r number of rows * @param c number of cols */ matrix::matrix(unsigned r, unsigned c) - : inherited(TINFO_matrix), row(r), col(c) + : inherited(TINFO_matrix), row(r), col(c) { - debugmsg("matrix constructor from unsigned,unsigned",LOGLEVEL_CONSTRUCT); - m.resize(r*c, _ex0()); + debugmsg("matrix ctor from unsigned,unsigned",LOGLEVEL_CONSTRUCT); + m.resize(r*c, _ex0()); } // protected /** Ctor from representation, for internal use only. */ matrix::matrix(unsigned r, unsigned c, const exvector & m2) - : inherited(TINFO_matrix), row(r), col(c), m(m2) + : inherited(TINFO_matrix), row(r), col(c), m(m2) { - debugmsg("matrix constructor from unsigned,unsigned,exvector",LOGLEVEL_CONSTRUCT); + debugmsg("matrix ctor from unsigned,unsigned,exvector",LOGLEVEL_CONSTRUCT); +} + +/** Construct matrix from (flat) list of elements. If the list has fewer + * elements than the matrix, the remaining matrix elements are set to zero. + * If the list has more elements than the matrix, the excessive elements are + * thrown away. */ +matrix::matrix(unsigned r, unsigned c, const lst & l) + : inherited(TINFO_matrix), row(r), col(c) +{ + debugmsg("matrix ctor from unsigned,unsigned,lst",LOGLEVEL_CONSTRUCT); + m.resize(r*c, _ex0()); + + for (unsigned i=0; i= r) + break; // matrix smaller than list: throw away excessive elements + m[y*c+x] = l.op(i); + } } ////////// @@ -120,36 +121,36 @@ matrix::matrix(unsigned r, unsigned c, const exvector & m2) /** Construct object from archive_node. */ matrix::matrix(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) { - debugmsg("matrix constructor from archive_node", LOGLEVEL_CONSTRUCT); - if (!(n.find_unsigned("row", row)) || !(n.find_unsigned("col", col))) - throw (std::runtime_error("unknown matrix dimensions in archive")); - m.reserve(row * col); - for (unsigned int i=0; true; i++) { - ex e; - if (n.find_ex("m", e, sym_lst, i)) - m.push_back(e); - else - break; - } + debugmsg("matrix ctor from archive_node", LOGLEVEL_CONSTRUCT); + if (!(n.find_unsigned("row", row)) || !(n.find_unsigned("col", col))) + throw (std::runtime_error("unknown matrix dimensions in archive")); + m.reserve(row * col); + for (unsigned int i=0; true; i++) { + ex e; + if (n.find_ex("m", e, sym_lst, i)) + m.push_back(e); + else + break; + } } /** Unarchive the object. */ ex matrix::unarchive(const archive_node &n, const lst &sym_lst) { - return (new matrix(n, sym_lst))->setflag(status_flags::dynallocated); + return (new matrix(n, sym_lst))->setflag(status_flags::dynallocated); } /** Archive the object. */ void matrix::archive(archive_node &n) const { - inherited::archive(n); - n.add_unsigned("row", row); - n.add_unsigned("col", col); - exvector::const_iterator i = m.begin(), iend = m.end(); - while (i != iend) { - n.add_ex("m", *i); - i++; - } + inherited::archive(n); + n.add_unsigned("row", row); + n.add_unsigned("col", col); + exvector::const_iterator i = m.begin(), iend = m.end(); + while (i != iend) { + n.add_ex("m", *i); + ++i; + } } ////////// @@ -158,173 +159,399 @@ void matrix::archive(archive_node &n) const // public -basic * matrix::duplicate() const +void matrix::print(std::ostream & os, unsigned upper_precedence) const { - debugmsg("matrix duplicate",LOGLEVEL_DUPLICATE); - return new matrix(*this); + debugmsg("matrix print",LOGLEVEL_PRINT); + os << "[[ "; + for (unsigned r=0; r=0); + GINAC_ASSERT(isetflag(status_flags::dynallocated | - status_flags::evaluated ); + debugmsg("matrix eval",LOGLEVEL_MEMBER_FUNCTION); + + // check if we have to do anything at all + if ((level==1)&&(flags & status_flags::evaluated)) + return *this; + + // emergency break + if (level == -max_recursion_level) + throw (std::runtime_error("matrix::eval(): recursion limit exceeded")); + + // eval() entry by entry + exvector m2(row*col); + --level; + for (unsigned r=0; rsetflag(status_flags::dynallocated | + status_flags::evaluated ); } -/** evaluate matrix numerically entry by entry. */ +/** Evaluate matrix numerically entry by entry. */ ex matrix::evalf(int level) const { - debugmsg("matrix evalf",LOGLEVEL_MEMBER_FUNCTION); - - // check if we have to do anything at all - if (level==1) { - return *this; - } - - // emergency break - if (level == -max_recursion_level) { - throw (std::runtime_error("matrix::evalf(): recursion limit exceeded")); - } - - // evalf() entry by entry - exvector m2(row*col); - --level; - for (unsigned r=0; r(const_cast(other)); - - // compare number of rows - if (row != o.rows()) - return row < o.rows() ? -1 : 1; - - // compare number of columns - if (col != o.cols()) - return col < o.cols() ? -1 : 1; - - // equal number of rows and columns, compare individual elements - int cmpval; - for (unsigned r=0; r matrices are equal; - return 0; + GINAC_ASSERT(is_exactly_of_type(other, matrix)); + const matrix & o = static_cast(const_cast(other)); + + // compare number of rows + if (row != o.rows()) + return row < o.rows() ? -1 : 1; + + // compare number of columns + if (col != o.cols()) + return col < o.cols() ? -1 : 1; + + // equal number of rows and columns, compare individual elements + int cmpval; + for (unsigned r=0; r matrices are equal; + return 0; +} + +/** Automatic symbolic evaluation of an indexed matrix. */ +ex matrix::eval_indexed(const basic & i) const +{ + GINAC_ASSERT(is_of_type(i, indexed)); + GINAC_ASSERT(is_ex_of_type(i.op(0), matrix)); + + bool all_indices_unsigned = static_cast(i).all_index_values_are(info_flags::nonnegint); + + // Check indices + if (i.nops() == 2) { + + // One index, must be one-dimensional vector + if (row != 1 && col != 1) + throw (std::runtime_error("matrix::eval_indexed(): vector must have exactly 1 index")); + + const idx & i1 = ex_to_idx(i.op(1)); + + if (col == 1) { + + // Column vector + if (!i1.get_dim().is_equal(row)) + throw (std::runtime_error("matrix::eval_indexed(): dimension of index must match number of vector elements")); + + // Index numeric -> return vector element + if (all_indices_unsigned) { + unsigned n1 = ex_to_numeric(i1.get_value()).to_int(); + if (n1 >= row) + throw (std::runtime_error("matrix::eval_indexed(): value of index exceeds number of vector elements")); + return (*this)(n1, 0); + } + + } else { + + // Row vector + if (!i1.get_dim().is_equal(col)) + throw (std::runtime_error("matrix::eval_indexed(): dimension of index must match number of vector elements")); + + // Index numeric -> return vector element + if (all_indices_unsigned) { + unsigned n1 = ex_to_numeric(i1.get_value()).to_int(); + if (n1 >= col) + throw (std::runtime_error("matrix::eval_indexed(): value of index exceeds number of vector elements")); + return (*this)(0, n1); + } + } + + } else if (i.nops() == 3) { + + // Two indices + const idx & i1 = ex_to_idx(i.op(1)); + const idx & i2 = ex_to_idx(i.op(2)); + + if (!i1.get_dim().is_equal(row)) + throw (std::runtime_error("matrix::eval_indexed(): dimension of first index must match number of rows")); + if (!i2.get_dim().is_equal(col)) + throw (std::runtime_error("matrix::eval_indexed(): dimension of second index must match number of columns")); + + // Pair of dummy indices -> compute trace + if (is_dummy_pair(i1, i2)) + return trace(); + + // Both indices numeric -> return matrix element + if (all_indices_unsigned) { + unsigned n1 = ex_to_numeric(i1.get_value()).to_int(), n2 = ex_to_numeric(i2.get_value()).to_int(); + if (n1 >= row) + throw (std::runtime_error("matrix::eval_indexed(): value of first index exceeds number of rows")); + if (n2 >= col) + throw (std::runtime_error("matrix::eval_indexed(): value of second index exceeds number of columns")); + return (*this)(n1, n2); + } + + } else + throw (std::runtime_error("matrix::eval_indexed(): matrix must have exactly 2 indices")); + + return i.hold(); +} + +/** Sum of two indexed matrices. */ +ex matrix::add_indexed(const ex & self, const ex & other) const +{ + GINAC_ASSERT(is_ex_of_type(self, indexed)); + GINAC_ASSERT(is_ex_of_type(self.op(0), matrix)); + GINAC_ASSERT(is_ex_of_type(other, indexed)); + GINAC_ASSERT(self.nops() == 2 || self.nops() == 3); + + // Only add two matrices + if (is_ex_of_type(other.op(0), matrix)) { + GINAC_ASSERT(other.nops() == 2 || other.nops() == 3); + + const matrix &self_matrix = ex_to_matrix(self.op(0)); + const matrix &other_matrix = ex_to_matrix(other.op(0)); + + if (self.nops() == 2 && other.nops() == 2) { // vector + vector + + if (self_matrix.row == other_matrix.row) + return indexed(self_matrix.add(other_matrix), self.op(1)); + else if (self_matrix.row == other_matrix.col) + return indexed(self_matrix.add(other_matrix.transpose()), self.op(1)); + + } else if (self.nops() == 3 && other.nops() == 3) { // matrix + matrix + + if (self.op(1).is_equal(other.op(1)) && self.op(2).is_equal(other.op(2))) + return indexed(self_matrix.add(other_matrix), self.op(1), self.op(2)); + else if (self.op(1).is_equal(other.op(2)) && self.op(2).is_equal(other.op(1))) + return indexed(self_matrix.add(other_matrix.transpose()), self.op(1), self.op(2)); + + } + } + + // Don't know what to do, return unevaluated sum + return self + other; } +/** Product of an indexed matrix with a number. */ +ex matrix::scalar_mul_indexed(const ex & self, const numeric & other) const +{ + GINAC_ASSERT(is_ex_of_type(self, indexed)); + GINAC_ASSERT(is_ex_of_type(self.op(0), matrix)); + GINAC_ASSERT(self.nops() == 2 || self.nops() == 3); + + const matrix &self_matrix = ex_to_matrix(self.op(0)); + + if (self.nops() == 2) + return indexed(self_matrix.mul(other), self.op(1)); + else // self.nops() == 3 + return indexed(self_matrix.mul(other), self.op(1), self.op(2)); +} + +/** Contraction of an indexed matrix with something else. */ +bool matrix::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const +{ + GINAC_ASSERT(is_ex_of_type(*self, indexed)); + GINAC_ASSERT(is_ex_of_type(*other, indexed)); + GINAC_ASSERT(self->nops() == 2 || self->nops() == 3); + GINAC_ASSERT(is_ex_of_type(self->op(0), matrix)); + + // Only contract with other matrices + if (!is_ex_of_type(other->op(0), matrix)) + return false; + + GINAC_ASSERT(other->nops() == 2 || other->nops() == 3); + + const matrix &self_matrix = ex_to_matrix(self->op(0)); + const matrix &other_matrix = ex_to_matrix(other->op(0)); + + if (self->nops() == 2) { + unsigned self_dim = (self_matrix.col == 1) ? self_matrix.row : self_matrix.col; + + if (other->nops() == 2) { // vector * vector (scalar product) + unsigned other_dim = (other_matrix.col == 1) ? other_matrix.row : other_matrix.col; + + if (self_matrix.col == 1) { + if (other_matrix.col == 1) { + // Column vector * column vector, transpose first vector + *self = self_matrix.transpose().mul(other_matrix)(0, 0); + } else { + // Column vector * row vector, swap factors + *self = other_matrix.mul(self_matrix)(0, 0); + } + } else { + if (other_matrix.col == 1) { + // Row vector * column vector, perfect + *self = self_matrix.mul(other_matrix)(0, 0); + } else { + // Row vector * row vector, transpose second vector + *self = self_matrix.mul(other_matrix.transpose())(0, 0); + } + } + *other = _ex1(); + return true; + + } else { // vector * matrix + + // B_i * A_ij = (B*A)_j (B is row vector) + if (is_dummy_pair(self->op(1), other->op(1))) { + if (self_matrix.row == 1) + *self = indexed(self_matrix.mul(other_matrix), other->op(2)); + else + *self = indexed(self_matrix.transpose().mul(other_matrix), other->op(2)); + *other = _ex1(); + return true; + } + + // B_j * A_ij = (A*B)_i (B is column vector) + if (is_dummy_pair(self->op(1), other->op(2))) { + if (self_matrix.col == 1) + *self = indexed(other_matrix.mul(self_matrix), other->op(1)); + else + *self = indexed(other_matrix.mul(self_matrix.transpose()), other->op(1)); + *other = _ex1(); + return true; + } + } + + } else if (other->nops() == 3) { // matrix * matrix + + // A_ij * B_jk = (A*B)_ik + if (is_dummy_pair(self->op(2), other->op(1))) { + *self = indexed(self_matrix.mul(other_matrix), self->op(1), other->op(2)); + *other = _ex1(); + return true; + } + + // A_ij * B_kj = (A*Btrans)_ik + if (is_dummy_pair(self->op(2), other->op(2))) { + *self = indexed(self_matrix.mul(other_matrix.transpose()), self->op(1), other->op(1)); + *other = _ex1(); + return true; + } + + // A_ji * B_jk = (Atrans*B)_ik + if (is_dummy_pair(self->op(1), other->op(1))) { + *self = indexed(self_matrix.transpose().mul(other_matrix), self->op(2), other->op(2)); + *other = _ex1(); + return true; + } + + // A_ji * B_kj = (B*A)_ki + if (is_dummy_pair(self->op(1), other->op(2))) { + *self = indexed(other_matrix.mul(self_matrix), other->op(1), self->op(2)); + *other = _ex1(); + return true; + } + } + + return false; +} + + ////////// // non-virtual functions in this class ////////// @@ -336,197 +563,322 @@ int matrix::compare_same_type(const basic & other) const * @exception logic_error (incompatible matrices) */ matrix matrix::add(const matrix & other) const { - if (col != other.col || row != other.row) { - throw (std::logic_error("matrix::add(): incompatible matrices")); - } - - exvector sum(this->m); - exvector::iterator i; - exvector::const_iterator ci; - for (i=sum.begin(), ci=other.m.begin(); - i!=sum.end(); - ++i, ++ci) { - (*i) += (*ci); - } - return matrix(row,col,sum); + if (col != other.col || row != other.row) + throw (std::logic_error("matrix::add(): incompatible matrices")); + + exvector sum(this->m); + exvector::iterator i; + exvector::const_iterator ci; + for (i=sum.begin(), ci=other.m.begin(); i!=sum.end(); ++i, ++ci) + (*i) += (*ci); + + return matrix(row,col,sum); } + /** Difference of matrices. * * @exception logic_error (incompatible matrices) */ matrix matrix::sub(const matrix & other) const { - if (col != other.col || row != other.row) { - throw (std::logic_error("matrix::sub(): incompatible matrices")); - } - - exvector dif(this->m); - exvector::iterator i; - exvector::const_iterator ci; - for (i=dif.begin(), ci=other.m.begin(); - i!=dif.end(); - ++i, ++ci) { - (*i) -= (*ci); - } - return matrix(row,col,dif); + if (col != other.col || row != other.row) + throw (std::logic_error("matrix::sub(): incompatible matrices")); + + exvector dif(this->m); + exvector::iterator i; + exvector::const_iterator ci; + for (i=dif.begin(), ci=other.m.begin(); i!=dif.end(); ++i, ++ci) + (*i) -= (*ci); + + return matrix(row,col,dif); } + /** Product of matrices. * * @exception logic_error (incompatible matrices) */ matrix matrix::mul(const matrix & other) const { - if (col != other.row) { - throw (std::logic_error("matrix::mul(): incompatible matrices")); - } - - exvector prod(row*other.col); - for (unsigned i=0; icols() != other.rows()) + throw (std::logic_error("matrix::mul(): incompatible matrices")); + + exvector prod(this->rows()*other.cols()); + + for (unsigned r1=0; r1rows(); ++r1) { + for (unsigned c=0; ccols(); ++c) { + if (m[r1*col+c].is_zero()) + continue; + for (unsigned r2=0; r2=row || co<0 || co>=col) { - throw (std::range_error("matrix::operator(): index out of range")); - } - - return m[ro*col+co]; + if (ro>=row || co>=col) + throw (std::range_error("matrix::operator(): index out of range")); + + return m[ro*col+co]; } + /** Set individual elements manually. * * @exception range_error (index out of range) */ matrix & matrix::set(unsigned ro, unsigned co, ex value) { - if (ro<0 || ro>=row || co<0 || co>=col) { - throw (std::range_error("matrix::set(): index out of range")); - } + if (ro>=row || co>=col) + throw (std::range_error("matrix::set(): index out of range")); - ensure_if_modifiable(); - m[ro*col+co] = value; - return *this; + ensure_if_modifiable(); + m[ro*col+co] = value; + return *this; } + /** Transposed of an m x n matrix, producing a new n x m matrix object that * represents the transposed. */ matrix matrix::transpose(void) const { - exvector trans(col*row); - - for (unsigned r=0; rcols()*this->rows()); + + for (unsigned r=0; rcols(); ++r) + for (unsigned c=0; crows(); ++c) + trans[r*this->rows()+c] = m[c*this->cols()+r]; + + return matrix(this->cols(),this->rows(),trans); } -/* Leverrier algorithm for large matrices having at least one symbolic entry. - * This routine is only called internally by matrix::determinant(). The - * algorithm is very bad for symbolic matrices since it returns expressions - * that are quite hard to expand. */ -/*ex matrix::determinant_symbolic_leverrier(const matrix & M) - *{ - * GINAC_ASSERT(M.rows()==M.cols()); // cannot happen, just in case... - * - * matrix B(M); - * matrix I(M.row, M.col); - * ex c=B.trace(); - * for (unsigned i=1; i3 && 5*sparse_count<=row*col) + algo = determinant_algo::bareiss; + // Purely numeric matrix can be handled by Gauss elimination. + // This overrides any prior decisions. + if (numeric_flag) + algo = determinant_algo::gauss; + } + + // Trap the trivial case here, since some algorithms don't like it + if (this->row==1) { + // for consistency with non-trivial determinants... + if (normal_flag) + return m[0].normal(); + else + return m[0].expand(); + } + + // Compute the determinant + switch(algo) { + case determinant_algo::gauss: { + ex det = 1; + matrix tmp(*this); + int sign = tmp.gauss_elimination(true); + for (unsigned d=0; d uintpair; + std::vector c_zeros; // number of zeros in column + for (unsigned c=0; c pre_sort; + for (std::vector::iterator i=c_zeros.begin(); i!=c_zeros.end(); ++i) + pre_sort.push_back(i->second); + int sign = permutation_sign(pre_sort); + exvector result(row*col); // represents sorted matrix + unsigned c = 0; + for (std::vector::iterator i=pre_sort.begin(); + i!=pre_sort.end(); + ++i,++c) { + for (unsigned r=0; rmul(B); + c = B.trace()/ex(i+1); + poly -= c*power(lambda,row-i-1); + } + if (row%2) + return -poly; + else + return poly; + } + + matrix M(*this); + for (unsigned r=0; rzero_in_last_row)||(zero_in_this_row=n)); - zero_in_last_row = zero_in_this_row; - } -#endif // def DO_GINAC_ASSERT - - /* - cout << "after" << endl; - cout << "a=" << a << endl; - cout << "b=" << b << endl; - */ - - // assemble solution - matrix sol(n,1); - unsigned last_assigned_sol = n+1; - for (unsigned r=m; r>0; --r) { - unsigned first_non_zero = 1; - while ((first_non_zero<=n)&&(a.ffe_get(r,first_non_zero).is_zero())) - first_non_zero++; - if (first_non_zero>n) { - // row consists only of zeroes, corresponding rhs must be 0 as well - if (!b.ffe_get(r,1).is_zero()) { - throw (std::runtime_error("matrix::fraction_free_elim(): singular matrix")); - } - } else { - // assign solutions for vars between first_non_zero+1 and - // last_assigned_sol-1: free parameters - for (unsigned c=first_non_zero+1; c<=last_assigned_sol-1; ++c) { - sol.ffe_set(c,1,vars.ffe_get(c,1)); - } - ex e = b.ffe_get(r,1); - for (unsigned c=first_non_zero+1; c<=n; ++c) { - e=e-a.ffe_get(r,c)*sol.ffe_get(c,1); - } - sol.ffe_set(first_non_zero,1, - (e/a.ffe_get(r,first_non_zero)).normal()); - last_assigned_sol = first_non_zero; - } - } - // assign solutions for vars between 1 and - // last_assigned_sol-1: free parameters - for (unsigned c=1; c<=last_assigned_sol-1; ++c) - sol.ffe_set(c,1,vars.ffe_get(c,1)); - -#ifdef DO_GINAC_ASSERT - // test solution with echelon matrix - for (unsigned r=1; r<=m; ++r) { - ex e = 0; - for (unsigned c=1; c<=n; ++c) - e = e+a.ffe_get(r,c)*sol.ffe_get(c,1); - if (!(e-b.ffe_get(r,1)).normal().is_zero()) { - cout << "e=" << e; - cout << "b.ffe_get(" << r<<",1)=" << b.ffe_get(r,1) << endl; - cout << "diff=" << (e-b.ffe_get(r,1)).normal() << endl; - } - GINAC_ASSERT((e-b.ffe_get(r,1)).normal().is_zero()); - } - - // test solution with original matrix - for (unsigned r=1; r<=m; ++r) { - ex e = 0; - for (unsigned c=1; c<=n; ++c) - e = e+ffe_get(r,c)*sol.ffe_get(c,1); - try { - if (!(e-rhs.ffe_get(r,1)).normal().is_zero()) { - cout << "e=" << e << endl; - e.printtree(cout); - ex en = e.normal(); - cout << "e.normal()=" << en << endl; - en.printtree(cout); - cout << "rhs.ffe_get(" << r<<",1)=" << rhs.ffe_get(r,1) << endl; - cout << "diff=" << (e-rhs.ffe_get(r,1)).normal() << endl; - } - } catch (...) { - ex xxx = e - rhs.ffe_get(r,1); - cerr << "xxx=" << xxx << endl << endl; - } - GINAC_ASSERT((e-rhs.ffe_get(r,1)).normal().is_zero()); - } -#endif // def DO_GINAC_ASSERT - - return sol; -} - -/** Solve a set of equations for an m x n matrix. - * - * @param vars n x p matrix - * @param rhs m x p matrix - * @exception logic_error (incompatible matrices) - * @exception runtime_error (singular matrix) */ + * @exception invalid_argument (1st argument must be matrix of symbols) + * @exception runtime_error (inconsistent linear system) + * @see solve_algo */ matrix matrix::solve(const matrix & vars, - const matrix & rhs) const + const matrix & rhs, + unsigned algo) const { - if ((row != rhs.row) || (col != vars.row) || (rhs.col != vars.col)) - throw (std::logic_error("matrix::solve(): incompatible matrices")); - - throw (std::runtime_error("FIXME: need implementation.")); + const unsigned m = this->rows(); + const unsigned n = this->cols(); + const unsigned p = rhs.cols(); + + // syntax checks + if ((rhs.rows() != m) || (vars.rows() != n) || (vars.col != p)) + throw (std::logic_error("matrix::solve(): incompatible matrices")); + for (unsigned ro=0; rom[r*n+c]; + for (unsigned c=0; c=0; --r) { + unsigned fnz = 1; // first non-zero in row + while ((fnz<=n) && (aug.m[r*(n+p)+(fnz-1)].is_zero())) + ++fnz; + if (fnz>n) { + // row consists only of zeros, corresponding rhs must be 0, too + if (!aug.m[r*(n+p)+n+co].is_zero()) { + throw (std::runtime_error("matrix::solve(): inconsistent linear system")); + } + } else { + // assign solutions for vars between fnz+1 and + // last_assigned_sol-1: free parameters + for (unsigned c=fnz; cm[r*col+c]; - for (unsigned c=0; c0; --r) { - for (unsigned i=r; irow==1) - return m[0]; - if (this->row==2) - return (m[0]*m[3]-m[2]*m[1]); - if (this->row==3) - return ((m[4]*m[8]-m[5]*m[7])*m[0]- - (m[1]*m[8]-m[2]*m[7])*m[3]+ - (m[1]*m[5]-m[4]*m[2])*m[6]); - - // This algorithm can best be understood by looking at a naive - // implementation of Laplace-expansion, like this one: - // ex det; - // matrix minorM(this->row-1,this->col-1); - // for (unsigned r1=0; r1row; ++r1) { - // // shortcut if element(r1,0) vanishes - // if (m[r1*col].is_zero()) - // continue; - // // assemble the minor matrix - // for (unsigned r=0; r,class ex> Rmap; - typedef map,class ex>::value_type Rmap_value; - Rmap A, B; - ex det; - vector Pkey; // Unique flipper counter for partitioning into minors - Pkey.reserve(this->col); - vector Mkey; // key for minor determinant (a subpartition of Pkey) - Mkey.reserve(this->col-1); - // initialize A with last column: - for (unsigned r=0; rcol; ++r) { - Pkey.erase(Pkey.begin(),Pkey.end()); - Pkey.push_back(r); - A.insert(Rmap_value(Pkey,m[this->col*r+this->col-1])); - } - // proceed from right to left through matrix - for (int c=this->col-2; c>=0; --c) { - Pkey.erase(Pkey.begin(),Pkey.end()); // don't change capacity - Mkey.erase(Mkey.begin(),Mkey.end()); - for (unsigned i=0; icol-c; ++i) - Pkey.push_back(i); - unsigned fc = 0; // controls logic for our strange flipper counter - do { - A.insert(Rmap_value(Pkey,_ex0())); - det = _ex0(); - for (unsigned r=0; rcol-c; ++r) { - // maybe there is nothing to do? - if (m[Pkey[r]*this->col+c].is_zero()) - continue; - // create the sorted key for all possible minors - Mkey.erase(Mkey.begin(),Mkey.end()); - for (unsigned i=0; icol-c; ++i) - if (i!=r) - Mkey.push_back(Pkey[i]); - // Fetch the minors and compute the new determinant - if (r%2) - det -= m[Pkey[r]*this->col+c]*A[Mkey]; - else - det += m[Pkey[r]*this->col+c]*A[Mkey]; - } - // Store the new determinant at its place in B: - B.insert(Rmap_value(Pkey,det)); - // increment our strange flipper counter - for (fc=this->col-c; fc>0; --fc) { - ++Pkey[fc-1]; - if (Pkey[fc-1]col-c) - for (unsigned j=fc; jcol-c; ++j) - Pkey[j] = Pkey[j-1]+1; - } while(fc); - // change the role of A and B: - A = B; - B.clear(); - } - - return det; + // for small matrices the algorithm does not make any sense: + const unsigned n = this->cols(); + if (n==1) + return m[0].expand(); + if (n==2) + return (m[0]*m[3]-m[2]*m[1]).expand(); + if (n==3) + return (m[0]*m[4]*m[8]-m[0]*m[5]*m[7]- + m[1]*m[3]*m[8]+m[2]*m[3]*m[7]+ + m[1]*m[5]*m[6]-m[2]*m[4]*m[6]).expand(); + + // This algorithm can best be understood by looking at a naive + // implementation of Laplace-expansion, like this one: + // ex det; + // matrix minorM(this->rows()-1,this->cols()-1); + // for (unsigned r1=0; r1rows(); ++r1) { + // // shortcut if element(r1,0) vanishes + // if (m[r1*col].is_zero()) + // continue; + // // assemble the minor matrix + // for (unsigned r=0; r Pkey; + Pkey.reserve(n); + // key for minor determinant (a subpartition of Pkey) + std::vector Mkey; + Mkey.reserve(n-1); + // we store our subminors in maps, keys being the rows they arise from + typedef std::map,class ex> Rmap; + typedef std::map,class ex>::value_type Rmap_value; + Rmap A; + Rmap B; + ex det; + // initialize A with last column: + for (unsigned r=0; r=0; --c) { + Pkey.erase(Pkey.begin(),Pkey.end()); // don't change capacity + Mkey.erase(Mkey.begin(),Mkey.end()); + for (unsigned i=0; i0; --fc) { + ++Pkey[fc-1]; + if (Pkey[fc-1]0) + for (unsigned j=fc; j sigma(col); - for (unsigned i=0; irows(); + const unsigned n = this->cols(); + GINAC_ASSERT(!det || n==m); + int sign = 1; + + unsigned r0 = 0; + for (unsigned r1=0; (r1=0) { + if (indx > 0) + sign = -sign; + for (unsigned r2=r0+1; r2m[r2*n+r1].is_zero()) { + // yes, there is something to do in this row + ex piv = this->m[r2*n+r1] / this->m[r0*n+r1]; + for (unsigned c=r1+1; cm[r2*n+c] -= piv * this->m[r0*n+c]; + if (!this->m[r2*n+c].info(info_flags::numeric)) + this->m[r2*n+c] = this->m[r2*n+c].normal(); + } + } + // fill up left hand side with zeros + for (unsigned c=0; c<=r1; ++c) + this->m[r2*n+c] = _ex0(); + } + if (det) { + // save space by deleting no longer needed elements + for (unsigned c=r0+1; cm[r0*n+c] = _ex0(); + } + ++r0; + } + } + + return sign; } -/** Perform the steps of an ordinary Gaussian elimination to bring the matrix + +/** Perform the steps of division free elimination to bring the m x n matrix * into an upper echelon form. * + * @param det may be set to true to save a lot of space if one is only + * interested in the diagonal elements (i.e. for calculating determinants). + * The others are set to zero in this case. * @return sign is 1 if an even number of rows was swapped, -1 if an odd * number of rows was swapped and 0 if the matrix is singular. */ -int matrix::gauss_elimination(void) +int matrix::division_free_elimination(const bool det) { - int sign = 1; - ensure_if_modifiable(); - for (unsigned r1=0; r1 0) - sign = -sign; - for (unsigned r2=r1+1; r2m[r2*col+c] -= this->m[r2*col+r1]*this->m[r1*col+c]/this->m[r1*col+r1]; - for (unsigned c=0; c<=r1; ++c) - this->m[r2*col+c] = _ex0(); - } - } - return sign; + ensure_if_modifiable(); + const unsigned m = this->rows(); + const unsigned n = this->cols(); + GINAC_ASSERT(!det || n==m); + int sign = 1; + + unsigned r0 = 0; + for (unsigned r1=0; (r1=0) { + if (indx>0) + sign = -sign; + for (unsigned r2=r0+1; r2m[r2*n+c] = (this->m[r0*n+r1]*this->m[r2*n+c] - this->m[r2*n+r1]*this->m[r0*n+c]).expand(); + // fill up left hand side with zeros + for (unsigned c=0; c<=r1; ++c) + this->m[r2*n+c] = _ex0(); + } + if (det) { + // save space by deleting no longer needed elements + for (unsigned c=r0+1; cm[r0*n+c] = _ex0(); + } + ++r0; + } + } + + return sign; } -/** Partial pivoting method. + +/** Perform the steps of Bareiss' one-step fraction free elimination to bring + * the matrix into an upper echelon form. Fraction free elimination means + * that divide is used straightforwardly, without computing GCDs first. This + * is possible, since we know the divisor at each step. + * + * @param det may be set to true to save a lot of space if one is only + * interested in the last element (i.e. for calculating determinants). The + * others are set to zero in this case. + * @return sign is 1 if an even number of rows was swapped, -1 if an odd + * number of rows was swapped and 0 if the matrix is singular. */ +int matrix::fraction_free_elimination(const bool det) +{ + // Method: + // (single-step fraction free elimination scheme, already known to Jordan) + // + // Usual division-free elimination sets m[0](r,c) = m(r,c) and then sets + // m[k+1](r,c) = m[k](k,k) * m[k](r,c) - m[k](r,k) * m[k](k,c). + // + // Bareiss (fraction-free) elimination in addition divides that element + // by m[k-1](k-1,k-1) for k>1, where it can be shown by means of the + // Sylvester determinant that this really divides m[k+1](r,c). + // + // We also allow rational functions where the original prove still holds. + // However, we must care for numerator and denominator separately and + // "manually" work in the integral domains because of subtle cancellations + // (see below). This blows up the bookkeeping a bit and the formula has + // to be modified to expand like this (N{x} stands for numerator of x, + // D{x} for denominator of x): + // N{m[k+1](r,c)} = N{m[k](k,k)}*N{m[k](r,c)}*D{m[k](r,k)}*D{m[k](k,c)} + // -N{m[k](r,k)}*N{m[k](k,c)}*D{m[k](k,k)}*D{m[k](r,c)} + // D{m[k+1](r,c)} = D{m[k](k,k)}*D{m[k](r,c)}*D{m[k](r,k)}*D{m[k](k,c)} + // where for k>1 we now divide N{m[k+1](r,c)} by + // N{m[k-1](k-1,k-1)} + // and D{m[k+1](r,c)} by + // D{m[k-1](k-1,k-1)}. + + ensure_if_modifiable(); + const unsigned m = this->rows(); + const unsigned n = this->cols(); + GINAC_ASSERT(!det || n==m); + int sign = 1; + if (m==1) + return 1; + ex divisor_n = 1; + ex divisor_d = 1; + ex dividend_n; + ex dividend_d; + + // We populate temporary matrices to subsequently operate on. There is + // one holding numerators and another holding denominators of entries. + // This is a must since the evaluator (or even earlier mul's constructor) + // might cancel some trivial element which causes divide() to fail. The + // elements are normalized first (yes, even though this algorithm doesn't + // need GCDs) since the elements of *this might be unnormalized, which + // makes things more complicated than they need to be. + matrix tmp_n(*this); + matrix tmp_d(m,n); // for denominators, if needed + lst srl; // symbol replacement list + exvector::iterator it = this->m.begin(); + exvector::iterator tmp_n_it = tmp_n.m.begin(); + exvector::iterator tmp_d_it = tmp_d.m.begin(); + for (; it!= this->m.end(); ++it, ++tmp_n_it, ++tmp_d_it) { + (*tmp_n_it) = (*it).normal().to_rational(srl); + (*tmp_d_it) = (*tmp_n_it).denom(); + (*tmp_n_it) = (*tmp_n_it).numer(); + } + + unsigned r0 = 0; + for (unsigned r1=0; (r1=0) { + if (indx>0) { + sign = -sign; + // tmp_n's rows r0 and indx were swapped, do the same in tmp_d: + for (unsigned c=r1; cm.begin(); + tmp_n_it = tmp_n.m.begin(); + tmp_d_it = tmp_d.m.begin(); + for (; it!= this->m.end(); ++it, ++tmp_n_it, ++tmp_d_it) + (*it) = ((*tmp_n_it)/(*tmp_d_it)).subs(srl); + + return sign; +} + + +/** Partial pivoting method for matrix elimination schemes. * Usual pivoting (symbolic==false) returns the index to the element with the * largest absolute value in column ro and swaps the current row with the one * where the element was found. With (symbolic==true) it does the same thing * with the first non-zero element. * - * @param ro is the row to be inspected + * @param ro is the row from where to begin + * @param co is the column to be inspected * @param symbolic signal if we want the first non-zero element to be pivoted * (true) or the one with the largest absolute value (false). * @return 0 if no interchange occured, -1 if all are zero (usually signaling * a degeneracy) and positive integer k means that rows ro and k were swapped. */ -int matrix::pivot(unsigned ro, bool symbolic) +int matrix::pivot(unsigned ro, unsigned co, bool symbolic) { - unsigned k = ro; - - if (symbolic) { // search first non-zero - for (unsigned r=ro; r maxn && - !tmp.is_zero()) { - maxn = tmp; - k = r; - } - } - } - if (m[k*col+ro].is_zero()) - return -1; - if (k!=ro) { // swap rows - ensure_if_modifiable(); - for (unsigned c=0; cm[k*col+co].expand().is_zero())) + ++k; + } else { + // search largest element in column co beginning at row ro + GINAC_ASSERT(is_ex_of_type(this->m[k*col+co],numeric)); + unsigned kmax = k+1; + numeric mmax = abs(ex_to_numeric(m[kmax*col+co])); + while (kmaxm[kmax*col+co],numeric)); + numeric tmp = ex_to_numeric(this->m[kmax*col+co]); + if (abs(tmp) > mmax) { + mmax = tmp; + k = kmax; + } + ++kmax; + } + if (!mmax.is_zero()) + k = kmax; + } + if (k==row) + // all elements in column co below row ro vanish + return -1; + if (k==ro) + // matrix needs no pivoting + return 0; + // matrix needs pivoting, so swap rows k and ro + ensure_if_modifiable(); + for (unsigned c=0; cm[k*col+c].swap(this->m[ro*col+c]); + + return k; } -////////// -// global constants -////////// +ex lst_to_matrix(const lst & l) +{ + // Find number of rows and columns + unsigned rows = l.nops(), cols = 0, i, j; + for (i=0; i cols) + cols = l.op(i).nops(); + + // Allocate and fill matrix + matrix &m = *new matrix(rows, cols); + m.setflag(status_flags::dynallocated); + for (i=0; i j) + m.set(i, j, l.op(i).op(j)); + else + m.set(i, j, ex(0)); + return m; +} -const matrix some_matrix; -const type_info & typeid_matrix=typeid(some_matrix); +ex diag_matrix(const lst & l) +{ + unsigned dim = l.nops(); + + matrix &m = *new matrix(dim, dim); + m.setflag(status_flags::dynallocated); + for (unsigned i=0; i