X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fmatrix.cpp;h=bb1850f728de2311f05eae5efbcd9ff38b494da3;hp=97b473628464e498a233c691e2d0b724f34e7491;hb=f6a16c5f0c04d44e61870b834f6b2e88c98cc8a2;hpb=5f00c012381b3671df5a9fbfeec2d36af0f75b61 diff --git a/ginac/matrix.cpp b/ginac/matrix.cpp index 97b47362..bb1850f7 100644 --- a/ginac/matrix.cpp +++ b/ginac/matrix.cpp @@ -21,12 +21,18 @@ */ #include +#include #include #include "matrix.h" #include "archive.h" +#include "numeric.h" +#include "lst.h" #include "utils.h" #include "debugmsg.h" +#include "power.h" +#include "symbol.h" +#include "normal.h" #ifndef NO_NAMESPACE_GINAC namespace GiNaC { @@ -75,9 +81,9 @@ const matrix & matrix::operator=(const matrix & other) void matrix::copy(const matrix & other) { inherited::copy(other); - row=other.row; - col=other.col; - m=other.m; // use STL's vector copying + row = other.row; + col = other.col; + m = other.m; // STL's vector copying invoked here } void matrix::destroy(bool call_parent) @@ -102,7 +108,7 @@ matrix::matrix(unsigned r, unsigned c) m.resize(r*c, _ex0()); } -// protected + // protected /** Ctor from representation, for internal use only. */ matrix::matrix(unsigned r, unsigned c, const exvector & m2) @@ -248,14 +254,12 @@ ex matrix::eval(int level) const debugmsg("matrix eval",LOGLEVEL_MEMBER_FUNCTION); // check if we have to do anything at all - if ((level==1)&&(flags & status_flags::evaluated)) { + if ((level==1)&&(flags & status_flags::evaluated)) return *this; - } // emergency break - if (level == -max_recursion_level) { + if (level == -max_recursion_level) throw (std::runtime_error("matrix::eval(): recursion limit exceeded")); - } // eval() entry by entry exvector m2(row*col); @@ -276,9 +280,8 @@ ex matrix::evalf(int level) const debugmsg("matrix evalf",LOGLEVEL_MEMBER_FUNCTION); // check if we have to do anything at all - if (level==1) { + if (level==1) return *this; - } // emergency break if (level == -max_recursion_level) { @@ -301,23 +304,21 @@ ex matrix::evalf(int level) const int matrix::compare_same_type(const basic & other) const { GINAC_ASSERT(is_exactly_of_type(other, matrix)); - const matrix & o=static_cast(const_cast(other)); + const matrix & o = static_cast(const_cast(other)); // compare number of rows - if (row != o.rows()) { + if (row != o.rows()) return row < o.rows() ? -1 : 1; - } // compare number of columns - if (col != o.cols()) { + if (col != o.cols()) return col < o.cols() ? -1 : 1; - } // equal number of rows and columns, compare individual elements int cmpval; for (unsigned r=0; rm); exvector::iterator i; @@ -351,14 +351,14 @@ matrix matrix::add(const matrix & other) const return matrix(row,col,sum); } + /** Difference of matrices. * * @exception logic_error (incompatible matrices) */ matrix matrix::sub(const matrix & other) const { - if (col != other.col || row != other.row) { + if (col != other.col || row != other.row) throw (std::logic_error("matrix::sub(): incompatible matrices")); - } exvector dif(this->m); exvector::iterator i; @@ -371,26 +371,29 @@ matrix matrix::sub(const matrix & other) const return matrix(row,col,dif); } + /** Product of matrices. * * @exception logic_error (incompatible matrices) */ matrix matrix::mul(const matrix & other) const { - if (col != other.row) { + if (col != other.row) throw (std::logic_error("matrix::mul(): incompatible matrices")); - } exvector prod(row*other.col); - for (unsigned i=0; i=row || co<0 || co>=col) { + if (ro<0 || ro>=row || co<0 || co>=col) throw (std::range_error("matrix::operator(): index out of range")); - } return m[ro*col+co]; } + /** Set individual elements manually. * * @exception range_error (index out of range) */ matrix & matrix::set(unsigned ro, unsigned co, ex value) { - if (ro<0 || ro>=row || co<0 || co>=col) { + if (ro<0 || ro>=row || co<0 || co>=col) throw (std::range_error("matrix::set(): index out of range")); - } ensure_if_modifiable(); - m[ro*col+co]=value; + m[ro*col+co] = value; return *this; } + /** Transposed of an m x n matrix, producing a new n x m matrix object that * represents the transposed. */ matrix matrix::transpose(void) const { exvector trans(col*row); - for (unsigned r=0; r -int permutation_sign(vector s) -{ - if (s.size() < 2) - return 0; - int sigma=1; - for (typename vector::iterator i=s.begin(); i!=s.end()-1; ++i) { - for (typename vector::iterator j=i+1; j!=s.end(); ++j) { - if (*i == *j) - return 0; - if (*i > *j) { - iter_swap(i,j); - sigma = -sigma; - } - } - } - return sigma; -} -/** Determinant built by application of the full permutation group. This - * routine is only called internally by matrix::determinant(). */ -ex determinant_symbolic_perm(const matrix & M) +/** Determinant of square matrix. This routine doesn't actually calculate the + * determinant, it only implements some heuristics about which algorithm to + * call. If all the elements of the matrix are elements of an integral domain + * the determinant is also in that integral domain and the result is expanded + * only. If one or more elements are from a quotient field the determinant is + * usually also in that quotient field and the result is normalized before it + * is returned. This implies that the determinant of the symbolic 2x2 matrix + * [[a/(a-b),1],[b/(a-b),1]] is returned as unity. (In this respect, it + * behaves like MapleV and unlike Mathematica.) + * + * @return the determinant as a new expression + * @exception logic_error (matrix not square) */ +ex matrix::determinant(void) const { - GINAC_ASSERT(M.rows()==M.cols()); // cannot happen, just in case... + if (row!=col) + throw (std::logic_error("matrix::determinant(): matrix not square")); + GINAC_ASSERT(row*col==m.capacity()); + if (this->row==1) // continuation would be pointless + return m[0]; - if (M.rows()==1) { // speed things up - return M(0,0); + // Gather some information about the matrix: + bool numeric_flag = true; + bool normal_flag = false; + unsigned sparse_count = 0; // count non-zero elements + for (exvector::const_iterator r=m.begin(); r!=m.end(); ++r) { + if (!(*r).is_zero()) + ++sparse_count; + if (!(*r).info(info_flags::numeric)) + numeric_flag = false; + if ((*r).info(info_flags::rational_function) && + !(*r).info(info_flags::crational_polynomial)) + normal_flag = true; } - ex det; - ex term; - vector sigma(M.cols()); - for (unsigned i=0; i uintpair; // # of zeros, column + vector c_zeros; // number of zeros in column + for (unsigned c=0; c pre_sort; // unfortunately vector can't be used + // for permutation_sign. + for (vector::iterator i=c_zeros.begin(); i!=c_zeros.end(); ++i) + pre_sort.push_back(i->second); + int sign = permutation_sign(pre_sort); + exvector result(row*col); // represents sorted matrix + unsigned c = 0; + for (vector::iterator i=pre_sort.begin(); + i!=pre_sort.end(); + ++i,++c) { + for (unsigned r=0; rmul(B); + c = B.trace()/ex(i+1); + poly -= c*power(lambda,row-i-1); + } + if (row%2) + return -poly; + else + return poly; } matrix M(*this); - for (unsigned r=0; rzero_in_last_row)||(zero_in_this_row=n)); - zero_in_last_row=zero_in_this_row; + zero_in_last_row = zero_in_this_row; } #endif // def DO_GINAC_ASSERT // assemble solution matrix sol(n,1); - unsigned last_assigned_sol=n+1; + unsigned last_assigned_sol = n+1; for (unsigned r=m; r>0; --r) { - unsigned first_non_zero=1; - while ((first_non_zero<=n)&&(a.ffe_get(r,first_non_zero).is_zero())) { + unsigned first_non_zero = 1; + while ((first_non_zero<=n)&&(a.ffe_get(r,first_non_zero).is_zero())) first_non_zero++; - } if (first_non_zero>n) { // row consists only of zeroes, corresponding rhs must be 0 as well if (!b.ffe_get(r,1).is_zero()) { @@ -813,34 +767,26 @@ matrix matrix::fraction_free_elim(const matrix & vars, for (unsigned c=first_non_zero+1; c<=last_assigned_sol-1; ++c) { sol.ffe_set(c,1,vars.ffe_get(c,1)); } - ex e=b.ffe_get(r,1); + ex e = b.ffe_get(r,1); for (unsigned c=first_non_zero+1; c<=n; ++c) { e=e-a.ffe_get(r,c)*sol.ffe_get(c,1); } sol.ffe_set(first_non_zero,1, (e/a.ffe_get(r,first_non_zero)).normal()); - last_assigned_sol=first_non_zero; + last_assigned_sol = first_non_zero; } } // assign solutions for vars between 1 and // last_assigned_sol-1: free parameters - for (unsigned c=1; c<=last_assigned_sol-1; ++c) { + for (unsigned c=1; c<=last_assigned_sol-1; ++c) sol.ffe_set(c,1,vars.ffe_get(c,1)); - } - - /* - for (unsigned c=1; c<=n; ++c) { - cout << vars.ffe_get(c,1) << "->" << sol.ffe_get(c,1) << endl; - } - */ #ifdef DO_GINAC_ASSERT // test solution with echelon matrix for (unsigned r=1; r<=m; ++r) { - ex e=0; - for (unsigned c=1; c<=n; ++c) { - e=e+a.ffe_get(r,c)*sol.ffe_get(c,1); - } + ex e = 0; + for (unsigned c=1; c<=n; ++c) + e = e+a.ffe_get(r,c)*sol.ffe_get(c,1); if (!(e-b.ffe_get(r,1)).normal().is_zero()) { cout << "e=" << e; cout << "b.ffe_get(" << r<<",1)=" << b.ffe_get(r,1) << endl; @@ -848,25 +794,24 @@ matrix matrix::fraction_free_elim(const matrix & vars, } GINAC_ASSERT((e-b.ffe_get(r,1)).normal().is_zero()); } - + // test solution with original matrix for (unsigned r=1; r<=m; ++r) { - ex e=0; - for (unsigned c=1; c<=n; ++c) { - e=e+ffe_get(r,c)*sol.ffe_get(c,1); - } + ex e = 0; + for (unsigned c=1; c<=n; ++c) + e = e+ffe_get(r,c)*sol.ffe_get(c,1); try { - if (!(e-rhs.ffe_get(r,1)).normal().is_zero()) { - cout << "e=" << e << endl; - e.printtree(cout); - ex en=e.normal(); - cout << "e.normal()=" << en << endl; - en.printtree(cout); - cout << "rhs.ffe_get(" << r<<",1)=" << rhs.ffe_get(r,1) << endl; - cout << "diff=" << (e-rhs.ffe_get(r,1)).normal() << endl; - } + if (!(e-rhs.ffe_get(r,1)).normal().is_zero()) { + cout << "e=" << e << endl; + e.printtree(cout); + ex en = e.normal(); + cout << "e.normal()=" << en << endl; + en.printtree(cout); + cout << "rhs.ffe_get(" << r<<",1)=" << rhs.ffe_get(r,1) << endl; + cout << "diff=" << (e-rhs.ffe_get(r,1)).normal() << endl; + } } catch (...) { - ex xxx=e-rhs.ffe_get(r,1); + ex xxx = e - rhs.ffe_get(r,1); cerr << "xxx=" << xxx << endl << endl; } GINAC_ASSERT((e-rhs.ffe_get(r,1)).normal().is_zero()); @@ -874,76 +819,388 @@ matrix matrix::fraction_free_elim(const matrix & vars, #endif // def DO_GINAC_ASSERT return sol; -} +} + +/** Solve a set of equations for an m x n matrix. + * + * @param vars n x p matrix + * @param rhs m x p matrix + * @exception logic_error (incompatible matrices) + * @exception runtime_error (singular matrix) */ +matrix matrix::solve(const matrix & vars, + const matrix & rhs) const +{ + if ((row != rhs.row) || (col != vars.row) || (rhs.col != vars.col)) + throw (std::logic_error("matrix::solve(): incompatible matrices")); -/** Solve simultaneous set of equations. */ -matrix matrix::solve(const matrix & v) const + throw (std::runtime_error("FIXME: need implementation.")); +} + +/** Old and obsolete interface: */ +matrix matrix::old_solve(const matrix & v) const { - if (!(row == col && col == v.row)) { + if ((v.row != col) || (col != v.row)) throw (std::logic_error("matrix::solve(): incompatible matrices")); - } - // build the extended matrix of *this with v attached to the right + // build the augmented matrix of *this with v attached to the right matrix tmp(row,col+v.col); for (unsigned r=0; rm[r*col+c]; + for (unsigned c=0; c0; --r) { + for (unsigned i=r; irow==1) + return m[0]; + if (this->row==2) + return (m[0]*m[3]-m[2]*m[1]).expand(); + if (this->row==3) + return (m[0]*m[4]*m[8]-m[0]*m[5]*m[7]- + m[1]*m[3]*m[8]+m[2]*m[3]*m[7]+ + m[1]*m[5]*m[6]-m[2]*m[4]*m[6]).expand(); + + // This algorithm can best be understood by looking at a naive + // implementation of Laplace-expansion, like this one: + // ex det; + // matrix minorM(this->row-1,this->col-1); + // for (unsigned r1=0; r1row; ++r1) { + // // shortcut if element(r1,0) vanishes + // if (m[r1*col].is_zero()) + // continue; + // // assemble the minor matrix + // for (unsigned r=0; r Pkey; + Pkey.reserve(this->col); + // key for minor determinant (a subpartition of Pkey) + vector Mkey; + Mkey.reserve(this->col-1); + // we store our subminors in maps, keys being the rows they arise from + typedef map,class ex> Rmap; + typedef map,class ex>::value_type Rmap_value; + Rmap A; + Rmap B; + ex det; + // initialize A with last column: + for (unsigned r=0; rcol; ++r) { + Pkey.erase(Pkey.begin(),Pkey.end()); + Pkey.push_back(r); + A.insert(Rmap_value(Pkey,m[this->col*r+this->col-1])); + } + // proceed from right to left through matrix + for (int c=this->col-2; c>=0; --c) { + Pkey.erase(Pkey.begin(),Pkey.end()); // don't change capacity + Mkey.erase(Mkey.begin(),Mkey.end()); + for (unsigned i=0; icol-c; ++i) + Pkey.push_back(i); + unsigned fc = 0; // controls logic for our strange flipper counter + do { + det = _ex0(); + for (unsigned r=0; rcol-c; ++r) { + // maybe there is nothing to do? + if (m[Pkey[r]*this->col+c].is_zero()) + continue; + // create the sorted key for all possible minors + Mkey.erase(Mkey.begin(),Mkey.end()); + for (unsigned i=0; icol-c; ++i) + if (i!=r) + Mkey.push_back(Pkey[i]); + // Fetch the minors and compute the new determinant + if (r%2) + det -= m[Pkey[r]*this->col+c]*A[Mkey]; + else + det += m[Pkey[r]*this->col+c]*A[Mkey]; + } + // prevent build-up of deep nesting of expressions saves time: + det = det.expand(); + // store the new determinant at its place in B: + if (!det.is_zero()) + B.insert(Rmap_value(Pkey,det)); + // increment our strange flipper counter + for (fc=this->col-c; fc>0; --fc) { + ++Pkey[fc-1]; + if (Pkey[fc-1]col-c) + for (unsigned j=fc; jcol-c; ++j) + Pkey[j] = Pkey[j-1]+1; + } while(fc); + // next column, so change the role of A and B: + A = B; + B.clear(); + } + + return det; +} + + +/** Perform the steps of an ordinary Gaussian elimination to bring the matrix + * into an upper echelon form. + * + * @return sign is 1 if an even number of rows was swapped, -1 if an odd + * number of rows was swapped and 0 if the matrix is singular. */ +int matrix::gauss_elimination(void) +{ + ensure_if_modifiable(); + int sign = 1; + ex piv; + for (unsigned r1=0; r1 0) + sign = -sign; + for (unsigned r2=r1+1; r2m[r2*col+r1] / this->m[r1*col+r1]; + for (unsigned c=r1+1; cm[r2*col+c] -= piv * this->m[r1*col+c]; + for (unsigned c=0; c<=r1; ++c) + this->m[r2*col+c] = _ex0(); } + } + + return sign; +} + + +/** Perform the steps of division free elimination to bring the matrix + * into an upper echelon form. + * + * @return sign is 1 if an even number of rows was swapped, -1 if an odd + * number of rows was swapped and 0 if the matrix is singular. */ +int matrix::division_free_elimination(void) +{ + int sign = 1; + ensure_if_modifiable(); + for (unsigned r1=0; r10) + sign = -sign; for (unsigned r2=r1+1; r2m[r2*col+c] = this->m[r1*col+r1]*this->m[r2*col+c] - this->m[r2*col+r1]*this->m[r1*col+c]; + for (unsigned c=0; c<=r1; ++c) + this->m[r2*col+c] = _ex0(); } } - // assemble the solution matrix - exvector sol(v.row*v.col); - for (unsigned c=0; c=0; --r) { - sol[r*v.col+c] = tmp[r*tmp.col+c]; - for (unsigned i=r+1; i1, where it can be shown by means of the + // Sylvester determinant that this really divides m[k+1](r,c). + // + // We also allow rational functions where the original prove still holds. + // However, we must care for numerator and denominator separately and + // "manually" work in the integral domains because of subtle cancellations + // (see below). This blows up the bookkeeping a bit and the formula has + // to be modified to expand like this (N{x} stands for numerator of x, + // D{x} for denominator of x): + // N{m[k+1](r,c)} = N{m[k](k,k)}*N{m[k](r,c)}*D{m[k](r,k)}*D{m[k](k,c)} + // -N{m[k](r,k)}*N{m[k](k,c)}*D{m[k](k,k)}*D{m[k](r,c)} + // D{m[k+1](r,c)} = D{m[k](k,k)}*D{m[k](r,c)}*D{m[k](r,k)}*D{m[k](k,c)} + // where for k>1 we now divide N{m[k+1](r,c)} by + // N{m[k-1](k-1,k-1)} + // and D{m[k+1](r,c)} by + // D{m[k-1](k-1,k-1)}. + + GINAC_ASSERT(det || row==col); + ensure_if_modifiable(); + if (rows()==1) + return 1; + + int sign = 1; + ex divisor_n = 1; + ex divisor_d = 1; + ex dividend_n; + ex dividend_d; + + // We populate temporary matrices to subsequently operate on. There is + // one holding numerators and another holding denominators of entries. + // This is a must since the evaluator (or even earlier mul's constructor) + // might cancel some trivial element which causes divide() to fail. The + // elements are normalized first (yes, even though this algorithm doesn't + // need GCDs) since the elements of *this might be unnormalized, which + // makes things more complicated than they need to be. + matrix tmp_n(*this); + matrix tmp_d(row,col); // for denominators, if needed + lst srl; // symbol replacement list + exvector::iterator it = m.begin(); + exvector::iterator tmp_n_it = tmp_n.m.begin(); + exvector::iterator tmp_d_it = tmp_d.m.begin(); + for (; it!= m.end(); ++it, ++tmp_n_it, ++tmp_d_it) { + (*tmp_n_it) = (*it).normal().to_rational(srl); + (*tmp_d_it) = (*tmp_n_it).denom(); + (*tmp_n_it) = (*tmp_n_it).numer(); + } + + for (unsigned r1=0; r10) { + sign = -sign; + // rows r1 and indx were swapped, so pivot matrix tmp_d: + for (unsigned c=0; c0) { + divisor_n = tmp_n.m[(r1-1)*col+(r1-1)].expand(); + divisor_d = tmp_d.m[(r1-1)*col+(r1-1)].expand(); + // save space by deleting no longer needed elements: + if (det) { + for (unsigned c=0; c maxn && + !tmp.is_zero()) { + maxn = tmp; + k = r; + } } } - if (m[k*col+ro].is_zero()) { + if (m[k*col+ro].is_zero()) return -1; - } if (k!=ro) { // swap rows + ensure_if_modifiable(); for (unsigned c=0; c cols) + cols = l.op(i).nops(); + + // Allocate and fill matrix + matrix &m = *new matrix(rows, cols); + for (i=0; i j) + m.set(i, j, l.op(i).op(j)); + else + m.set(i, j, ex(0)); + return m; +} + ////////// // global constants //////////