X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fmatrix.cpp;h=97abbc9fd325f9620c55c0cb4e9057f34456e9f5;hp=9f9f67a82c83b62e76431de79ea4bf4054a05047;hb=79f30c335f1ddbd3c76dfee5d76128b992b6b19c;hpb=199b64938ab86af572d0816c15d7838730567b2d diff --git a/ginac/matrix.cpp b/ginac/matrix.cpp index 9f9f67a8..97abbc9f 100644 --- a/ginac/matrix.cpp +++ b/ginac/matrix.cpp @@ -3,7 +3,7 @@ * Implementation of symbolic matrices */ /* - * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2021 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -17,53 +17,49 @@ * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ -#include -#include -#include - #include "matrix.h" #include "numeric.h" #include "lst.h" #include "idx.h" #include "indexed.h" +#include "add.h" #include "power.h" #include "symbol.h" +#include "operators.h" #include "normal.h" -#include "print.h" #include "archive.h" #include "utils.h" -#include "debugmsg.h" + +#include +#include +#include +#include +#include +#include namespace GiNaC { -GINAC_IMPLEMENT_REGISTERED_CLASS(matrix, basic) +GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(matrix, basic, + print_func(&matrix::do_print). + print_func(&matrix::do_print_latex). + print_func(&matrix::do_print_tree). + print_func(&matrix::do_print_python_repr)) ////////// -// default ctor, dtor, copy ctor, assignment operator and helpers: +// default constructor ////////// /** Default ctor. Initializes to 1 x 1-dimensional zero-matrix. */ -matrix::matrix() : inherited(TINFO_matrix), row(1), col(1) +matrix::matrix() : row(1), col(1), m(1, _ex0) { - debugmsg("matrix default ctor",LOGLEVEL_CONSTRUCT); - m.push_back(_ex0()); + setflag(status_flags::not_shareable); } -void matrix::copy(const matrix & other) -{ - inherited::copy(other); - row = other.row; - col = other.col; - m = other.m; // STL's vector copying invoked here -} - -DEFAULT_DESTROY(matrix) - ////////// -// other ctors +// other constructors ////////// // public @@ -72,20 +68,9 @@ DEFAULT_DESTROY(matrix) * * @param r number of rows * @param c number of cols */ -matrix::matrix(unsigned r, unsigned c) - : inherited(TINFO_matrix), row(r), col(c) +matrix::matrix(unsigned r, unsigned c) : row(r), col(c), m(r*c, _ex0) { - debugmsg("matrix ctor from unsigned,unsigned",LOGLEVEL_CONSTRUCT); - m.resize(r*c, _ex0()); -} - -// protected - -/** Ctor from representation, for internal use only. */ -matrix::matrix(unsigned r, unsigned c, const exvector & m2) - : inherited(TINFO_matrix), row(r), col(c), m(m2) -{ - debugmsg("matrix ctor from unsigned,unsigned,exvector",LOGLEVEL_CONSTRUCT); + setflag(status_flags::not_shareable); } /** Construct matrix from (flat) list of elements. If the list has fewer @@ -93,151 +78,213 @@ matrix::matrix(unsigned r, unsigned c, const exvector & m2) * If the list has more elements than the matrix, the excessive elements are * thrown away. */ matrix::matrix(unsigned r, unsigned c, const lst & l) - : inherited(TINFO_matrix), row(r), col(c) + : row(r), col(c), m(r*c, _ex0) { - debugmsg("matrix ctor from unsigned,unsigned,lst",LOGLEVEL_CONSTRUCT); - m.resize(r*c, _ex0()); + setflag(status_flags::not_shareable); - for (unsigned i=0; i= r) break; // matrix smaller than list: throw away excessive elements - m[y*c+x] = l.op(i); + m[y*c+x] = it; + ++i; + } +} + +/** Construct a matrix from an 2 dimensional initializer list. + * Throws an exception if some row has a different length than all the others. + */ +matrix::matrix(std::initializer_list> l) + : row(l.size()), col(l.begin()->size()) +{ + setflag(status_flags::not_shareable); + + m.reserve(row*col); + for (const auto & r : l) { + unsigned c = 0; + for (const auto & e : r) { + m.push_back(e); + ++c; + } + if (c != col) + throw std::invalid_argument("matrix::matrix{{}}: wrong dimension"); } } +// protected + +/** Ctor from representation, for internal use only. */ +matrix::matrix(unsigned r, unsigned c, const exvector & m2) + : row(r), col(c), m(m2) +{ + setflag(status_flags::not_shareable); +} +matrix::matrix(unsigned r, unsigned c, exvector && m2) + : row(r), col(c), m(std::move(m2)) +{ + setflag(status_flags::not_shareable); +} + ////////// // archiving ////////// -matrix::matrix(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) +void matrix::read_archive(const archive_node &n, lst &sym_lst) { - debugmsg("matrix ctor from archive_node", LOGLEVEL_CONSTRUCT); + inherited::read_archive(n, sym_lst); + if (!(n.find_unsigned("row", row)) || !(n.find_unsigned("col", col))) throw (std::runtime_error("unknown matrix dimensions in archive")); m.reserve(row * col); - for (unsigned int i=0; true; i++) { + // XXX: default ctor inserts a zero element, we need to erase it here. + m.pop_back(); + auto range = n.find_property_range("m", "m"); + for (auto i=range.begin; i != range.end; ++i) { ex e; - if (n.find_ex("m", e, sym_lst, i)) - m.push_back(e); - else - break; + n.find_ex_by_loc(i, e, sym_lst); + m.emplace_back(e); } } +GINAC_BIND_UNARCHIVER(matrix); void matrix::archive(archive_node &n) const { inherited::archive(n); n.add_unsigned("row", row); n.add_unsigned("col", col); - exvector::const_iterator i = m.begin(), iend = m.end(); - while (i != iend) { - n.add_ex("m", *i); - ++i; + for (auto & i : m) { + n.add_ex("m", i); } } -DEFAULT_UNARCHIVE(matrix) - ////////// -// functions overriding virtual functions from bases classes +// functions overriding virtual functions from base classes ////////// // public -void matrix::print(const print_context & c, unsigned level) const +void matrix::print_elements(const print_context & c, const char *row_start, const char *row_end, const char *row_sep, const char *col_sep) const { - debugmsg("matrix print", LOGLEVEL_PRINT); - - if (is_of_type(c, print_tree)) { - - inherited::print(c, level); + for (unsigned ro=0; ro(row) * static_cast(col); } /** returns matrix entry at position (i/col, i%col). */ -ex matrix::op(int i) const +ex matrix::op(size_t i) const { + GINAC_ASSERT(i=0); GINAC_ASSERT(isetflag(status_flags::dynallocated | - status_flags::evaluated ); + m2[r*col+c] = m[r*col+c].subs(mp, options); + + return matrix(row, col, std::move(m2)).subs_one_level(mp, options); } -ex matrix::subs(const lst & ls, const lst & lr, bool no_pattern) const +/** Complex conjugate every matrix entry. */ +ex matrix::conjugate() const { - exvector m2(row * col); - for (unsigned r=0; r ev(nullptr); + for (auto i=m.begin(); i!=m.end(); ++i) { + ex x = i->conjugate(); + if (ev) { + ev->push_back(x); + continue; + } + if (are_ex_trivially_equal(x, *i)) { + continue; + } + ev.reset(new exvector); + ev->reserve(m.size()); + for (auto j=m.begin(); j!=i; ++j) { + ev->push_back(*j); + } + ev->push_back(x); + } + if (ev) { + return matrix(row, col, std::move(*ev)); + } + return *this; +} + +ex matrix::real_part() const +{ + exvector v; + v.reserve(m.size()); + for (auto & i : m) + v.push_back(i.real_part()); + return matrix(row, col, std::move(v)); +} - return ex(matrix(row, col, m2)).bp->basic::subs(ls, lr, no_pattern); +ex matrix::imag_part() const +{ + exvector v; + v.reserve(m.size()); + for (auto & i : m) + v.push_back(i.imag_part()); + return matrix(row, col, std::move(v)); } // protected int matrix::compare_same_type(const basic & other) const { - GINAC_ASSERT(is_exactly_of_type(other, matrix)); - const matrix & o = static_cast(const_cast(other)); + GINAC_ASSERT(is_exactly_a(other)); + const matrix &o = static_cast(other); // compare number of rows if (row != o.rows()) @@ -259,11 +306,21 @@ int matrix::compare_same_type(const basic & other) const return 0; } +bool matrix::match_same_type(const basic & other) const +{ + GINAC_ASSERT(is_exactly_a(other)); + const matrix & o = static_cast(other); + + // The number of rows and columns must be the same. This is necessary to + // prevent a 2x3 matrix from matching a 3x2 one. + return row == o.rows() && col == o.cols(); +} + /** Automatic symbolic evaluation of an indexed matrix. */ ex matrix::eval_indexed(const basic & i) const { - GINAC_ASSERT(is_of_type(i, indexed)); - GINAC_ASSERT(is_ex_of_type(i.op(0), matrix)); + GINAC_ASSERT(is_a(i)); + GINAC_ASSERT(is_a(i.op(0))); bool all_indices_unsigned = static_cast(i).all_index_values_are(info_flags::nonnegint); @@ -339,13 +396,13 @@ ex matrix::eval_indexed(const basic & i) const /** Sum of two indexed matrices. */ ex matrix::add_indexed(const ex & self, const ex & other) const { - GINAC_ASSERT(is_ex_of_type(self, indexed)); - GINAC_ASSERT(is_ex_of_type(self.op(0), matrix)); - GINAC_ASSERT(is_ex_of_type(other, indexed)); + GINAC_ASSERT(is_a(self)); + GINAC_ASSERT(is_a(self.op(0))); + GINAC_ASSERT(is_a(other)); GINAC_ASSERT(self.nops() == 2 || self.nops() == 3); // Only add two matrices - if (is_ex_of_type(other.op(0), matrix)) { + if (is_a(other.op(0))) { GINAC_ASSERT(other.nops() == 2 || other.nops() == 3); const matrix &self_matrix = ex_to(self.op(0)); @@ -375,8 +432,8 @@ ex matrix::add_indexed(const ex & self, const ex & other) const /** Product of an indexed matrix with a number. */ ex matrix::scalar_mul_indexed(const ex & self, const numeric & other) const { - GINAC_ASSERT(is_ex_of_type(self, indexed)); - GINAC_ASSERT(is_ex_of_type(self.op(0), matrix)); + GINAC_ASSERT(is_a(self)); + GINAC_ASSERT(is_a(self.op(0))); GINAC_ASSERT(self.nops() == 2 || self.nops() == 3); const matrix &self_matrix = ex_to(self.op(0)); @@ -390,13 +447,13 @@ ex matrix::scalar_mul_indexed(const ex & self, const numeric & other) const /** Contraction of an indexed matrix with something else. */ bool matrix::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const { - GINAC_ASSERT(is_ex_of_type(*self, indexed)); - GINAC_ASSERT(is_ex_of_type(*other, indexed)); + GINAC_ASSERT(is_a(*self)); + GINAC_ASSERT(is_a(*other)); GINAC_ASSERT(self->nops() == 2 || self->nops() == 3); - GINAC_ASSERT(is_ex_of_type(self->op(0), matrix)); + GINAC_ASSERT(is_a(self->op(0))); // Only contract with other matrices - if (!is_ex_of_type(other->op(0), matrix)) + if (!is_a(other->op(0))) return false; GINAC_ASSERT(other->nops() == 2 || other->nops() == 3); @@ -405,10 +462,8 @@ bool matrix::contract_with(exvector::iterator self, exvector::iterator other, ex const matrix &other_matrix = ex_to(other->op(0)); if (self->nops() == 2) { - unsigned self_dim = (self_matrix.col == 1) ? self_matrix.row : self_matrix.col; if (other->nops() == 2) { // vector * vector (scalar product) - unsigned other_dim = (other_matrix.col == 1) ? other_matrix.row : other_matrix.col; if (self_matrix.col == 1) { if (other_matrix.col == 1) { @@ -427,7 +482,7 @@ bool matrix::contract_with(exvector::iterator self, exvector::iterator other, ex *self = self_matrix.mul(other_matrix.transpose())(0, 0); } } - *other = _ex1(); + *other = _ex1; return true; } else { // vector * matrix @@ -438,7 +493,7 @@ bool matrix::contract_with(exvector::iterator self, exvector::iterator other, ex *self = indexed(self_matrix.mul(other_matrix), other->op(2)); else *self = indexed(self_matrix.transpose().mul(other_matrix), other->op(2)); - *other = _ex1(); + *other = _ex1; return true; } @@ -448,7 +503,7 @@ bool matrix::contract_with(exvector::iterator self, exvector::iterator other, ex *self = indexed(other_matrix.mul(self_matrix), other->op(1)); else *self = indexed(other_matrix.mul(self_matrix.transpose()), other->op(1)); - *other = _ex1(); + *other = _ex1; return true; } } @@ -458,28 +513,28 @@ bool matrix::contract_with(exvector::iterator self, exvector::iterator other, ex // A_ij * B_jk = (A*B)_ik if (is_dummy_pair(self->op(2), other->op(1))) { *self = indexed(self_matrix.mul(other_matrix), self->op(1), other->op(2)); - *other = _ex1(); + *other = _ex1; return true; } // A_ij * B_kj = (A*Btrans)_ik if (is_dummy_pair(self->op(2), other->op(2))) { *self = indexed(self_matrix.mul(other_matrix.transpose()), self->op(1), other->op(1)); - *other = _ex1(); + *other = _ex1; return true; } // A_ji * B_jk = (Atrans*B)_ik if (is_dummy_pair(self->op(1), other->op(1))) { *self = indexed(self_matrix.transpose().mul(other_matrix), self->op(2), other->op(2)); - *other = _ex1(); + *other = _ex1; return true; } // A_ji * B_kj = (B*A)_ki if (is_dummy_pair(self->op(1), other->op(2))) { *self = indexed(other_matrix.mul(self_matrix), other->op(1), self->op(2)); - *other = _ex1(); + *other = _ex1; return true; } } @@ -503,12 +558,11 @@ matrix matrix::add(const matrix & other) const throw std::logic_error("matrix::add(): incompatible matrices"); exvector sum(this->m); - exvector::iterator i; - exvector::const_iterator ci; - for (i=sum.begin(), ci=other.m.begin(); i!=sum.end(); ++i, ++ci) - (*i) += (*ci); + auto ci = other.m.begin(); + for (auto & i : sum) + i += *ci++; - return matrix(row,col,sum); + return matrix(row, col, std::move(sum)); } @@ -521,12 +575,11 @@ matrix matrix::sub(const matrix & other) const throw std::logic_error("matrix::sub(): incompatible matrices"); exvector dif(this->m); - exvector::iterator i; - exvector::const_iterator ci; - for (i=dif.begin(), ci=other.m.begin(); i!=dif.end(); ++i, ++ci) - (*i) -= (*ci); + auto ci = other.m.begin(); + for (auto & i : dif) + i -= *ci++; - return matrix(row,col,dif); + return matrix(row, col, std::move(dif)); } @@ -542,13 +595,14 @@ matrix matrix::mul(const matrix & other) const for (unsigned r1=0; r1rows(); ++r1) { for (unsigned c=0; ccols(); ++c) { + // Quick test: can we shortcut? if (m[r1*col+c].is_zero()) continue; for (unsigned r2=0; r2(expn)) { // Integer cases are computed by successive multiplication, using the // obvious shortcut of storing temporaries, like A^4 == (A*A)*(A*A). if (expn.info(info_flags::integer)) { - numeric k; - matrix prod(row,col); + numeric b = ex_to(expn); + matrix A(row,col); if (expn.info(info_flags::negative)) { - k = -ex_to(expn); - prod = this->inverse(); + b *= -1; + A = this->inverse(); } else { - k = ex_to(expn); - prod = *this; + A = *this; } - matrix result(row,col); + matrix C(row,col); for (unsigned r=0; rcols()*this->rows()); @@ -662,7 +717,7 @@ matrix matrix::transpose(void) const for (unsigned c=0; crows(); ++c) trans[r*this->rows()+c] = m[c*this->cols()+r]; - return matrix(this->cols(),this->rows(),trans); + return matrix(this->cols(), this->rows(), std::move(trans)); } /** Determinant of square matrix. This routine doesn't actually calculate the @@ -689,15 +744,15 @@ ex matrix::determinant(unsigned algo) const bool numeric_flag = true; bool normal_flag = false; unsigned sparse_count = 0; // counts non-zero elements - for (exvector::const_iterator r=m.begin(); r!=m.end(); ++r) { - lst srl; // symbol replacement list - ex rtest = (*r).to_rational(srl); + for (auto r : m) { + if (!r.info(info_flags::numeric)) + numeric_flag = false; + exmap srl; // symbol replacement list + ex rtest = r.to_rational(srl); if (!rtest.is_zero()) ++sparse_count; - if (!rtest.info(info_flags::numeric)) - numeric_flag = false; if (!rtest.info(info_flags::crational_polynomial) && - rtest.info(info_flags::rational_function)) + rtest.info(info_flags::rational_function)) normal_flag = true; } @@ -723,7 +778,7 @@ ex matrix::determinant(unsigned algo) const else return m[0].expand(); } - + // Compute the determinant switch(algo) { case determinant_algo::gauss: { @@ -751,7 +806,7 @@ ex matrix::determinant(unsigned algo) const int sign; sign = tmp.division_free_elimination(true); if (sign==0) - return _ex0(); + return _ex0; ex det = tmp.m[row*col-1]; // factor out accumulated bogus slag for (unsigned d=0; d uintpair; std::vector c_zeros; // number of zeros in column for (unsigned c=0; c pre_sort; - for (std::vector::iterator i=c_zeros.begin(); i!=c_zeros.end(); ++i) - pre_sort.push_back(i->second); + for (auto & i : c_zeros) + pre_sort.push_back(i.second); std::vector pre_sort_test(pre_sort); // permutation_sign() modifies the vector so we make a copy here int sign = permutation_sign(pre_sort_test.begin(), pre_sort_test.end()); exvector result(row*col); // represents sorted matrix unsigned c = 0; - for (std::vector::iterator i=pre_sort.begin(); - i!=pre_sort.end(); - ++i,++c) { + for (auto & it : pre_sort) { for (unsigned r=0; rmul(B); - c = B.trace()/ex(i+1); - poly -= c*power(lambda,row-i-1); + c = B.trace() / ex(i+1); + poly -= c*power(lambda, row-i-1); } if (row%2) return -poly; else return poly; - } + + } else { - matrix M(*this); - for (unsigned r=0; rsolve(vars,identity); + sol = this->solve(vars, identity, algo); } catch (const std::runtime_error & e) { if (e.what()==std::string("matrix::solve(): inconsistent linear system")) throw (std::runtime_error("matrix::inverse(): singular matrix")); @@ -916,23 +984,24 @@ matrix matrix::inverse(void) const /** Solve a linear system consisting of a m x n matrix and a m x p right hand * side by applying an elimination scheme to the augmented matrix. * - * @param vars n x p matrix, all elements must be symbols + * @param vars n x p matrix, all elements must be symbols * @param rhs m x p matrix + * @param algo selects the solving algorithm * @return n x p solution matrix * @exception logic_error (incompatible matrices) * @exception invalid_argument (1st argument must be matrix of symbols) * @exception runtime_error (inconsistent linear system) * @see solve_algo */ matrix matrix::solve(const matrix & vars, - const matrix & rhs, - unsigned algo) const + const matrix & rhs, + unsigned algo) const { const unsigned m = this->rows(); const unsigned n = this->cols(); const unsigned p = rhs.cols(); - // syntax checks - if ((rhs.rows() != m) || (vars.rows() != n) || (vars.col != p)) + // syntax checks + if ((rhs.rows() != m) || (vars.rows() != n) || (vars.cols() != p)) throw (std::logic_error("matrix::solve(): incompatible matrices")); for (unsigned ro=0; ro=0; --r) { unsigned fnz = 1; // first non-zero in row - while ((fnz<=n) && (aug.m[r*(n+p)+(fnz-1)].is_zero())) + while ((fnz<=n) && (aug.m[r*(n+p)+(fnz-1)].normal().is_zero())) ++fnz; if (fnz>n) { // row consists only of zeros, corresponding rhs must be 0, too - if (!aug.m[r*(n+p)+n+co].is_zero()) { + if (!aug.m[r*(n+p)+n+co].normal().is_zero()) { throw (std::runtime_error("matrix::solve(): inconsistent linear system")); } } else { // assign solutions for vars between fnz+1 and // last_assigned_sol-1: free parameters for (unsigned c=fnz; ccols(); - if (n==1) - return m[0].expand(); - if (n==2) - return (m[0]*m[3]-m[2]*m[1]).expand(); - if (n==3) - return (m[0]*m[4]*m[8]-m[0]*m[5]*m[7]- - m[1]*m[3]*m[8]+m[2]*m[3]*m[7]+ - m[1]*m[5]*m[6]-m[2]*m[4]*m[6]).expand(); - + // This algorithm can best be understood by looking at a naive // implementation of Laplace-expansion, like this one: // ex det; @@ -1073,71 +1129,133 @@ ex matrix::determinant_minor(void) const // calculated in step c-1. We therefore only have to store at most // 2*binomial(n,n/2) minors. - // Unique flipper counter for partitioning into minors - std::vector Pkey; - Pkey.reserve(n); - // key for minor determinant (a subpartition of Pkey) - std::vector Mkey; + // we store the minors in maps, keyed by the rows they arise from + typedef std::vector keyseq; + typedef std::map Rmap; + + Rmap M, N; // minors used in current and next column, respectively + // populate M with dummy unit, to be used as factor in rightmost column + M[keyseq{}] = _ex1; + + // keys to identify minor of M and N (Mkey is a subsequence of Nkey) + keyseq Mkey, Nkey; Mkey.reserve(n-1); - // we store our subminors in maps, keys being the rows they arise from - typedef std::map,class ex> Rmap; - typedef std::map,class ex>::value_type Rmap_value; - Rmap A; - Rmap B; + Nkey.reserve(n); + ex det; - // initialize A with last column: - for (unsigned r=0; r=0; --c) { - Pkey.erase(Pkey.begin(),Pkey.end()); // don't change capacity - Mkey.erase(Mkey.begin(),Mkey.end()); + for (int c=n-1; c>=0; --c) { + Nkey.clear(); + Mkey.clear(); for (unsigned i=0; i0; --fc) { - ++Pkey[fc-1]; - if (Pkey[fc-1]0) for (unsigned j=fc; j +matrix::echelon_form(unsigned algo, int n) +{ + // Here is the heuristics in case this routine has to decide: + if (algo == solve_algo::automatic) { + // Gather some statistical information about the augmented matrix: + bool numeric_flag = true; + for (const auto & r : m) { + if (!r.info(info_flags::numeric)) { + numeric_flag = false; + break; + } + } + unsigned density = 0; + for (const auto & r : m) { + density += !r.is_zero(); + } + unsigned ncells = col*row; + if (numeric_flag) { + // For numerical matrices Gauss is good, but Markowitz becomes + // better for large sparse matrices. + if ((ncells > 200) && (density < ncells/2)) { + algo = solve_algo::markowitz; + } else { + algo = solve_algo::gauss; + } + } else { + // For symbolic matrices Markowitz is good, but Bareiss/Divfree + // is better for small and dense matrices. + if ((ncells < 120) && (density*5 > ncells*3)) { + if (ncells <= 12) { + algo = solve_algo::divfree; + } else { + algo = solve_algo::bareiss; + } + } else { + algo = solve_algo::markowitz; + } + } + } + // Eliminate the augmented matrix: + std::vector colid(col); + for (unsigned c = 0; c < col; c++) { + colid[c] = c; + } + switch(algo) { + case solve_algo::gauss: + gauss_elimination(); + break; + case solve_algo::divfree: + division_free_elimination(); + break; + case solve_algo::bareiss: + fraction_free_elimination(); + break; + case solve_algo::markowitz: + colid = markowitz_elimination(n); + break; + default: + throw std::invalid_argument("matrix::echelon_form(): 'algo' is not one of the solve_algo enum"); + } + return colid; +} /** Perform the steps of an ordinary Gaussian elimination to bring the m x n * matrix into an upper echelon form. The algorithm is ok for matrices @@ -1157,8 +1275,8 @@ int matrix::gauss_elimination(const bool det) int sign = 1; unsigned r0 = 0; - for (unsigned r1=0; (r1 0) sign = -sign; for (unsigned r2=r0+1; r2m[r2*n+r1].is_zero()) { + if (!this->m[r2*n+c0].is_zero()) { // yes, there is something to do in this row - ex piv = this->m[r2*n+r1] / this->m[r0*n+r1]; - for (unsigned c=r1+1; cm[r2*n+c0] / this->m[r0*n+c0]; + for (unsigned c=c0+1; cm[r2*n+c] -= piv * this->m[r0*n+c]; if (!this->m[r2*n+c].info(info_flags::numeric)) this->m[r2*n+c] = this->m[r2*n+c].normal(); } } // fill up left hand side with zeros - for (unsigned c=0; c<=r1; ++c) - this->m[r2*n+c] = _ex0(); + for (unsigned c=r0; c<=c0; ++c) + this->m[r2*n+c] = _ex0; } if (det) { // save space by deleting no longer needed elements for (unsigned c=r0+1; cm[r0*n+c] = _ex0(); + this->m[r0*n+c] = _ex0; } ++r0; } } - + // clear remaining rows + for (unsigned r=r0+1; rm[r*n+c] = _ex0; + } + return sign; } +/* Perform Markowitz-ordered Gaussian elimination (with full + * pivoting) on a matrix, constraining the choice of pivots to + * the first n columns (this simplifies handling of augmented + * matrices). Return the column id vector v, such that v[column] + * is the original number of the column before shuffling (v[i]==i + * for i >= n). */ +std::vector +matrix::markowitz_elimination(unsigned n) +{ + GINAC_ASSERT(n <= col); + std::vector rowcnt(row, 0); + std::vector colcnt(col, 0); + // Normalize everything before start. We'll keep all the + // cells normalized throughout the algorithm to properly + // handle unnormal zeros. + for (unsigned r = 0; r < row; r++) { + for (unsigned c = 0; c < col; c++) { + if (!m[r*col + c].is_zero()) { + m[r*col + c] = m[r*col + c].normal(); + rowcnt[r]++; + colcnt[c]++; + } + } + } + std::vector colid(col); + for (unsigned c = 0; c < col; c++) { + colid[c] = c; + } + exvector ab(row); + for (unsigned k = 0; (k < col) && (k < row - 1); k++) { + // Find the pivot that minimizes (rowcnt[r]-1)*(colcnt[c]-1). + unsigned pivot_r = row + 1; + unsigned pivot_c = col + 1; + int pivot_m = row*col; + for (unsigned r = k; r < row; r++) { + for (unsigned c = k; c < n; c++) { + const ex &mrc = m[r*col + c]; + if (mrc.is_zero()) + continue; + GINAC_ASSERT(rowcnt[r] > 0); + GINAC_ASSERT(colcnt[c] > 0); + int measure = (rowcnt[r] - 1)*(colcnt[c] - 1); + if (measure < pivot_m) { + pivot_m = measure; + pivot_r = r; + pivot_c = c; + } + } + } + if (pivot_m == row*col) { + // The rest of the matrix is zero. + break; + } + GINAC_ASSERT(k <= pivot_r && pivot_r < row); + GINAC_ASSERT(k <= pivot_c && pivot_c < col); + // Swap the pivot into (k, k). + if (pivot_c != k) { + for (unsigned r = 0; r < row; r++) { + m[r*col + pivot_c].swap(m[r*col + k]); + } + std::swap(colid[pivot_c], colid[k]); + std::swap(colcnt[pivot_c], colcnt[k]); + } + if (pivot_r != k) { + for (unsigned c = k; c < col; c++) { + m[pivot_r*col + c].swap(m[k*col + c]); + } + std::swap(rowcnt[pivot_r], rowcnt[k]); + } + // No normalization before is_zero() here, because + // we maintain the matrix normalized throughout the + // algorithm. + ex a = m[k*col + k]; + GINAC_ASSERT(!a.is_zero()); + // Subtract the pivot row KJI-style (so: loop by pivot, then + // column, then row) to maximally exploit pivot row zeros (at + // the expense of the pivot column zeros). The speedup compared + // to the usual KIJ order is not really significant though... + for (unsigned r = k + 1; r < row; r++) { + const ex &b = m[r*col + k]; + if (!b.is_zero()) { + ab[r] = b/a; + rowcnt[r]--; + } + } + colcnt[k] = rowcnt[k] = 0; + for (unsigned c = k + 1; c < col; c++) { + const ex &mr0c = m[k*col + c]; + if (mr0c.is_zero()) + continue; + colcnt[c]--; + for (unsigned r = k + 1; r < row; r++) { + if (ab[r].is_zero()) + continue; + bool waszero = m[r*col + c].is_zero(); + m[r*col + c] = (m[r*col + c] - ab[r]*mr0c).normal(); + bool iszero = m[r*col + c].is_zero(); + if (waszero && !iszero) { + rowcnt[r]++; + colcnt[c]++; + } + if (!waszero && iszero) { + rowcnt[r]--; + colcnt[c]--; + } + } + } + for (unsigned r = k + 1; r < row; r++) { + ab[r] = m[r*col + k] = _ex0; + } + } + return colid; +} /** Perform the steps of division free elimination to bring the m x n matrix * into an upper echelon form. @@ -1211,8 +1447,8 @@ int matrix::division_free_elimination(const bool det) int sign = 1; unsigned r0 = 0; - for (unsigned r1=0; (r10) sign = -sign; for (unsigned r2=r0+1; r2m[r2*n+c] = (this->m[r0*n+r1]*this->m[r2*n+c] - this->m[r2*n+r1]*this->m[r0*n+c]).expand(); + for (unsigned c=c0+1; cm[r2*n+c] = (this->m[r0*n+c0]*this->m[r2*n+c] - this->m[r2*n+c0]*this->m[r0*n+c]).normal(); // fill up left hand side with zeros - for (unsigned c=0; c<=r1; ++c) - this->m[r2*n+c] = _ex0(); + for (unsigned c=r0; c<=c0; ++c) + this->m[r2*n+c] = _ex0; } if (det) { // save space by deleting no longer needed elements for (unsigned c=r0+1; cm[r0*n+c] = _ex0(); + this->m[r0*n+c] = _ex0; } ++r0; } } - + // clear remaining rows + for (unsigned r=r0+1; rm[r*n+c] = _ex0; + } + return sign; } @@ -1261,7 +1502,7 @@ int matrix::fraction_free_elimination(const bool det) // // Bareiss (fraction-free) elimination in addition divides that element // by m[k-1](k-1,k-1) for k>1, where it can be shown by means of the - // Sylvester determinant that this really divides m[k+1](r,c). + // Sylvester identity that this really divides m[k+1](r,c). // // We also allow rational functions where the original prove still holds. // However, we must care for numerator and denominator separately and @@ -1298,39 +1539,46 @@ int matrix::fraction_free_elimination(const bool det) // makes things more complicated than they need to be. matrix tmp_n(*this); matrix tmp_d(m,n); // for denominators, if needed - lst srl; // symbol replacement list - exvector::iterator it = this->m.begin(); - exvector::iterator tmp_n_it = tmp_n.m.begin(); - exvector::iterator tmp_d_it = tmp_d.m.begin(); - for (; it!= this->m.end(); ++it, ++tmp_n_it, ++tmp_d_it) { - (*tmp_n_it) = (*it).normal().to_rational(srl); - (*tmp_d_it) = (*tmp_n_it).denom(); - (*tmp_n_it) = (*tmp_n_it).numer(); + exmap srl; // symbol replacement list + auto tmp_n_it = tmp_n.m.begin(), tmp_d_it = tmp_d.m.begin(); + for (auto & it : this->m) { + ex nd = it.normal().to_rational(srl).numer_denom(); + *tmp_n_it++ = nd.op(0); + *tmp_d_it++ = nd.op(1); } unsigned r0 = 0; - for (unsigned r1=0; (r1=0) { - if (indx>0) { + } else { + if (indx>r0) { + // Matrix needs pivoting, swap rows r0 and indx of tmp_n and tmp_d. sign = -sign; - // tmp_n's rows r0 and indx were swapped, do the same in tmp_d: - for (unsigned c=r1; cm.begin(); tmp_n_it = tmp_n.m.begin(); tmp_d_it = tmp_d.m.begin(); - for (; it!= this->m.end(); ++it, ++tmp_n_it, ++tmp_d_it) - (*it) = ((*tmp_n_it)/(*tmp_d_it)).subs(srl); + for (auto & it : this->m) + it = ((*tmp_n_it++)/(*tmp_d_it++)).subs(srl, subs_options::no_pattern); return sign; } @@ -1377,7 +1630,7 @@ int matrix::fraction_free_elimination(const bool det) * @param co is the column to be inspected * @param symbolic signal if we want the first non-zero element to be pivoted * (true) or the one with the largest absolute value (false). - * @return 0 if no interchange occured, -1 if all are zero (usually signaling + * @return 0 if no interchange occurred, -1 if all are zero (usually signaling * a degeneracy) and positive integer k means that rows ro and k were swapped. */ int matrix::pivot(unsigned ro, unsigned co, bool symbolic) @@ -1389,11 +1642,11 @@ int matrix::pivot(unsigned ro, unsigned co, bool symbolic) ++k; } else { // search largest element in column co beginning at row ro - GINAC_ASSERT(is_ex_of_type(this->m[k*col+co],numeric)); + GINAC_ASSERT(is_exactly_a(this->m[k*col+co])); unsigned kmax = k+1; numeric mmax = abs(ex_to(m[kmax*col+co])); while (kmaxm[kmax*col+co],numeric)); + GINAC_ASSERT(is_exactly_a(this->m[kmax*col+co])); numeric tmp = ex_to(this->m[kmax*col+co]); if (abs(tmp) > mmax) { mmax = tmp; @@ -1418,36 +1671,168 @@ int matrix::pivot(unsigned ro, unsigned co, bool symbolic) return k; } +/** Function to check that all elements of the matrix are zero. + */ +bool matrix::is_zero_matrix() const +{ + for (auto & i : m) + if (!i.is_zero()) + return false; + return true; +} + ex lst_to_matrix(const lst & l) { // Find number of rows and columns - unsigned rows = l.nops(), cols = 0, i, j; - for (i=0; i cols) - cols = l.op(i).nops(); + size_t rows = l.nops(), cols = 0; + for (auto & itr : l) { + if (!is_a(itr)) + throw (std::invalid_argument("lst_to_matrix: argument must be a list of lists")); + if (itr.nops() > cols) + cols = itr.nops(); + } // Allocate and fill matrix - matrix &m = *new matrix(rows, cols); - m.setflag(status_flags::dynallocated); - for (i=0; i j) - m(i, j) = l.op(i).op(j); - else - m(i, j) = _ex0(); - return m; + matrix & M = dynallocate(rows, cols); + + unsigned i = 0; + for (auto & itr : l) { + unsigned j = 0; + for (auto & itc : ex_to(itr)) { + M(i, j) = itc; + ++j; + } + ++i; + } + + return M; } ex diag_matrix(const lst & l) { - unsigned dim = l.nops(); + size_t dim = l.nops(); + + // Allocate and fill matrix + matrix & M = dynallocate(dim, dim); + + unsigned i = 0; + for (auto & it : l) { + M(i, i) = it; + ++i; + } + + return M; +} + +ex diag_matrix(std::initializer_list l) +{ + size_t dim = l.size(); + + // Allocate and fill matrix + matrix & M = dynallocate(dim, dim); - matrix &m = *new matrix(dim, dim); - m.setflag(status_flags::dynallocated); - for (unsigned i=0; i(r, c); + Id.setflag(status_flags::evaluated); + for (unsigned i=0; i(r, c); + M.setflag(status_flags::evaluated); + + bool long_format = (r > 10 || c > 10); + bool single_row = (r == 1 || c == 1); + + for (unsigned i=0; im.rows() || c+1>m.cols() || m.cols()<2 || m.rows()<2) + throw std::runtime_error("minor_matrix(): index out of bounds"); + + const unsigned rows = m.rows()-1; + const unsigned cols = m.cols()-1; + matrix & M = dynallocate(rows, cols); + M.setflag(status_flags::evaluated); + + unsigned ro = 0; + unsigned ro2 = 0; + while (ro2m.rows() || c+nc>m.cols()) + throw std::runtime_error("sub_matrix(): index out of bounds"); + + matrix & M = dynallocate(nr, nc); + M.setflag(status_flags::evaluated); + + for (unsigned ro=0; ro