X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fmatrix.cpp;h=3e9b28bba1133e16b4758c3ef68566398dffea52;hp=feae32fee687341c7a92a5d8ea4e6693dc61dc88;hb=073bf40a73e419a3dbcb6dfa190947ce2cc3bdce;hpb=fe9dbfb9947b24149b3ce7dd9285f27ab286cbd7 diff --git a/ginac/matrix.cpp b/ginac/matrix.cpp index feae32fe..3e9b28bb 100644 --- a/ginac/matrix.cpp +++ b/ginac/matrix.cpp @@ -3,7 +3,7 @@ * Implementation of symbolic matrices */ /* - * GiNaC Copyright (C) 1999-2000 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2011 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -17,78 +17,45 @@ * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ -#include -#include -#include - #include "matrix.h" -#include "archive.h" #include "numeric.h" #include "lst.h" -#include "utils.h" -#include "debugmsg.h" +#include "idx.h" +#include "indexed.h" +#include "add.h" #include "power.h" #include "symbol.h" +#include "operators.h" #include "normal.h" +#include "archive.h" +#include "utils.h" + +#include +#include +#include +#include +#include +#include -#ifndef NO_NAMESPACE_GINAC namespace GiNaC { -#endif // ndef NO_NAMESPACE_GINAC -GINAC_IMPLEMENT_REGISTERED_CLASS(matrix, basic) +GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(matrix, basic, + print_func(&matrix::do_print). + print_func(&matrix::do_print_latex). + print_func(&matrix::do_print_tree). + print_func(&matrix::do_print_python_repr)) ////////// -// default constructor, destructor, copy constructor, assignment operator -// and helpers: +// default constructor ////////// -// public - /** Default ctor. Initializes to 1 x 1-dimensional zero-matrix. */ -matrix::matrix() - : inherited(TINFO_matrix), row(1), col(1) +matrix::matrix() : row(1), col(1), m(1, _ex0) { - debugmsg("matrix default constructor",LOGLEVEL_CONSTRUCT); - m.push_back(_ex0()); -} - -matrix::~matrix() -{ - debugmsg("matrix destructor",LOGLEVEL_DESTRUCT); -} - -matrix::matrix(const matrix & other) -{ - debugmsg("matrix copy constructor",LOGLEVEL_CONSTRUCT); - copy(other); -} - -const matrix & matrix::operator=(const matrix & other) -{ - debugmsg("matrix operator=",LOGLEVEL_ASSIGNMENT); - if (this != &other) { - destroy(1); - copy(other); - } - return *this; -} - -// protected - -void matrix::copy(const matrix & other) -{ - inherited::copy(other); - row = other.row; - col = other.col; - m = other.m; // STL's vector copying invoked here -} - -void matrix::destroy(bool call_parent) -{ - if (call_parent) inherited::destroy(call_parent); + setflag(status_flags::not_shareable); } ////////// @@ -101,231 +68,483 @@ void matrix::destroy(bool call_parent) * * @param r number of rows * @param c number of cols */ -matrix::matrix(unsigned r, unsigned c) - : inherited(TINFO_matrix), row(r), col(c) +matrix::matrix(unsigned r, unsigned c) : row(r), col(c), m(r*c, _ex0) { - debugmsg("matrix constructor from unsigned,unsigned",LOGLEVEL_CONSTRUCT); - m.resize(r*c, _ex0()); + setflag(status_flags::not_shareable); } - // protected +// protected /** Ctor from representation, for internal use only. */ matrix::matrix(unsigned r, unsigned c, const exvector & m2) - : inherited(TINFO_matrix), row(r), col(c), m(m2) + : row(r), col(c), m(m2) { - debugmsg("matrix constructor from unsigned,unsigned,exvector",LOGLEVEL_CONSTRUCT); + setflag(status_flags::not_shareable); +} + +/** Construct matrix from (flat) list of elements. If the list has fewer + * elements than the matrix, the remaining matrix elements are set to zero. + * If the list has more elements than the matrix, the excessive elements are + * thrown away. */ +matrix::matrix(unsigned r, unsigned c, const lst & l) + : row(r), col(c), m(r*c, _ex0) +{ + setflag(status_flags::not_shareable); + + size_t i = 0; + for (lst::const_iterator it = l.begin(); it != l.end(); ++it, ++i) { + size_t x = i % c; + size_t y = i / c; + if (y >= r) + break; // matrix smaller than list: throw away excessive elements + m[y*c+x] = *it; + } } ////////// // archiving ////////// -/** Construct object from archive_node. */ -matrix::matrix(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) +void matrix::read_archive(const archive_node &n, lst &sym_lst) { - debugmsg("matrix constructor from archive_node", LOGLEVEL_CONSTRUCT); - if (!(n.find_unsigned("row", row)) || !(n.find_unsigned("col", col))) - throw (std::runtime_error("unknown matrix dimensions in archive")); - m.reserve(row * col); - for (unsigned int i=0; true; i++) { - ex e; - if (n.find_ex("m", e, sym_lst, i)) - m.push_back(e); - else - break; - } + inherited::read_archive(n, sym_lst); + + if (!(n.find_unsigned("row", row)) || !(n.find_unsigned("col", col))) + throw (std::runtime_error("unknown matrix dimensions in archive")); + m.reserve(row * col); + // XXX: default ctor inserts a zero element, we need to erase it here. + m.pop_back(); + archive_node::archive_node_cit first = n.find_first("m"); + archive_node::archive_node_cit last = n.find_last("m"); + ++last; + for (archive_node::archive_node_cit i=first; i != last; ++i) { + ex e; + n.find_ex_by_loc(i, e, sym_lst); + m.push_back(e); + } } +GINAC_BIND_UNARCHIVER(matrix); -/** Unarchive the object. */ -ex matrix::unarchive(const archive_node &n, const lst &sym_lst) -{ - return (new matrix(n, sym_lst))->setflag(status_flags::dynallocated); -} - -/** Archive the object. */ void matrix::archive(archive_node &n) const { - inherited::archive(n); - n.add_unsigned("row", row); - n.add_unsigned("col", col); - exvector::const_iterator i = m.begin(), iend = m.end(); - while (i != iend) { - n.add_ex("m", *i); - i++; - } + inherited::archive(n); + n.add_unsigned("row", row); + n.add_unsigned("col", col); + exvector::const_iterator i = m.begin(), iend = m.end(); + while (i != iend) { + n.add_ex("m", *i); + ++i; + } } ////////// -// functions overriding virtual functions from bases classes +// functions overriding virtual functions from base classes ////////// // public -basic * matrix::duplicate() const +void matrix::print_elements(const print_context & c, const char *row_start, const char *row_end, const char *row_sep, const char *col_sep) const +{ + for (unsigned ro=0; ro(row) * static_cast(col); } /** returns matrix entry at position (i/col, i%col). */ -ex matrix::op(int i) const +ex matrix::op(size_t i) const { - return m[i]; + GINAC_ASSERT(isetflag(status_flags::dynallocated | + status_flags::evaluated); } -/** Search ocurrences. A matrix 'has' an expression if it is the expression - * itself or one of the elements 'has' it. */ -bool matrix::has(const ex & other) const +ex matrix::subs(const exmap & mp, unsigned options) const { - GINAC_ASSERT(other.bp!=0); - - // tautology: it is the expression itself - if (is_equal(*other.bp)) return true; - - // search all the elements - for (exvector::const_iterator r=m.begin(); r!=m.end(); ++r) { - if ((*r).has(other)) return true; - } - return false; + exvector m2(row * col); + for (unsigned r=0; rsetflag(status_flags::dynallocated | - status_flags::evaluated ); + exvector * ev = 0; + for (exvector::const_iterator i=m.begin(); i!=m.end(); ++i) { + ex x = i->conjugate(); + if (ev) { + ev->push_back(x); + continue; + } + if (are_ex_trivially_equal(x, *i)) { + continue; + } + ev = new exvector; + ev->reserve(m.size()); + for (exvector::const_iterator j=m.begin(); j!=i; ++j) { + ev->push_back(*j); + } + ev->push_back(x); + } + if (ev) { + ex result = matrix(row, col, *ev); + delete ev; + return result; + } + return *this; } -/** evaluate matrix numerically entry by entry. */ -ex matrix::evalf(int level) const +ex matrix::real_part() const { - debugmsg("matrix evalf",LOGLEVEL_MEMBER_FUNCTION); - - // check if we have to do anything at all - if (level==1) - return *this; - - // emergency break - if (level == -max_recursion_level) { - throw (std::runtime_error("matrix::evalf(): recursion limit exceeded")); - } - - // evalf() entry by entry - exvector m2(row*col); - --level; - for (unsigned r=0; rreal_part()); + return matrix(row, col, v); +} + +ex matrix::imag_part() const +{ + exvector v; + v.reserve(m.size()); + for (exvector::const_iterator i=m.begin(); i!=m.end(); ++i) + v.push_back(i->imag_part()); + return matrix(row, col, v); } // protected int matrix::compare_same_type(const basic & other) const { - GINAC_ASSERT(is_exactly_of_type(other, matrix)); - const matrix & o = static_cast(const_cast(other)); - - // compare number of rows - if (row != o.rows()) - return row < o.rows() ? -1 : 1; - - // compare number of columns - if (col != o.cols()) - return col < o.cols() ? -1 : 1; - - // equal number of rows and columns, compare individual elements - int cmpval; - for (unsigned r=0; r matrices are equal; - return 0; + GINAC_ASSERT(is_exactly_a(other)); + const matrix &o = static_cast(other); + + // compare number of rows + if (row != o.rows()) + return row < o.rows() ? -1 : 1; + + // compare number of columns + if (col != o.cols()) + return col < o.cols() ? -1 : 1; + + // equal number of rows and columns, compare individual elements + int cmpval; + for (unsigned r=0; r matrices are equal; + return 0; +} + +bool matrix::match_same_type(const basic & other) const +{ + GINAC_ASSERT(is_exactly_a(other)); + const matrix & o = static_cast(other); + + // The number of rows and columns must be the same. This is necessary to + // prevent a 2x3 matrix from matching a 3x2 one. + return row == o.rows() && col == o.cols(); +} + +/** Automatic symbolic evaluation of an indexed matrix. */ +ex matrix::eval_indexed(const basic & i) const +{ + GINAC_ASSERT(is_a(i)); + GINAC_ASSERT(is_a(i.op(0))); + + bool all_indices_unsigned = static_cast(i).all_index_values_are(info_flags::nonnegint); + + // Check indices + if (i.nops() == 2) { + + // One index, must be one-dimensional vector + if (row != 1 && col != 1) + throw (std::runtime_error("matrix::eval_indexed(): vector must have exactly 1 index")); + + const idx & i1 = ex_to(i.op(1)); + + if (col == 1) { + + // Column vector + if (!i1.get_dim().is_equal(row)) + throw (std::runtime_error("matrix::eval_indexed(): dimension of index must match number of vector elements")); + + // Index numeric -> return vector element + if (all_indices_unsigned) { + unsigned n1 = ex_to(i1.get_value()).to_int(); + if (n1 >= row) + throw (std::runtime_error("matrix::eval_indexed(): value of index exceeds number of vector elements")); + return (*this)(n1, 0); + } + + } else { + + // Row vector + if (!i1.get_dim().is_equal(col)) + throw (std::runtime_error("matrix::eval_indexed(): dimension of index must match number of vector elements")); + + // Index numeric -> return vector element + if (all_indices_unsigned) { + unsigned n1 = ex_to(i1.get_value()).to_int(); + if (n1 >= col) + throw (std::runtime_error("matrix::eval_indexed(): value of index exceeds number of vector elements")); + return (*this)(0, n1); + } + } + + } else if (i.nops() == 3) { + + // Two indices + const idx & i1 = ex_to(i.op(1)); + const idx & i2 = ex_to(i.op(2)); + + if (!i1.get_dim().is_equal(row)) + throw (std::runtime_error("matrix::eval_indexed(): dimension of first index must match number of rows")); + if (!i2.get_dim().is_equal(col)) + throw (std::runtime_error("matrix::eval_indexed(): dimension of second index must match number of columns")); + + // Pair of dummy indices -> compute trace + if (is_dummy_pair(i1, i2)) + return trace(); + + // Both indices numeric -> return matrix element + if (all_indices_unsigned) { + unsigned n1 = ex_to(i1.get_value()).to_int(), n2 = ex_to(i2.get_value()).to_int(); + if (n1 >= row) + throw (std::runtime_error("matrix::eval_indexed(): value of first index exceeds number of rows")); + if (n2 >= col) + throw (std::runtime_error("matrix::eval_indexed(): value of second index exceeds number of columns")); + return (*this)(n1, n2); + } + + } else + throw (std::runtime_error("matrix::eval_indexed(): matrix must have exactly 2 indices")); + + return i.hold(); +} + +/** Sum of two indexed matrices. */ +ex matrix::add_indexed(const ex & self, const ex & other) const +{ + GINAC_ASSERT(is_a(self)); + GINAC_ASSERT(is_a(self.op(0))); + GINAC_ASSERT(is_a(other)); + GINAC_ASSERT(self.nops() == 2 || self.nops() == 3); + + // Only add two matrices + if (is_a(other.op(0))) { + GINAC_ASSERT(other.nops() == 2 || other.nops() == 3); + + const matrix &self_matrix = ex_to(self.op(0)); + const matrix &other_matrix = ex_to(other.op(0)); + + if (self.nops() == 2 && other.nops() == 2) { // vector + vector + + if (self_matrix.row == other_matrix.row) + return indexed(self_matrix.add(other_matrix), self.op(1)); + else if (self_matrix.row == other_matrix.col) + return indexed(self_matrix.add(other_matrix.transpose()), self.op(1)); + + } else if (self.nops() == 3 && other.nops() == 3) { // matrix + matrix + + if (self.op(1).is_equal(other.op(1)) && self.op(2).is_equal(other.op(2))) + return indexed(self_matrix.add(other_matrix), self.op(1), self.op(2)); + else if (self.op(1).is_equal(other.op(2)) && self.op(2).is_equal(other.op(1))) + return indexed(self_matrix.add(other_matrix.transpose()), self.op(1), self.op(2)); + + } + } + + // Don't know what to do, return unevaluated sum + return self + other; +} + +/** Product of an indexed matrix with a number. */ +ex matrix::scalar_mul_indexed(const ex & self, const numeric & other) const +{ + GINAC_ASSERT(is_a(self)); + GINAC_ASSERT(is_a(self.op(0))); + GINAC_ASSERT(self.nops() == 2 || self.nops() == 3); + + const matrix &self_matrix = ex_to(self.op(0)); + + if (self.nops() == 2) + return indexed(self_matrix.mul(other), self.op(1)); + else // self.nops() == 3 + return indexed(self_matrix.mul(other), self.op(1), self.op(2)); +} + +/** Contraction of an indexed matrix with something else. */ +bool matrix::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const +{ + GINAC_ASSERT(is_a(*self)); + GINAC_ASSERT(is_a(*other)); + GINAC_ASSERT(self->nops() == 2 || self->nops() == 3); + GINAC_ASSERT(is_a(self->op(0))); + + // Only contract with other matrices + if (!is_a(other->op(0))) + return false; + + GINAC_ASSERT(other->nops() == 2 || other->nops() == 3); + + const matrix &self_matrix = ex_to(self->op(0)); + const matrix &other_matrix = ex_to(other->op(0)); + + if (self->nops() == 2) { + + if (other->nops() == 2) { // vector * vector (scalar product) + + if (self_matrix.col == 1) { + if (other_matrix.col == 1) { + // Column vector * column vector, transpose first vector + *self = self_matrix.transpose().mul(other_matrix)(0, 0); + } else { + // Column vector * row vector, swap factors + *self = other_matrix.mul(self_matrix)(0, 0); + } + } else { + if (other_matrix.col == 1) { + // Row vector * column vector, perfect + *self = self_matrix.mul(other_matrix)(0, 0); + } else { + // Row vector * row vector, transpose second vector + *self = self_matrix.mul(other_matrix.transpose())(0, 0); + } + } + *other = _ex1; + return true; + + } else { // vector * matrix + + // B_i * A_ij = (B*A)_j (B is row vector) + if (is_dummy_pair(self->op(1), other->op(1))) { + if (self_matrix.row == 1) + *self = indexed(self_matrix.mul(other_matrix), other->op(2)); + else + *self = indexed(self_matrix.transpose().mul(other_matrix), other->op(2)); + *other = _ex1; + return true; + } + + // B_j * A_ij = (A*B)_i (B is column vector) + if (is_dummy_pair(self->op(1), other->op(2))) { + if (self_matrix.col == 1) + *self = indexed(other_matrix.mul(self_matrix), other->op(1)); + else + *self = indexed(other_matrix.mul(self_matrix.transpose()), other->op(1)); + *other = _ex1; + return true; + } + } + + } else if (other->nops() == 3) { // matrix * matrix + + // A_ij * B_jk = (A*B)_ik + if (is_dummy_pair(self->op(2), other->op(1))) { + *self = indexed(self_matrix.mul(other_matrix), self->op(1), other->op(2)); + *other = _ex1; + return true; + } + + // A_ij * B_kj = (A*Btrans)_ik + if (is_dummy_pair(self->op(2), other->op(2))) { + *self = indexed(self_matrix.mul(other_matrix.transpose()), self->op(1), other->op(1)); + *other = _ex1; + return true; + } + + // A_ji * B_jk = (Atrans*B)_ik + if (is_dummy_pair(self->op(1), other->op(1))) { + *self = indexed(self_matrix.transpose().mul(other_matrix), self->op(2), other->op(2)); + *other = _ex1; + return true; + } + + // A_ji * B_kj = (B*A)_ki + if (is_dummy_pair(self->op(1), other->op(2))) { + *self = indexed(other_matrix.mul(self_matrix), other->op(1), self->op(2)); + *other = _ex1; + return true; + } + } + + return false; } + ////////// // non-virtual functions in this class ////////// @@ -337,18 +556,16 @@ int matrix::compare_same_type(const basic & other) const * @exception logic_error (incompatible matrices) */ matrix matrix::add(const matrix & other) const { - if (col != other.col || row != other.row) - throw (std::logic_error("matrix::add(): incompatible matrices")); - - exvector sum(this->m); - exvector::iterator i; - exvector::const_iterator ci; - for (i=sum.begin(), ci=other.m.begin(); - i!=sum.end(); - ++i, ++ci) { - (*i) += (*ci); - } - return matrix(row,col,sum); + if (col != other.col || row != other.row) + throw std::logic_error("matrix::add(): incompatible matrices"); + + exvector sum(this->m); + exvector::iterator i = sum.begin(), end = sum.end(); + exvector::const_iterator ci = other.m.begin(); + while (i != end) + *i++ += *ci++; + + return matrix(row,col,sum); } @@ -357,18 +574,16 @@ matrix matrix::add(const matrix & other) const * @exception logic_error (incompatible matrices) */ matrix matrix::sub(const matrix & other) const { - if (col != other.col || row != other.row) - throw (std::logic_error("matrix::sub(): incompatible matrices")); - - exvector dif(this->m); - exvector::iterator i; - exvector::const_iterator ci; - for (i=dif.begin(), ci=other.m.begin(); - i!=dif.end(); - ++i, ++ci) { - (*i) -= (*ci); - } - return matrix(row,col,dif); + if (col != other.col || row != other.row) + throw std::logic_error("matrix::sub(): incompatible matrices"); + + exvector dif(this->m); + exvector::iterator i = dif.begin(), end = dif.end(); + exvector::const_iterator ci = other.m.begin(); + while (i != end) + *i++ -= *ci++; + + return matrix(row,col,dif); } @@ -377,68 +592,141 @@ matrix matrix::sub(const matrix & other) const * @exception logic_error (incompatible matrices) */ matrix matrix::mul(const matrix & other) const { - if (col != other.row) - throw (std::logic_error("matrix::mul(): incompatible matrices")); - - exvector prod(row*other.col); - - for (unsigned r1=0; r1cols() != other.rows()) + throw std::logic_error("matrix::mul(): incompatible matrices"); + + exvector prod(this->rows()*other.cols()); + + for (unsigned r1=0; r1rows(); ++r1) { + for (unsigned c=0; ccols(); ++c) { + // Quick test: can we shortcut? + if (m[r1*col+c].is_zero()) + continue; + for (unsigned r2=0; r2(expn)) { + // Integer cases are computed by successive multiplication, using the + // obvious shortcut of storing temporaries, like A^4 == (A*A)*(A*A). + if (expn.info(info_flags::integer)) { + numeric b = ex_to(expn); + matrix A(row,col); + if (expn.info(info_flags::negative)) { + b *= -1; + A = this->inverse(); + } else { + A = *this; + } + matrix C(row,col); + for (unsigned r=0; r=row || co<0 || co>=col) - throw (std::range_error("matrix::operator(): index out of range")); + if (ro>=row || co>=col) + throw (std::range_error("matrix::operator(): index out of range")); - return m[ro*col+co]; + return m[ro*col+co]; } -/** Set individual elements manually. +/** operator() to access elements for writing. * + * @param ro row of element + * @param co column of element * @exception range_error (index out of range) */ -matrix & matrix::set(unsigned ro, unsigned co, ex value) +ex & matrix::operator() (unsigned ro, unsigned co) { - if (ro<0 || ro>=row || co<0 || co>=col) - throw (std::range_error("matrix::set(): index out of range")); - - ensure_if_modifiable(); - m[ro*col+co] = value; - return *this; + if (ro>=row || co>=col) + throw (std::range_error("matrix::operator(): index out of range")); + + ensure_if_modifiable(); + return m[ro*col+co]; } /** Transposed of an m x n matrix, producing a new n x m matrix object that * represents the transposed. */ -matrix matrix::transpose(void) const +matrix matrix::transpose() const { - exvector trans(col*row); - - for (unsigned r=0; rcols()*this->rows()); + + for (unsigned r=0; rcols(); ++r) + for (unsigned c=0; crows(); ++c) + trans[r*this->rows()+c] = m[c*this->cols()+r]; + + return matrix(this->cols(),this->rows(),trans); } - /** Determinant of square matrix. This routine doesn't actually calculate the * determinant, it only implements some heuristics about which algorithm to - * call. If all the elements of the matrix are elements of an integral domain + * run. If all the elements of the matrix are elements of an integral domain * the determinant is also in that integral domain and the result is expanded * only. If one or more elements are from a quotient field the determinant is * usually also in that quotient field and the result is normalized before it @@ -446,85 +734,133 @@ matrix matrix::transpose(void) const * [[a/(a-b),1],[b/(a-b),1]] is returned as unity. (In this respect, it * behaves like MapleV and unlike Mathematica.) * + * @param algo allows to chose an algorithm * @return the determinant as a new expression - * @exception logic_error (matrix not square) */ -ex matrix::determinant(void) const + * @exception logic_error (matrix not square) + * @see determinant_algo */ +ex matrix::determinant(unsigned algo) const { - if (row!=col) - throw (std::logic_error("matrix::determinant(): matrix not square")); - GINAC_ASSERT(row*col==m.capacity()); - if (this->row==1) // continuation would be pointless - return m[0]; - - // Gather some information about the matrix: - bool numeric_flag = true; - bool normal_flag = false; - unsigned sparse_count = 0; // count non-zero elements - for (exvector::const_iterator r=m.begin(); r!=m.end(); ++r) { - if (!(*r).is_zero()) - ++sparse_count; - if (!(*r).info(info_flags::numeric)) - numeric_flag = false; - if ((*r).info(info_flags::rational_function) && - !(*r).info(info_flags::crational_polynomial)) - normal_flag = true; - } - - // Purely numeric matrix handled by Gauss elimination - if (numeric_flag) { - ex det = 1; - matrix tmp(*this); - int sign = tmp.gauss_elimination(); - for (int d=0; d uintpair; // # of zeros, column - std::vector c_zeros; // number of zeros in column - for (unsigned c=0; c can't be used for permutation_sign. - std::vector pre_sort; - for (std::vector::iterator i=c_zeros.begin(); i!=c_zeros.end(); ++i) - pre_sort.push_back(i->second); - int sign = permutation_sign(pre_sort); - exvector result(row*col); // represents sorted matrix - unsigned c = 0; - for (std::vector::iterator i=pre_sort.begin(); - i!=pre_sort.end(); - ++i,++c) { - for (unsigned r=0; rinfo(info_flags::numeric)) + numeric_flag = false; + exmap srl; // symbol replacement list + ex rtest = r->to_rational(srl); + if (!rtest.is_zero()) + ++sparse_count; + if (!rtest.info(info_flags::crational_polynomial) && + rtest.info(info_flags::rational_function)) + normal_flag = true; + ++r; + } + + // Here is the heuristics in case this routine has to decide: + if (algo == determinant_algo::automatic) { + // Minor expansion is generally a good guess: + algo = determinant_algo::laplace; + // Does anybody know when a matrix is really sparse? + // Maybe <~row/2.236 nonzero elements average in a row? + if (row>3 && 5*sparse_count<=row*col) + algo = determinant_algo::bareiss; + // Purely numeric matrix can be handled by Gauss elimination. + // This overrides any prior decisions. + if (numeric_flag) + algo = determinant_algo::gauss; + } + + // Trap the trivial case here, since some algorithms don't like it + if (this->row==1) { + // for consistency with non-trivial determinants... + if (normal_flag) + return m[0].normal(); + else + return m[0].expand(); + } + + // Compute the determinant + switch(algo) { + case determinant_algo::gauss: { + ex det = 1; + matrix tmp(*this); + int sign = tmp.gauss_elimination(true); + for (unsigned d=0; d uintpair; + std::vector c_zeros; // number of zeros in column + for (unsigned c=0; c pre_sort; + for (std::vector::const_iterator i=c_zeros.begin(); i!=c_zeros.end(); ++i) + pre_sort.push_back(i->second); + std::vector pre_sort_test(pre_sort); // permutation_sign() modifies the vector so we make a copy here + int sign = permutation_sign(pre_sort_test.begin(), pre_sort_test.end()); + exvector result(row*col); // represents sorted matrix + unsigned c = 0; + for (std::vector::const_iterator i=pre_sort.begin(); + i!=pre_sort.end(); + ++i,++c) { + for (unsigned r=0; rmul(B); - c = B.trace()/ex(i+1); - poly -= c*power(lambda,row-i-1); - } - if (row%2) - return -poly; - else - return poly; - } - - matrix M(*this); - for (unsigned r=0; rinfo(info_flags::numeric)) + numeric_flag = false; + ++r; + } + + // The pure numeric case is traditionally rather common. Hence, it is + // trapped and we use Leverrier's algorithm which goes as row^3 for + // every coefficient. The expensive part is the matrix multiplication. + if (numeric_flag) { + + matrix B(*this); + ex c = B.trace(); + ex poly = power(lambda, row) - c*power(lambda, row-1); + for (unsigned i=1; imul(B); + c = B.trace() / ex(i+1); + poly -= c*power(lambda, row-i-1); + } + if (row%2) + return -poly; + else + return poly; + + } else { + + matrix M(*this); + for (unsigned r=0; rsolve(vars,identity); + } catch (const std::runtime_error & e) { + if (e.what()==std::string("matrix::solve(): inconsistent linear system")) + throw (std::runtime_error("matrix::inverse(): singular matrix")); + else + throw; + } + return sol; } -/** Solve a set of equations for an m x n matrix by fraction-free Gaussian - * elimination. Based on algorithm 9.1 from 'Algorithms for Computer Algebra' - * by Keith O. Geddes et al. +/** Solve a linear system consisting of a m x n matrix and a m x p right hand + * side by applying an elimination scheme to the augmented matrix. * - * @param vars n x p matrix + * @param vars n x p matrix, all elements must be symbols * @param rhs m x p matrix + * @param algo selects the solving algorithm + * @return n x p solution matrix * @exception logic_error (incompatible matrices) - * @exception runtime_error (singular matrix) */ -matrix matrix::fraction_free_elim(const matrix & vars, - const matrix & rhs) const -{ - // FIXME: use implementation of matrix::fraction_free_elimination - if ((row != rhs.row) || (col != vars.row) || (rhs.col != vars.col)) - throw (std::logic_error("matrix::fraction_free_elim(): incompatible matrices")); - - matrix a(*this); // make a copy of the matrix - matrix b(rhs); // make a copy of the rhs vector - - // given an m x n matrix a, reduce it to upper echelon form - unsigned m = a.row; - unsigned n = a.col; - int sign = 1; - ex divisor = 1; - unsigned r = 0; - - // eliminate below row r, with pivot in column k - for (unsigned k=0; (kzero_in_last_row)||(zero_in_this_row=n)); - zero_in_last_row = zero_in_this_row; - } -#endif // def DO_GINAC_ASSERT - - // assemble solution - matrix sol(n,1); - unsigned last_assigned_sol = n+1; - for (int r=m-1; r>=0; --r) { - unsigned first_non_zero = 1; - while ((first_non_zero<=n)&&(a(r,first_non_zero-1).is_zero())) - first_non_zero++; - if (first_non_zero>n) { - // row consists only of zeroes, corresponding rhs must be 0 as well - if (!b(r,0).is_zero()) { - throw (std::runtime_error("matrix::fraction_free_elim(): singular matrix")); - } - } else { - // assign solutions for vars between first_non_zero+1 and - // last_assigned_sol-1: free parameters - for (unsigned c=first_non_zero; crows(); + const unsigned n = this->cols(); + const unsigned p = rhs.cols(); + + // syntax checks + if ((rhs.rows() != m) || (vars.rows() != n) || (vars.col != p)) + throw (std::logic_error("matrix::solve(): incompatible matrices")); + for (unsigned ro=0; rom[r*n+c]; + for (unsigned c=0; cinfo(info_flags::numeric)) + numeric_flag = false; + ++r; + } + + // Here is the heuristics in case this routine has to decide: + if (algo == solve_algo::automatic) { + // Bareiss (fraction-free) elimination is generally a good guess: + algo = solve_algo::bareiss; + // For m<3, Bareiss elimination is equivalent to division free + // elimination but has more logistic overhead + if (m<3) + algo = solve_algo::divfree; + // This overrides any prior decisions. + if (numeric_flag) + algo = solve_algo::gauss; + } + + // Eliminate the augmented matrix: + switch(algo) { + case solve_algo::gauss: + aug.gauss_elimination(); + break; + case solve_algo::divfree: + aug.division_free_elimination(); + break; + case solve_algo::bareiss: + default: + aug.fraction_free_elimination(); + } + + // assemble the solution matrix: + matrix sol(n,p); + for (unsigned co=0; co=0; --r) { + unsigned fnz = 1; // first non-zero in row + while ((fnz<=n) && (aug.m[r*(n+p)+(fnz-1)].is_zero())) + ++fnz; + if (fnz>n) { + // row consists only of zeros, corresponding rhs must be 0, too + if (!aug.m[r*(n+p)+n+co].is_zero()) { + throw (std::runtime_error("matrix::solve(): inconsistent linear system")); + } + } else { + // assign solutions for vars between fnz+1 and + // last_assigned_sol-1: free parameters + for (unsigned c=fnz; cm[r*col+c]; - for (unsigned c=0; c0; --r) { - for (unsigned i=r; irow==1) - return m[0]; - if (this->row==2) - return (m[0]*m[3]-m[2]*m[1]).expand(); - if (this->row==3) - return (m[0]*m[4]*m[8]-m[0]*m[5]*m[7]- - m[1]*m[3]*m[8]+m[2]*m[3]*m[7]+ - m[1]*m[5]*m[6]-m[2]*m[4]*m[6]).expand(); - - // This algorithm can best be understood by looking at a naive - // implementation of Laplace-expansion, like this one: - // ex det; - // matrix minorM(this->row-1,this->col-1); - // for (unsigned r1=0; r1row; ++r1) { - // // shortcut if element(r1,0) vanishes - // if (m[r1*col].is_zero()) - // continue; - // // assemble the minor matrix - // for (unsigned r=0; r Pkey; - Pkey.reserve(this->col); - // key for minor determinant (a subpartition of Pkey) - std::vector Mkey; - Mkey.reserve(this->col-1); - // we store our subminors in maps, keys being the rows they arise from - typedef std::map,class ex> Rmap; - typedef std::map,class ex>::value_type Rmap_value; - Rmap A; - Rmap B; - ex det; - // initialize A with last column: - for (unsigned r=0; rcol; ++r) { - Pkey.erase(Pkey.begin(),Pkey.end()); - Pkey.push_back(r); - A.insert(Rmap_value(Pkey,m[this->col*r+this->col-1])); - } - // proceed from right to left through matrix - for (int c=this->col-2; c>=0; --c) { - Pkey.erase(Pkey.begin(),Pkey.end()); // don't change capacity - Mkey.erase(Mkey.begin(),Mkey.end()); - for (unsigned i=0; icol-c; ++i) - Pkey.push_back(i); - unsigned fc = 0; // controls logic for our strange flipper counter - do { - det = _ex0(); - for (unsigned r=0; rcol-c; ++r) { - // maybe there is nothing to do? - if (m[Pkey[r]*this->col+c].is_zero()) - continue; - // create the sorted key for all possible minors - Mkey.erase(Mkey.begin(),Mkey.end()); - for (unsigned i=0; icol-c; ++i) - if (i!=r) - Mkey.push_back(Pkey[i]); - // Fetch the minors and compute the new determinant - if (r%2) - det -= m[Pkey[r]*this->col+c]*A[Mkey]; - else - det += m[Pkey[r]*this->col+c]*A[Mkey]; - } - // prevent build-up of deep nesting of expressions saves time: - det = det.expand(); - // store the new determinant at its place in B: - if (!det.is_zero()) - B.insert(Rmap_value(Pkey,det)); - // increment our strange flipper counter - for (fc=this->col-c; fc>0; --fc) { - ++Pkey[fc-1]; - if (Pkey[fc-1]col-c) - for (unsigned j=fc; jcol-c; ++j) - Pkey[j] = Pkey[j-1]+1; - } while(fc); - // next column, so change the role of A and B: - A = B; - B.clear(); - } - - return det; + // for small matrices the algorithm does not make any sense: + const unsigned n = this->cols(); + if (n==1) + return m[0].expand(); + if (n==2) + return (m[0]*m[3]-m[2]*m[1]).expand(); + if (n==3) + return (m[0]*m[4]*m[8]-m[0]*m[5]*m[7]- + m[1]*m[3]*m[8]+m[2]*m[3]*m[7]+ + m[1]*m[5]*m[6]-m[2]*m[4]*m[6]).expand(); + + // This algorithm can best be understood by looking at a naive + // implementation of Laplace-expansion, like this one: + // ex det; + // matrix minorM(this->rows()-1,this->cols()-1); + // for (unsigned r1=0; r1rows(); ++r1) { + // // shortcut if element(r1,0) vanishes + // if (m[r1*col].is_zero()) + // continue; + // // assemble the minor matrix + // for (unsigned r=0; r Pkey; + Pkey.reserve(n); + // key for minor determinant (a subpartition of Pkey) + std::vector Mkey; + Mkey.reserve(n-1); + // we store our subminors in maps, keys being the rows they arise from + typedef std::map,class ex> Rmap; + typedef std::map,class ex>::value_type Rmap_value; + Rmap A; + Rmap B; + ex det; + // initialize A with last column: + for (unsigned r=0; r=0; --c) { + Pkey.erase(Pkey.begin(),Pkey.end()); // don't change capacity + Mkey.erase(Mkey.begin(),Mkey.end()); + for (unsigned i=0; i0; --fc) { + ++Pkey[fc-1]; + if (Pkey[fc-1]0) + for (unsigned j=fc; j 0) - sign = -sign; - for (unsigned r2=r1+1; r2m[r2*col+r1] / this->m[r1*col+r1]; - for (unsigned c=r1+1; cm[r2*col+c] -= piv * this->m[r1*col+c]; - for (unsigned c=0; c<=r1; ++c) - this->m[r2*col+c] = _ex0(); - } - } - - return sign; + ensure_if_modifiable(); + const unsigned m = this->rows(); + const unsigned n = this->cols(); + GINAC_ASSERT(!det || n==m); + int sign = 1; + + unsigned r0 = 0; + for (unsigned c0=0; c0=0) { + if (indx > 0) + sign = -sign; + for (unsigned r2=r0+1; r2m[r2*n+c0].is_zero()) { + // yes, there is something to do in this row + ex piv = this->m[r2*n+c0] / this->m[r0*n+c0]; + for (unsigned c=c0+1; cm[r2*n+c] -= piv * this->m[r0*n+c]; + if (!this->m[r2*n+c].info(info_flags::numeric)) + this->m[r2*n+c] = this->m[r2*n+c].normal(); + } + } + // fill up left hand side with zeros + for (unsigned c=r0; c<=c0; ++c) + this->m[r2*n+c] = _ex0; + } + if (det) { + // save space by deleting no longer needed elements + for (unsigned c=r0+1; cm[r0*n+c] = _ex0; + } + ++r0; + } + } + // clear remaining rows + for (unsigned r=r0+1; rm[r*n+c] = _ex0; + } + + return sign; } -/** Perform the steps of division free elimination to bring the matrix +/** Perform the steps of division free elimination to bring the m x n matrix * into an upper echelon form. * + * @param det may be set to true to save a lot of space if one is only + * interested in the diagonal elements (i.e. for calculating determinants). + * The others are set to zero in this case. * @return sign is 1 if an even number of rows was swapped, -1 if an odd * number of rows was swapped and 0 if the matrix is singular. */ -int matrix::division_free_elimination(void) +int matrix::division_free_elimination(const bool det) { - int sign = 1; - ensure_if_modifiable(); - for (unsigned r1=0; r10) - sign = -sign; - for (unsigned r2=r1+1; r2m[r2*col+c] = this->m[r1*col+r1]*this->m[r2*col+c] - this->m[r2*col+r1]*this->m[r1*col+c]; - for (unsigned c=0; c<=r1; ++c) - this->m[r2*col+c] = _ex0(); - } - } - - return sign; + ensure_if_modifiable(); + const unsigned m = this->rows(); + const unsigned n = this->cols(); + GINAC_ASSERT(!det || n==m); + int sign = 1; + + unsigned r0 = 0; + for (unsigned c0=0; c0=0) { + if (indx>0) + sign = -sign; + for (unsigned r2=r0+1; r2m[r2*n+c] = (this->m[r0*n+c0]*this->m[r2*n+c] - this->m[r2*n+c0]*this->m[r0*n+c]).expand(); + // fill up left hand side with zeros + for (unsigned c=r0; c<=c0; ++c) + this->m[r2*n+c] = _ex0; + } + if (det) { + // save space by deleting no longer needed elements + for (unsigned c=r0+1; cm[r0*n+c] = _ex0; + } + ++r0; + } + } + // clear remaining rows + for (unsigned r=r0+1; rm[r*n+c] = _ex0; + } + + return sign; } @@ -1030,114 +1351,138 @@ int matrix::division_free_elimination(void) * is possible, since we know the divisor at each step. * * @param det may be set to true to save a lot of space if one is only - * interested in the last element (i.e. for calculating determinants), the + * interested in the last element (i.e. for calculating determinants). The * others are set to zero in this case. * @return sign is 1 if an even number of rows was swapped, -1 if an odd * number of rows was swapped and 0 if the matrix is singular. */ -int matrix::fraction_free_elimination(bool det) +int matrix::fraction_free_elimination(const bool det) { - // Method: - // (single-step fraction free elimination scheme, already known to Jordan) - // - // Usual division-free elimination sets m[0](r,c) = m(r,c) and then sets - // m[k+1](r,c) = m[k](k,k) * m[k](r,c) - m[k](r,k) * m[k](k,c). - // - // Bareiss (fraction-free) elimination in addition divides that element - // by m[k-1](k-1,k-1) for k>1, where it can be shown by means of the - // Sylvester determinant that this really divides m[k+1](r,c). - // - // We also allow rational functions where the original prove still holds. - // However, we must care for numerator and denominator separately and - // "manually" work in the integral domains because of subtle cancellations - // (see below). This blows up the bookkeeping a bit and the formula has - // to be modified to expand like this (N{x} stands for numerator of x, - // D{x} for denominator of x): - // N{m[k+1](r,c)} = N{m[k](k,k)}*N{m[k](r,c)}*D{m[k](r,k)}*D{m[k](k,c)} - // -N{m[k](r,k)}*N{m[k](k,c)}*D{m[k](k,k)}*D{m[k](r,c)} - // D{m[k+1](r,c)} = D{m[k](k,k)}*D{m[k](r,c)}*D{m[k](r,k)}*D{m[k](k,c)} - // where for k>1 we now divide N{m[k+1](r,c)} by - // N{m[k-1](k-1,k-1)} - // and D{m[k+1](r,c)} by - // D{m[k-1](k-1,k-1)}. - - GINAC_ASSERT(det || row==col); - ensure_if_modifiable(); - if (rows()==1) - return 1; - - int sign = 1; - ex divisor_n = 1; - ex divisor_d = 1; - ex dividend_n; - ex dividend_d; - - // We populate temporary matrices to subsequently operate on. There is - // one holding numerators and another holding denominators of entries. - // This is a must since the evaluator (or even earlier mul's constructor) - // might cancel some trivial element which causes divide() to fail. The - // elements are normalized first (yes, even though this algorithm doesn't - // need GCDs) since the elements of *this might be unnormalized, which - // makes things more complicated than they need to be. - matrix tmp_n(*this); - matrix tmp_d(row,col); // for denominators, if needed - lst srl; // symbol replacement list - exvector::iterator it = m.begin(); - exvector::iterator tmp_n_it = tmp_n.m.begin(); - exvector::iterator tmp_d_it = tmp_d.m.begin(); - for (; it!= m.end(); ++it, ++tmp_n_it, ++tmp_d_it) { - (*tmp_n_it) = (*it).normal().to_rational(srl); - (*tmp_d_it) = (*tmp_n_it).denom(); - (*tmp_n_it) = (*tmp_n_it).numer(); - } - - for (unsigned r1=0; r10) { - sign = -sign; - // rows r1 and indx were swapped, so pivot matrix tmp_d: - for (unsigned c=0; c0) { - divisor_n = tmp_n.m[(r1-1)*col+(r1-1)].expand(); - divisor_d = tmp_d.m[(r1-1)*col+(r1-1)].expand(); - // save space by deleting no longer needed elements: - if (det) { - for (unsigned c=0; c1, where it can be shown by means of the + // Sylvester identity that this really divides m[k+1](r,c). + // + // We also allow rational functions where the original prove still holds. + // However, we must care for numerator and denominator separately and + // "manually" work in the integral domains because of subtle cancellations + // (see below). This blows up the bookkeeping a bit and the formula has + // to be modified to expand like this (N{x} stands for numerator of x, + // D{x} for denominator of x): + // N{m[k+1](r,c)} = N{m[k](k,k)}*N{m[k](r,c)}*D{m[k](r,k)}*D{m[k](k,c)} + // -N{m[k](r,k)}*N{m[k](k,c)}*D{m[k](k,k)}*D{m[k](r,c)} + // D{m[k+1](r,c)} = D{m[k](k,k)}*D{m[k](r,c)}*D{m[k](r,k)}*D{m[k](k,c)} + // where for k>1 we now divide N{m[k+1](r,c)} by + // N{m[k-1](k-1,k-1)} + // and D{m[k+1](r,c)} by + // D{m[k-1](k-1,k-1)}. + + ensure_if_modifiable(); + const unsigned m = this->rows(); + const unsigned n = this->cols(); + GINAC_ASSERT(!det || n==m); + int sign = 1; + if (m==1) + return 1; + ex divisor_n = 1; + ex divisor_d = 1; + ex dividend_n; + ex dividend_d; + + // We populate temporary matrices to subsequently operate on. There is + // one holding numerators and another holding denominators of entries. + // This is a must since the evaluator (or even earlier mul's constructor) + // might cancel some trivial element which causes divide() to fail. The + // elements are normalized first (yes, even though this algorithm doesn't + // need GCDs) since the elements of *this might be unnormalized, which + // makes things more complicated than they need to be. + matrix tmp_n(*this); + matrix tmp_d(m,n); // for denominators, if needed + exmap srl; // symbol replacement list + exvector::const_iterator cit = this->m.begin(), citend = this->m.end(); + exvector::iterator tmp_n_it = tmp_n.m.begin(), tmp_d_it = tmp_d.m.begin(); + while (cit != citend) { + ex nd = cit->normal().to_rational(srl).numer_denom(); + ++cit; + *tmp_n_it++ = nd.op(0); + *tmp_d_it++ = nd.op(1); + } + + unsigned r0 = 0; + for (unsigned c0=0; c0r0) { + // Matrix needs pivoting, swap rows r0 and indx of tmp_n and tmp_d. + sign = -sign; + for (unsigned c=c0; cm.begin(), itend = this->m.end(); + tmp_n_it = tmp_n.m.begin(); + tmp_d_it = tmp_d.m.begin(); + while (it != itend) + *it++ = ((*tmp_n_it++)/(*tmp_d_it++)).subs(srl, subs_options::no_pattern); + + return sign; } @@ -1147,77 +1492,197 @@ int matrix::fraction_free_elimination(bool det) * where the element was found. With (symbolic==true) it does the same thing * with the first non-zero element. * - * @param ro is the row to be inspected + * @param ro is the row from where to begin + * @param co is the column to be inspected * @param symbolic signal if we want the first non-zero element to be pivoted * (true) or the one with the largest absolute value (false). * @return 0 if no interchange occured, -1 if all are zero (usually signaling * a degeneracy) and positive integer k means that rows ro and k were swapped. */ -int matrix::pivot(unsigned ro, bool symbolic) +int matrix::pivot(unsigned ro, unsigned co, bool symbolic) +{ + unsigned k = ro; + if (symbolic) { + // search first non-zero element in column co beginning at row ro + while ((km[k*col+co].expand().is_zero())) + ++k; + } else { + // search largest element in column co beginning at row ro + GINAC_ASSERT(is_exactly_a(this->m[k*col+co])); + unsigned kmax = k+1; + numeric mmax = abs(ex_to(m[kmax*col+co])); + while (kmax(this->m[kmax*col+co])); + numeric tmp = ex_to(this->m[kmax*col+co]); + if (abs(tmp) > mmax) { + mmax = tmp; + k = kmax; + } + ++kmax; + } + if (!mmax.is_zero()) + k = kmax; + } + if (k==row) + // all elements in column co below row ro vanish + return -1; + if (k==ro) + // matrix needs no pivoting + return 0; + // matrix needs pivoting, so swap rows k and ro + ensure_if_modifiable(); + for (unsigned c=0; cm[k*col+c].swap(this->m[ro*col+c]); + + return k; +} + +/** Function to check that all elements of the matrix are zero. + */ +bool matrix::is_zero_matrix() const { - unsigned k = ro; - - if (symbolic) { // search first non-zero - for (unsigned r=ro; r maxn && - !tmp.is_zero()) { - maxn = tmp; - k = r; - } - } - } - if (m[k*col+ro].is_zero()) - return -1; - if (k!=ro) { // swap rows - ensure_if_modifiable(); - for (unsigned c=0; cis_zero())) + return false; + return true; } -/** Convert list of lists to matrix. */ -ex lst_to_matrix(const ex &l) +ex lst_to_matrix(const lst & l) { - if (!is_ex_of_type(l, lst)) - throw(std::invalid_argument("argument to lst_to_matrix() must be a lst")); + lst::const_iterator itr, itc; // Find number of rows and columns - unsigned rows = l.nops(), cols = 0, i, j; - for (i=0; i cols) - cols = l.op(i).nops(); + size_t rows = l.nops(), cols = 0; + for (itr = l.begin(); itr != l.end(); ++itr) { + if (!is_a(*itr)) + throw (std::invalid_argument("lst_to_matrix: argument must be a list of lists")); + if (itr->nops() > cols) + cols = itr->nops(); + } // Allocate and fill matrix - matrix &m = *new matrix(rows, cols); - for (i=0; i j) - m.set(i, j, l.op(i).op(j)); - else - m.set(i, j, ex(0)); - return m; + matrix &M = *new matrix(rows, cols); + M.setflag(status_flags::dynallocated); + + unsigned i; + for (itr = l.begin(), i = 0; itr != l.end(); ++itr, ++i) { + unsigned j; + for (itc = ex_to(*itr).begin(), j = 0; itc != ex_to(*itr).end(); ++itc, ++j) + M(i, j) = *itc; + } + + return M; } -////////// -// global constants -////////// +ex diag_matrix(const lst & l) +{ + lst::const_iterator it; + size_t dim = l.nops(); + + // Allocate and fill matrix + matrix &M = *new matrix(dim, dim); + M.setflag(status_flags::dynallocated); -const matrix some_matrix; -const type_info & typeid_matrix=typeid(some_matrix); + unsigned i; + for (it = l.begin(), i = 0; it != l.end(); ++it, ++i) + M(i, i) = *it; + + return M; +} + +ex unit_matrix(unsigned r, unsigned c) +{ + matrix &Id = *new matrix(r, c); + Id.setflag(status_flags::dynallocated); + for (unsigned i=0; i 10 || c > 10); + bool single_row = (r == 1 || c == 1); + + for (unsigned i=0; im.rows() || c+1>m.cols() || m.cols()<2 || m.rows()<2) + throw std::runtime_error("minor_matrix(): index out of bounds"); + + const unsigned rows = m.rows()-1; + const unsigned cols = m.cols()-1; + matrix &M = *new matrix(rows, cols); + M.setflag(status_flags::dynallocated | status_flags::evaluated); + + unsigned ro = 0; + unsigned ro2 = 0; + while (ro2m.rows() || c+nc>m.cols()) + throw std::runtime_error("sub_matrix(): index out of bounds"); + + matrix &M = *new matrix(nr, nc); + M.setflag(status_flags::dynallocated | status_flags::evaluated); + + for (unsigned ro=0; ro