X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fmatrix.cpp;h=3e9b28bba1133e16b4758c3ef68566398dffea52;hp=990da8391138708ed5af986bfdfd5805871831ff;hb=10365850aa3803337bfea1fc201b81b6752096d4;hpb=68fdf425abf14d016d5f95ee7b9d06a19a3c5926 diff --git a/ginac/matrix.cpp b/ginac/matrix.cpp index 990da839..3e9b28bb 100644 --- a/ginac/matrix.cpp +++ b/ginac/matrix.cpp @@ -3,7 +3,7 @@ * Implementation of symbolic matrices */ /* - * GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2011 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -17,16 +17,9 @@ * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ -#include -#include -#include -#include -#include -#include - #include "matrix.h" #include "numeric.h" #include "lst.h" @@ -37,22 +30,32 @@ #include "symbol.h" #include "operators.h" #include "normal.h" -#include "print.h" #include "archive.h" #include "utils.h" +#include +#include +#include +#include +#include +#include + namespace GiNaC { -GINAC_IMPLEMENT_REGISTERED_CLASS(matrix, basic) +GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(matrix, basic, + print_func(&matrix::do_print). + print_func(&matrix::do_print_latex). + print_func(&matrix::do_print_tree). + print_func(&matrix::do_print_python_repr)) ////////// // default constructor ////////// /** Default ctor. Initializes to 1 x 1-dimensional zero-matrix. */ -matrix::matrix() : inherited(TINFO_matrix), row(1), col(1) +matrix::matrix() : row(1), col(1), m(1, _ex0) { - m.push_back(_ex0); + setflag(status_flags::not_shareable); } ////////// @@ -65,26 +68,28 @@ matrix::matrix() : inherited(TINFO_matrix), row(1), col(1) * * @param r number of rows * @param c number of cols */ -matrix::matrix(unsigned r, unsigned c) - : inherited(TINFO_matrix), row(r), col(c) +matrix::matrix(unsigned r, unsigned c) : row(r), col(c), m(r*c, _ex0) { - m.resize(r*c, _ex0); + setflag(status_flags::not_shareable); } // protected /** Ctor from representation, for internal use only. */ matrix::matrix(unsigned r, unsigned c, const exvector & m2) - : inherited(TINFO_matrix), row(r), col(c), m(m2) {} + : row(r), col(c), m(m2) +{ + setflag(status_flags::not_shareable); +} /** Construct matrix from (flat) list of elements. If the list has fewer * elements than the matrix, the remaining matrix elements are set to zero. * If the list has more elements than the matrix, the excessive elements are * thrown away. */ matrix::matrix(unsigned r, unsigned c, const lst & l) - : inherited(TINFO_matrix), row(r), col(c) + : row(r), col(c), m(r*c, _ex0) { - m.resize(r*c, _ex0); + setflag(status_flags::not_shareable); size_t i = 0; for (lst::const_iterator it = l.begin(); it != l.end(); ++it, ++i) { @@ -100,19 +105,25 @@ matrix::matrix(unsigned r, unsigned c, const lst & l) // archiving ////////// -matrix::matrix(const archive_node &n, lst &sym_lst) : inherited(n, sym_lst) +void matrix::read_archive(const archive_node &n, lst &sym_lst) { + inherited::read_archive(n, sym_lst); + if (!(n.find_unsigned("row", row)) || !(n.find_unsigned("col", col))) throw (std::runtime_error("unknown matrix dimensions in archive")); m.reserve(row * col); - for (unsigned int i=0; true; i++) { + // XXX: default ctor inserts a zero element, we need to erase it here. + m.pop_back(); + archive_node::archive_node_cit first = n.find_first("m"); + archive_node::archive_node_cit last = n.find_last("m"); + ++last; + for (archive_node::archive_node_cit i=first; i != last; ++i) { ex e; - if (n.find_ex("m", e, sym_lst, i)) - m.push_back(e); - else - break; + n.find_ex_by_loc(i, e, sym_lst); + m.push_back(e); } } +GINAC_BIND_UNARCHIVER(matrix); void matrix::archive(archive_node &n) const { @@ -126,62 +137,47 @@ void matrix::archive(archive_node &n) const } } -DEFAULT_UNARCHIVE(matrix) - ////////// // functions overriding virtual functions from base classes ////////// // public -void matrix::print(const print_context & c, unsigned level) const +void matrix::print_elements(const print_context & c, const char *row_start, const char *row_end, const char *row_sep, const char *col_sep) const { - if (is_a(c)) { - - inherited::print(c, level); - - } else { - - if (is_a(c)) - c.s << class_name() << '('; - - if (is_a(c)) - c.s << "\\left(\\begin{array}{" << std::string(col,'c') << "}"; - else - c.s << "["; - - for (unsigned ro=0; ro(c)) - c.s << "["; - for (unsigned co=0; co(c)) - c.s << "&"; - else - c.s << ","; - } else { - if (!is_a(c)) - c.s << "]"; - } - } - if (ro(c)) - c.s << "\\\\"; - else - c.s << ","; - } + for (unsigned ro=0; ro(c)) - c.s << "\\end{array}\\right)"; - else - c.s << "]"; +void matrix::do_print(const print_context & c, unsigned level) const +{ + c.s << "["; + print_elements(c, "[", "]", ",", ","); + c.s << "]"; +} - if (is_a(c)) - c.s << ')'; +void matrix::do_print_latex(const print_latex & c, unsigned level) const +{ + c.s << "\\left(\\begin{array}{" << std::string(col,'c') << "}"; + print_elements(c, "", "", "\\\\", "&"); + c.s << "\\end{array}\\right)"; +} - } +void matrix::do_print_python_repr(const print_python_repr & c, unsigned level) const +{ + c.s << class_name() << '('; + print_elements(c, "[", "]", ",", ","); + c.s << ')'; } /** nops is defined to be rows x columns. */ @@ -226,17 +222,63 @@ ex matrix::eval(int level) const m2[r*col+c] = m[r*col+c].eval(level); return (new matrix(row, col, m2))->setflag(status_flags::dynallocated | - status_flags::evaluated); + status_flags::evaluated); } -ex matrix::subs(const lst & ls, const lst & lr, unsigned options) const -{ +ex matrix::subs(const exmap & mp, unsigned options) const +{ exvector m2(row * col); for (unsigned r=0; rconjugate(); + if (ev) { + ev->push_back(x); + continue; + } + if (are_ex_trivially_equal(x, *i)) { + continue; + } + ev = new exvector; + ev->reserve(m.size()); + for (exvector::const_iterator j=m.begin(); j!=i; ++j) { + ev->push_back(*j); + } + ev->push_back(x); + } + if (ev) { + ex result = matrix(row, col, *ev); + delete ev; + return result; + } + return *this; +} - return matrix(row, col, m2).subs_one_level(ls, lr, options); +ex matrix::real_part() const +{ + exvector v; + v.reserve(m.size()); + for (exvector::const_iterator i=m.begin(); i!=m.end(); ++i) + v.push_back(i->real_part()); + return matrix(row, col, v); +} + +ex matrix::imag_part() const +{ + exvector v; + v.reserve(m.size()); + for (exvector::const_iterator i=m.begin(); i!=m.end(); ++i) + v.push_back(i->imag_part()); + return matrix(row, col, v); } // protected @@ -557,10 +599,11 @@ matrix matrix::mul(const matrix & other) const for (unsigned r1=0; r1rows(); ++r1) { for (unsigned c=0; ccols(); ++c) { + // Quick test: can we shortcut? if (m[r1*col+c].is_zero()) continue; for (unsigned r2=0; r2info(info_flags::numeric)) + numeric_flag = false; + exmap srl; // symbol replacement list ex rtest = r->to_rational(srl); if (!rtest.is_zero()) ++sparse_count; - if (!rtest.info(info_flags::numeric)) - numeric_flag = false; if (!rtest.info(info_flags::crational_polynomial) && rtest.info(info_flags::rational_function)) normal_flag = true; @@ -741,7 +784,7 @@ ex matrix::determinant(unsigned algo) const else return m[0].expand(); } - + // Compute the determinant switch(algo) { case determinant_algo::gauss: { @@ -837,7 +880,7 @@ ex matrix::trace() const tr += m[r*col+r]; if (tr.info(info_flags::rational_function) && - !tr.info(info_flags::crational_polynomial)) + !tr.info(info_flags::crational_polynomial)) return tr.normal(); else return tr.expand(); @@ -855,7 +898,7 @@ ex matrix::trace() const * @return characteristic polynomial as new expression * @exception logic_error (matrix not square) * @see matrix::determinant() */ -ex matrix::charpoly(const symbol & lambda) const +ex matrix::charpoly(const ex & lambda) const { if (row != col) throw (std::logic_error("matrix::charpoly(): matrix not square")); @@ -875,13 +918,13 @@ ex matrix::charpoly(const symbol & lambda) const matrix B(*this); ex c = B.trace(); - ex poly = power(lambda,row)-c*power(lambda,row-1); + ex poly = power(lambda, row) - c*power(lambda, row-1); for (unsigned i=1; imul(B); c = B.trace() / ex(i+1); - poly -= c*power(lambda,row-i-1); + poly -= c*power(lambda, row-i-1); } if (row%2) return -poly; @@ -943,14 +986,15 @@ matrix matrix::inverse() const * * @param vars n x p matrix, all elements must be symbols * @param rhs m x p matrix + * @param algo selects the solving algorithm * @return n x p solution matrix * @exception logic_error (incompatible matrices) * @exception invalid_argument (1st argument must be matrix of symbols) * @exception runtime_error (inconsistent linear system) * @see solve_algo */ matrix matrix::solve(const matrix & vars, - const matrix & rhs, - unsigned algo) const + const matrix & rhs, + unsigned algo) const { const unsigned m = this->rows(); const unsigned n = this->cols(); @@ -1043,6 +1087,29 @@ matrix matrix::solve(const matrix & vars, } +/** Compute the rank of this matrix. */ +unsigned matrix::rank() const +{ + // Method: + // Transform this matrix into upper echelon form and then count the + // number of non-zero rows. + + GINAC_ASSERT(row*col==m.capacity()); + + // Actually, any elimination scheme will do since we are only + // interested in the echelon matrix' zeros. + matrix to_eliminate = *this; + to_eliminate.fraction_free_elimination(); + + unsigned r = row*col; // index of last non-zero element + while (r--) { + if (!to_eliminate.m[r].is_zero()) + return 1+r/col; + } + return 0; +} + + // protected /** Recursive determinant for small matrices having at least one symbolic @@ -1158,7 +1225,7 @@ ex matrix::determinant_minor() const Pkey[j] = Pkey[j-1]+1; } while(fc); // next column, so change the role of A and B: - A = B; + A.swap(B); B.clear(); } @@ -1184,8 +1251,8 @@ int matrix::gauss_elimination(const bool det) int sign = 1; unsigned r0 = 0; - for (unsigned r1=0; (r1 0) sign = -sign; for (unsigned r2=r0+1; r2m[r2*n+r1].is_zero()) { + if (!this->m[r2*n+c0].is_zero()) { // yes, there is something to do in this row - ex piv = this->m[r2*n+r1] / this->m[r0*n+r1]; - for (unsigned c=r1+1; cm[r2*n+c0] / this->m[r0*n+c0]; + for (unsigned c=c0+1; cm[r2*n+c] -= piv * this->m[r0*n+c]; if (!this->m[r2*n+c].info(info_flags::numeric)) this->m[r2*n+c] = this->m[r2*n+c].normal(); } } // fill up left hand side with zeros - for (unsigned c=0; c<=r1; ++c) + for (unsigned c=r0; c<=c0; ++c) this->m[r2*n+c] = _ex0; } if (det) { @@ -1216,7 +1283,12 @@ int matrix::gauss_elimination(const bool det) ++r0; } } - + // clear remaining rows + for (unsigned r=r0+1; rm[r*n+c] = _ex0; + } + return sign; } @@ -1238,8 +1310,8 @@ int matrix::division_free_elimination(const bool det) int sign = 1; unsigned r0 = 0; - for (unsigned r1=0; (r10) sign = -sign; for (unsigned r2=r0+1; r2m[r2*n+c] = (this->m[r0*n+r1]*this->m[r2*n+c] - this->m[r2*n+r1]*this->m[r0*n+c]).expand(); + for (unsigned c=c0+1; cm[r2*n+c] = (this->m[r0*n+c0]*this->m[r2*n+c] - this->m[r2*n+c0]*this->m[r0*n+c]).expand(); // fill up left hand side with zeros - for (unsigned c=0; c<=r1; ++c) + for (unsigned c=r0; c<=c0; ++c) this->m[r2*n+c] = _ex0; } if (det) { @@ -1263,7 +1335,12 @@ int matrix::division_free_elimination(const bool det) ++r0; } } - + // clear remaining rows + for (unsigned r=r0+1; rm[r*n+c] = _ex0; + } + return sign; } @@ -1325,7 +1402,7 @@ int matrix::fraction_free_elimination(const bool det) // makes things more complicated than they need to be. matrix tmp_n(*this); matrix tmp_d(m,n); // for denominators, if needed - lst srl; // symbol replacement list + exmap srl; // symbol replacement list exvector::const_iterator cit = this->m.begin(), citend = this->m.end(); exvector::iterator tmp_n_it = tmp_n.m.begin(), tmp_d_it = tmp_d.m.begin(); while (cit != citend) { @@ -1336,28 +1413,37 @@ int matrix::fraction_free_elimination(const bool det) } unsigned r0 = 0; - for (unsigned r1=0; (r1=0) { - if (indx>0) { + } else { + if (indx>r0) { + // Matrix needs pivoting, swap rows r0 and indx of tmp_n and tmp_d. sign = -sign; - // tmp_n's rows r0 and indx were swapped, do the same in tmp_d: - for (unsigned c=r1; cm.begin(), itend = this->m.end(); tmp_n_it = tmp_n.m.begin(); tmp_d_it = tmp_d.m.begin(); while (it != itend) - *it++ = ((*tmp_n_it++)/(*tmp_d_it++)).subs(srl); + *it++ = ((*tmp_n_it++)/(*tmp_d_it++)).subs(srl, subs_options::no_pattern); return sign; } @@ -1445,6 +1537,16 @@ int matrix::pivot(unsigned ro, unsigned co, bool symbolic) return k; } +/** Function to check that all elements of the matrix are zero. + */ +bool matrix::is_zero_matrix() const +{ + for (exvector::const_iterator i=m.begin(); i!=m.end(); ++i) + if(!(i->is_zero())) + return false; + return true; +} + ex lst_to_matrix(const lst & l) { lst::const_iterator itr, itc; @@ -1535,4 +1637,52 @@ ex symbolic_matrix(unsigned r, unsigned c, const std::string & base_name, const return M; } +ex reduced_matrix(const matrix& m, unsigned r, unsigned c) +{ + if (r+1>m.rows() || c+1>m.cols() || m.cols()<2 || m.rows()<2) + throw std::runtime_error("minor_matrix(): index out of bounds"); + + const unsigned rows = m.rows()-1; + const unsigned cols = m.cols()-1; + matrix &M = *new matrix(rows, cols); + M.setflag(status_flags::dynallocated | status_flags::evaluated); + + unsigned ro = 0; + unsigned ro2 = 0; + while (ro2m.rows() || c+nc>m.cols()) + throw std::runtime_error("sub_matrix(): index out of bounds"); + + matrix &M = *new matrix(nr, nc); + M.setflag(status_flags::dynallocated | status_flags::evaluated); + + for (unsigned ro=0; ro