X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fmatrix.cpp;h=375f8a5b122869c1f47460d074f2d074b46ace76;hp=9f9f67a82c83b62e76431de79ea4bf4054a05047;hb=cca88b51436e4b654d16a4d60cd0d1c66fcf5dd6;hpb=199b64938ab86af572d0816c15d7838730567b2d diff --git a/ginac/matrix.cpp b/ginac/matrix.cpp index 9f9f67a8..375f8a5b 100644 --- a/ginac/matrix.cpp +++ b/ginac/matrix.cpp @@ -3,7 +3,7 @@ * Implementation of symbolic matrices */ /* - * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2014 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -17,53 +17,49 @@ * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ -#include -#include -#include - #include "matrix.h" #include "numeric.h" #include "lst.h" #include "idx.h" #include "indexed.h" +#include "add.h" #include "power.h" #include "symbol.h" +#include "operators.h" #include "normal.h" -#include "print.h" #include "archive.h" #include "utils.h" -#include "debugmsg.h" + +#include +#include +#include +#include +#include +#include namespace GiNaC { -GINAC_IMPLEMENT_REGISTERED_CLASS(matrix, basic) +GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(matrix, basic, + print_func(&matrix::do_print). + print_func(&matrix::do_print_latex). + print_func(&matrix::do_print_tree). + print_func(&matrix::do_print_python_repr)) ////////// -// default ctor, dtor, copy ctor, assignment operator and helpers: +// default constructor ////////// /** Default ctor. Initializes to 1 x 1-dimensional zero-matrix. */ -matrix::matrix() : inherited(TINFO_matrix), row(1), col(1) +matrix::matrix() : row(1), col(1), m(1, _ex0) { - debugmsg("matrix default ctor",LOGLEVEL_CONSTRUCT); - m.push_back(_ex0()); + setflag(status_flags::not_shareable); } -void matrix::copy(const matrix & other) -{ - inherited::copy(other); - row = other.row; - col = other.col; - m = other.m; // STL's vector copying invoked here -} - -DEFAULT_DESTROY(matrix) - ////////// -// other ctors +// other constructors ////////// // public @@ -72,20 +68,18 @@ DEFAULT_DESTROY(matrix) * * @param r number of rows * @param c number of cols */ -matrix::matrix(unsigned r, unsigned c) - : inherited(TINFO_matrix), row(r), col(c) +matrix::matrix(unsigned r, unsigned c) : row(r), col(c), m(r*c, _ex0) { - debugmsg("matrix ctor from unsigned,unsigned",LOGLEVEL_CONSTRUCT); - m.resize(r*c, _ex0()); + setflag(status_flags::not_shareable); } // protected /** Ctor from representation, for internal use only. */ matrix::matrix(unsigned r, unsigned c, const exvector & m2) - : inherited(TINFO_matrix), row(r), col(c), m(m2) + : row(r), col(c), m(m2) { - debugmsg("matrix ctor from unsigned,unsigned,exvector",LOGLEVEL_CONSTRUCT); + setflag(status_flags::not_shareable); } /** Construct matrix from (flat) list of elements. If the list has fewer @@ -93,17 +87,17 @@ matrix::matrix(unsigned r, unsigned c, const exvector & m2) * If the list has more elements than the matrix, the excessive elements are * thrown away. */ matrix::matrix(unsigned r, unsigned c, const lst & l) - : inherited(TINFO_matrix), row(r), col(c) + : row(r), col(c), m(r*c, _ex0) { - debugmsg("matrix ctor from unsigned,unsigned,lst",LOGLEVEL_CONSTRUCT); - m.resize(r*c, _ex0()); + setflag(status_flags::not_shareable); - for (unsigned i=0; i= r) break; // matrix smaller than list: throw away excessive elements - m[y*c+x] = l.op(i); + m[y*c+x] = *it; } } @@ -111,20 +105,25 @@ matrix::matrix(unsigned r, unsigned c, const lst & l) // archiving ////////// -matrix::matrix(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) +void matrix::read_archive(const archive_node &n, lst &sym_lst) { - debugmsg("matrix ctor from archive_node", LOGLEVEL_CONSTRUCT); + inherited::read_archive(n, sym_lst); + if (!(n.find_unsigned("row", row)) || !(n.find_unsigned("col", col))) throw (std::runtime_error("unknown matrix dimensions in archive")); m.reserve(row * col); - for (unsigned int i=0; true; i++) { + // XXX: default ctor inserts a zero element, we need to erase it here. + m.pop_back(); + archive_node::archive_node_cit first = n.find_first("m"); + archive_node::archive_node_cit last = n.find_last("m"); + ++last; + for (archive_node::archive_node_cit i=first; i != last; ++i) { ex e; - if (n.find_ex("m", e, sym_lst, i)) - m.push_back(e); - else - break; + n.find_ex_by_loc(i, e, sym_lst); + m.push_back(e); } } +GINAC_BIND_UNARCHIVER(matrix); void matrix::archive(archive_node &n) const { @@ -138,71 +137,75 @@ void matrix::archive(archive_node &n) const } } -DEFAULT_UNARCHIVE(matrix) - ////////// -// functions overriding virtual functions from bases classes +// functions overriding virtual functions from base classes ////////// // public -void matrix::print(const print_context & c, unsigned level) const +void matrix::print_elements(const print_context & c, const char *row_start, const char *row_end, const char *row_sep, const char *col_sep) const { - debugmsg("matrix print", LOGLEVEL_PRINT); - - if (is_of_type(c, print_tree)) { - - inherited::print(c, level); + for (unsigned ro=0; ro(row) * static_cast(col); } /** returns matrix entry at position (i/col, i%col). */ -ex matrix::op(int i) const +ex matrix::op(size_t i) const { + GINAC_ASSERT(i=0); GINAC_ASSERT(isetflag(status_flags::dynallocated | - status_flags::evaluated ); + status_flags::evaluated); } -ex matrix::subs(const lst & ls, const lst & lr, bool no_pattern) const +ex matrix::subs(const exmap & mp, unsigned options) const { exvector m2(row * col); for (unsigned r=0; rbasic::subs(ls, lr, no_pattern); +/** Complex conjugate every matrix entry. */ +ex matrix::conjugate() const +{ + exvector * ev = 0; + for (exvector::const_iterator i=m.begin(); i!=m.end(); ++i) { + ex x = i->conjugate(); + if (ev) { + ev->push_back(x); + continue; + } + if (are_ex_trivially_equal(x, *i)) { + continue; + } + ev = new exvector; + ev->reserve(m.size()); + for (exvector::const_iterator j=m.begin(); j!=i; ++j) { + ev->push_back(*j); + } + ev->push_back(x); + } + if (ev) { + ex result = matrix(row, col, *ev); + delete ev; + return result; + } + return *this; +} + +ex matrix::real_part() const +{ + exvector v; + v.reserve(m.size()); + for (exvector::const_iterator i=m.begin(); i!=m.end(); ++i) + v.push_back(i->real_part()); + return matrix(row, col, v); +} + +ex matrix::imag_part() const +{ + exvector v; + v.reserve(m.size()); + for (exvector::const_iterator i=m.begin(); i!=m.end(); ++i) + v.push_back(i->imag_part()); + return matrix(row, col, v); } // protected int matrix::compare_same_type(const basic & other) const { - GINAC_ASSERT(is_exactly_of_type(other, matrix)); - const matrix & o = static_cast(const_cast(other)); + GINAC_ASSERT(is_exactly_a(other)); + const matrix &o = static_cast(other); // compare number of rows if (row != o.rows()) @@ -259,11 +308,21 @@ int matrix::compare_same_type(const basic & other) const return 0; } +bool matrix::match_same_type(const basic & other) const +{ + GINAC_ASSERT(is_exactly_a(other)); + const matrix & o = static_cast(other); + + // The number of rows and columns must be the same. This is necessary to + // prevent a 2x3 matrix from matching a 3x2 one. + return row == o.rows() && col == o.cols(); +} + /** Automatic symbolic evaluation of an indexed matrix. */ ex matrix::eval_indexed(const basic & i) const { - GINAC_ASSERT(is_of_type(i, indexed)); - GINAC_ASSERT(is_ex_of_type(i.op(0), matrix)); + GINAC_ASSERT(is_a(i)); + GINAC_ASSERT(is_a(i.op(0))); bool all_indices_unsigned = static_cast(i).all_index_values_are(info_flags::nonnegint); @@ -339,13 +398,13 @@ ex matrix::eval_indexed(const basic & i) const /** Sum of two indexed matrices. */ ex matrix::add_indexed(const ex & self, const ex & other) const { - GINAC_ASSERT(is_ex_of_type(self, indexed)); - GINAC_ASSERT(is_ex_of_type(self.op(0), matrix)); - GINAC_ASSERT(is_ex_of_type(other, indexed)); + GINAC_ASSERT(is_a(self)); + GINAC_ASSERT(is_a(self.op(0))); + GINAC_ASSERT(is_a(other)); GINAC_ASSERT(self.nops() == 2 || self.nops() == 3); // Only add two matrices - if (is_ex_of_type(other.op(0), matrix)) { + if (is_a(other.op(0))) { GINAC_ASSERT(other.nops() == 2 || other.nops() == 3); const matrix &self_matrix = ex_to(self.op(0)); @@ -375,8 +434,8 @@ ex matrix::add_indexed(const ex & self, const ex & other) const /** Product of an indexed matrix with a number. */ ex matrix::scalar_mul_indexed(const ex & self, const numeric & other) const { - GINAC_ASSERT(is_ex_of_type(self, indexed)); - GINAC_ASSERT(is_ex_of_type(self.op(0), matrix)); + GINAC_ASSERT(is_a(self)); + GINAC_ASSERT(is_a(self.op(0))); GINAC_ASSERT(self.nops() == 2 || self.nops() == 3); const matrix &self_matrix = ex_to(self.op(0)); @@ -390,13 +449,13 @@ ex matrix::scalar_mul_indexed(const ex & self, const numeric & other) const /** Contraction of an indexed matrix with something else. */ bool matrix::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const { - GINAC_ASSERT(is_ex_of_type(*self, indexed)); - GINAC_ASSERT(is_ex_of_type(*other, indexed)); + GINAC_ASSERT(is_a(*self)); + GINAC_ASSERT(is_a(*other)); GINAC_ASSERT(self->nops() == 2 || self->nops() == 3); - GINAC_ASSERT(is_ex_of_type(self->op(0), matrix)); + GINAC_ASSERT(is_a(self->op(0))); // Only contract with other matrices - if (!is_ex_of_type(other->op(0), matrix)) + if (!is_a(other->op(0))) return false; GINAC_ASSERT(other->nops() == 2 || other->nops() == 3); @@ -405,10 +464,8 @@ bool matrix::contract_with(exvector::iterator self, exvector::iterator other, ex const matrix &other_matrix = ex_to(other->op(0)); if (self->nops() == 2) { - unsigned self_dim = (self_matrix.col == 1) ? self_matrix.row : self_matrix.col; if (other->nops() == 2) { // vector * vector (scalar product) - unsigned other_dim = (other_matrix.col == 1) ? other_matrix.row : other_matrix.col; if (self_matrix.col == 1) { if (other_matrix.col == 1) { @@ -427,7 +484,7 @@ bool matrix::contract_with(exvector::iterator self, exvector::iterator other, ex *self = self_matrix.mul(other_matrix.transpose())(0, 0); } } - *other = _ex1(); + *other = _ex1; return true; } else { // vector * matrix @@ -438,7 +495,7 @@ bool matrix::contract_with(exvector::iterator self, exvector::iterator other, ex *self = indexed(self_matrix.mul(other_matrix), other->op(2)); else *self = indexed(self_matrix.transpose().mul(other_matrix), other->op(2)); - *other = _ex1(); + *other = _ex1; return true; } @@ -448,7 +505,7 @@ bool matrix::contract_with(exvector::iterator self, exvector::iterator other, ex *self = indexed(other_matrix.mul(self_matrix), other->op(1)); else *self = indexed(other_matrix.mul(self_matrix.transpose()), other->op(1)); - *other = _ex1(); + *other = _ex1; return true; } } @@ -458,28 +515,28 @@ bool matrix::contract_with(exvector::iterator self, exvector::iterator other, ex // A_ij * B_jk = (A*B)_ik if (is_dummy_pair(self->op(2), other->op(1))) { *self = indexed(self_matrix.mul(other_matrix), self->op(1), other->op(2)); - *other = _ex1(); + *other = _ex1; return true; } // A_ij * B_kj = (A*Btrans)_ik if (is_dummy_pair(self->op(2), other->op(2))) { *self = indexed(self_matrix.mul(other_matrix.transpose()), self->op(1), other->op(1)); - *other = _ex1(); + *other = _ex1; return true; } // A_ji * B_jk = (Atrans*B)_ik if (is_dummy_pair(self->op(1), other->op(1))) { *self = indexed(self_matrix.transpose().mul(other_matrix), self->op(2), other->op(2)); - *other = _ex1(); + *other = _ex1; return true; } // A_ji * B_kj = (B*A)_ki if (is_dummy_pair(self->op(1), other->op(2))) { *self = indexed(other_matrix.mul(self_matrix), other->op(1), self->op(2)); - *other = _ex1(); + *other = _ex1; return true; } } @@ -503,10 +560,10 @@ matrix matrix::add(const matrix & other) const throw std::logic_error("matrix::add(): incompatible matrices"); exvector sum(this->m); - exvector::iterator i; - exvector::const_iterator ci; - for (i=sum.begin(), ci=other.m.begin(); i!=sum.end(); ++i, ++ci) - (*i) += (*ci); + exvector::iterator i = sum.begin(), end = sum.end(); + exvector::const_iterator ci = other.m.begin(); + while (i != end) + *i++ += *ci++; return matrix(row,col,sum); } @@ -521,10 +578,10 @@ matrix matrix::sub(const matrix & other) const throw std::logic_error("matrix::sub(): incompatible matrices"); exvector dif(this->m); - exvector::iterator i; - exvector::const_iterator ci; - for (i=dif.begin(), ci=other.m.begin(); i!=dif.end(); ++i, ++ci) - (*i) -= (*ci); + exvector::iterator i = dif.begin(), end = dif.end(); + exvector::const_iterator ci = other.m.begin(); + while (i != end) + *i++ -= *ci++; return matrix(row,col,dif); } @@ -542,10 +599,11 @@ matrix matrix::mul(const matrix & other) const for (unsigned r1=0; r1rows(); ++r1) { for (unsigned c=0; ccols(); ++c) { + // Quick test: can we shortcut? if (m[r1*col+c].is_zero()) continue; for (unsigned r2=0; r2(expn)) { // Integer cases are computed by successive multiplication, using the // obvious shortcut of storing temporaries, like A^4 == (A*A)*(A*A). if (expn.info(info_flags::integer)) { - numeric k; - matrix prod(row,col); + numeric b = ex_to(expn); + matrix A(row,col); if (expn.info(info_flags::negative)) { - k = -ex_to(expn); - prod = this->inverse(); + b *= -1; + A = this->inverse(); } else { - k = ex_to(expn); - prod = *this; + A = *this; } - matrix result(row,col); + matrix C(row,col); for (unsigned r=0; rcols()*this->rows()); @@ -689,16 +748,18 @@ ex matrix::determinant(unsigned algo) const bool numeric_flag = true; bool normal_flag = false; unsigned sparse_count = 0; // counts non-zero elements - for (exvector::const_iterator r=m.begin(); r!=m.end(); ++r) { - lst srl; // symbol replacement list - ex rtest = (*r).to_rational(srl); + exvector::const_iterator r = m.begin(), rend = m.end(); + while (r != rend) { + if (!r->info(info_flags::numeric)) + numeric_flag = false; + exmap srl; // symbol replacement list + ex rtest = r->to_rational(srl); if (!rtest.is_zero()) ++sparse_count; - if (!rtest.info(info_flags::numeric)) - numeric_flag = false; if (!rtest.info(info_flags::crational_polynomial) && rtest.info(info_flags::rational_function)) normal_flag = true; + ++r; } // Here is the heuristics in case this routine has to decide: @@ -723,7 +784,7 @@ ex matrix::determinant(unsigned algo) const else return m[0].expand(); } - + // Compute the determinant switch(algo) { case determinant_algo::gauss: { @@ -751,7 +812,7 @@ ex matrix::determinant(unsigned algo) const int sign; sign = tmp.division_free_elimination(true); if (sign==0) - return _ex0(); + return _ex0; ex det = tmp.m[row*col-1]; // factor out accumulated bogus slag for (unsigned d=0; d uintpair; std::vector c_zeros; // number of zeros in column for (unsigned c=0; c pre_sort; - for (std::vector::iterator i=c_zeros.begin(); i!=c_zeros.end(); ++i) + for (std::vector::const_iterator i=c_zeros.begin(); i!=c_zeros.end(); ++i) pre_sort.push_back(i->second); std::vector pre_sort_test(pre_sort); // permutation_sign() modifies the vector so we make a copy here int sign = permutation_sign(pre_sort_test.begin(), pre_sort_test.end()); exvector result(row*col); // represents sorted matrix unsigned c = 0; - for (std::vector::iterator i=pre_sort.begin(); + for (std::vector::const_iterator i=pre_sort.begin(); i!=pre_sort.end(); ++i,++c) { for (unsigned r=0; rinfo(info_flags::numeric)) numeric_flag = false; - } + ++r; } // The pure numeric case is traditionally rather common. Hence, it is // trapped and we use Leverrier's algorithm which goes as row^3 for // every coefficient. The expensive part is the matrix multiplication. if (numeric_flag) { + matrix B(*this); ex c = B.trace(); - ex poly = power(lambda,row)-c*power(lambda,row-1); + ex poly = power(lambda, row) - c*power(lambda, row-1); for (unsigned i=1; imul(B); - c = B.trace()/ex(i+1); - poly -= c*power(lambda,row-i-1); + c = B.trace() / ex(i+1); + poly -= c*power(lambda, row-i-1); } if (row%2) return -poly; else return poly; - } + + } else { - matrix M(*this); - for (unsigned r=0; rrows(); const unsigned n = this->cols(); @@ -950,9 +1019,11 @@ matrix matrix::solve(const matrix & vars, // Gather some statistical information about the augmented matrix: bool numeric_flag = true; - for (exvector::const_iterator r=aug.m.begin(); r!=aug.m.end(); ++r) { - if (!(*r).info(info_flags::numeric)) + exvector::const_iterator r = aug.m.begin(), rend = aug.m.end(); + while (r!=rend && numeric_flag==true) { + if (!r->info(info_flags::numeric)) numeric_flag = false; + ++r; } // Here is the heuristics in case this routine has to decide: @@ -1016,6 +1087,29 @@ matrix matrix::solve(const matrix & vars, } +/** Compute the rank of this matrix. */ +unsigned matrix::rank() const +{ + // Method: + // Transform this matrix into upper echelon form and then count the + // number of non-zero rows. + + GINAC_ASSERT(row*col==m.capacity()); + + // Actually, any elimination scheme will do since we are only + // interested in the echelon matrix' zeros. + matrix to_eliminate = *this; + to_eliminate.fraction_free_elimination(); + + unsigned r = row*col; // index of last non-zero element + while (r--) { + if (!to_eliminate.m[r].is_zero()) + return 1+r/col; + } + return 0; +} + + // protected /** Recursive determinant for small matrices having at least one symbolic @@ -1028,7 +1122,7 @@ matrix matrix::solve(const matrix & vars, * * @return the determinant as a new expression (in expanded form) * @see matrix::determinant() */ -ex matrix::determinant_minor(void) const +ex matrix::determinant_minor() const { // for small matrices the algorithm does not make any sense: const unsigned n = this->cols(); @@ -1099,7 +1193,7 @@ ex matrix::determinant_minor(void) const Pkey.push_back(i); unsigned fc = 0; // controls logic for our strange flipper counter do { - det = _ex0(); + det = _ex0; for (unsigned r=0; r 0) sign = -sign; for (unsigned r2=r0+1; r2m[r2*n+r1].is_zero()) { + if (!this->m[r2*n+c0].is_zero()) { // yes, there is something to do in this row - ex piv = this->m[r2*n+r1] / this->m[r0*n+r1]; - for (unsigned c=r1+1; cm[r2*n+c0] / this->m[r0*n+c0]; + for (unsigned c=c0+1; cm[r2*n+c] -= piv * this->m[r0*n+c]; if (!this->m[r2*n+c].info(info_flags::numeric)) this->m[r2*n+c] = this->m[r2*n+c].normal(); } } // fill up left hand side with zeros - for (unsigned c=0; c<=r1; ++c) - this->m[r2*n+c] = _ex0(); + for (unsigned c=r0; c<=c0; ++c) + this->m[r2*n+c] = _ex0; } if (det) { // save space by deleting no longer needed elements for (unsigned c=r0+1; cm[r0*n+c] = _ex0(); + this->m[r0*n+c] = _ex0; } ++r0; } } - + // clear remaining rows + for (unsigned r=r0+1; rm[r*n+c] = _ex0; + } + return sign; } @@ -1211,8 +1310,8 @@ int matrix::division_free_elimination(const bool det) int sign = 1; unsigned r0 = 0; - for (unsigned r1=0; (r10) sign = -sign; for (unsigned r2=r0+1; r2m[r2*n+c] = (this->m[r0*n+r1]*this->m[r2*n+c] - this->m[r2*n+r1]*this->m[r0*n+c]).expand(); + for (unsigned c=c0+1; cm[r2*n+c] = (this->m[r0*n+c0]*this->m[r2*n+c] - this->m[r2*n+c0]*this->m[r0*n+c]).expand(); // fill up left hand side with zeros - for (unsigned c=0; c<=r1; ++c) - this->m[r2*n+c] = _ex0(); + for (unsigned c=r0; c<=c0; ++c) + this->m[r2*n+c] = _ex0; } if (det) { // save space by deleting no longer needed elements for (unsigned c=r0+1; cm[r0*n+c] = _ex0(); + this->m[r0*n+c] = _ex0; } ++r0; } } - + // clear remaining rows + for (unsigned r=r0+1; rm[r*n+c] = _ex0; + } + return sign; } @@ -1261,7 +1365,7 @@ int matrix::fraction_free_elimination(const bool det) // // Bareiss (fraction-free) elimination in addition divides that element // by m[k-1](k-1,k-1) for k>1, where it can be shown by means of the - // Sylvester determinant that this really divides m[k+1](r,c). + // Sylvester identity that this really divides m[k+1](r,c). // // We also allow rational functions where the original prove still holds. // However, we must care for numerator and denominator separately and @@ -1298,39 +1402,48 @@ int matrix::fraction_free_elimination(const bool det) // makes things more complicated than they need to be. matrix tmp_n(*this); matrix tmp_d(m,n); // for denominators, if needed - lst srl; // symbol replacement list - exvector::iterator it = this->m.begin(); - exvector::iterator tmp_n_it = tmp_n.m.begin(); - exvector::iterator tmp_d_it = tmp_d.m.begin(); - for (; it!= this->m.end(); ++it, ++tmp_n_it, ++tmp_d_it) { - (*tmp_n_it) = (*it).normal().to_rational(srl); - (*tmp_d_it) = (*tmp_n_it).denom(); - (*tmp_n_it) = (*tmp_n_it).numer(); + exmap srl; // symbol replacement list + exvector::const_iterator cit = this->m.begin(), citend = this->m.end(); + exvector::iterator tmp_n_it = tmp_n.m.begin(), tmp_d_it = tmp_d.m.begin(); + while (cit != citend) { + ex nd = cit->normal().to_rational(srl).numer_denom(); + ++cit; + *tmp_n_it++ = nd.op(0); + *tmp_d_it++ = nd.op(1); } unsigned r0 = 0; - for (unsigned r1=0; (r1=0) { - if (indx>0) { + } else { + if (indx>r0) { + // Matrix needs pivoting, swap rows r0 and indx of tmp_n and tmp_d. sign = -sign; - // tmp_n's rows r0 and indx were swapped, do the same in tmp_d: - for (unsigned c=r1; cm.begin(); + exvector::iterator it = this->m.begin(), itend = this->m.end(); tmp_n_it = tmp_n.m.begin(); tmp_d_it = tmp_d.m.begin(); - for (; it!= this->m.end(); ++it, ++tmp_n_it, ++tmp_d_it) - (*it) = ((*tmp_n_it)/(*tmp_d_it)).subs(srl); + while (it != itend) + *it++ = ((*tmp_n_it++)/(*tmp_d_it++)).subs(srl, subs_options::no_pattern); return sign; } @@ -1389,11 +1508,11 @@ int matrix::pivot(unsigned ro, unsigned co, bool symbolic) ++k; } else { // search largest element in column co beginning at row ro - GINAC_ASSERT(is_ex_of_type(this->m[k*col+co],numeric)); + GINAC_ASSERT(is_exactly_a(this->m[k*col+co])); unsigned kmax = k+1; numeric mmax = abs(ex_to(m[kmax*col+co])); while (kmaxm[kmax*col+co],numeric)); + GINAC_ASSERT(is_exactly_a(this->m[kmax*col+co])); numeric tmp = ex_to(this->m[kmax*col+co]); if (abs(tmp) > mmax) { mmax = tmp; @@ -1418,36 +1537,152 @@ int matrix::pivot(unsigned ro, unsigned co, bool symbolic) return k; } +/** Function to check that all elements of the matrix are zero. + */ +bool matrix::is_zero_matrix() const +{ + for (exvector::const_iterator i=m.begin(); i!=m.end(); ++i) + if(!(i->is_zero())) + return false; + return true; +} + ex lst_to_matrix(const lst & l) { + lst::const_iterator itr, itc; + // Find number of rows and columns - unsigned rows = l.nops(), cols = 0, i, j; - for (i=0; i cols) - cols = l.op(i).nops(); + size_t rows = l.nops(), cols = 0; + for (itr = l.begin(); itr != l.end(); ++itr) { + if (!is_a(*itr)) + throw (std::invalid_argument("lst_to_matrix: argument must be a list of lists")); + if (itr->nops() > cols) + cols = itr->nops(); + } // Allocate and fill matrix - matrix &m = *new matrix(rows, cols); - m.setflag(status_flags::dynallocated); - for (i=0; i j) - m(i, j) = l.op(i).op(j); - else - m(i, j) = _ex0(); - return m; + matrix &M = *new matrix(rows, cols); + M.setflag(status_flags::dynallocated); + + unsigned i; + for (itr = l.begin(), i = 0; itr != l.end(); ++itr, ++i) { + unsigned j; + for (itc = ex_to(*itr).begin(), j = 0; itc != ex_to(*itr).end(); ++itc, ++j) + M(i, j) = *itc; + } + + return M; } ex diag_matrix(const lst & l) { - unsigned dim = l.nops(); + lst::const_iterator it; + size_t dim = l.nops(); + + // Allocate and fill matrix + matrix &M = *new matrix(dim, dim); + M.setflag(status_flags::dynallocated); - matrix &m = *new matrix(dim, dim); - m.setflag(status_flags::dynallocated); - for (unsigned i=0; i 10 || c > 10); + bool single_row = (r == 1 || c == 1); + + for (unsigned i=0; im.rows() || c+1>m.cols() || m.cols()<2 || m.rows()<2) + throw std::runtime_error("minor_matrix(): index out of bounds"); + + const unsigned rows = m.rows()-1; + const unsigned cols = m.cols()-1; + matrix &M = *new matrix(rows, cols); + M.setflag(status_flags::dynallocated | status_flags::evaluated); + + unsigned ro = 0; + unsigned ro2 = 0; + while (ro2m.rows() || c+nc>m.cols()) + throw std::runtime_error("sub_matrix(): index out of bounds"); + + matrix &M = *new matrix(nr, nc); + M.setflag(status_flags::dynallocated | status_flags::evaluated); + + for (unsigned ro=0; ro