X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fmatrix.cpp;h=1f4ed18b0a54e0e29ae2fd69aeb02a666add0c0d;hp=97b473628464e498a233c691e2d0b724f34e7491;hb=f6f99c4d47762da9e3d73a2f5ec6f062e82505b8;hpb=5f00c012381b3671df5a9fbfeec2d36af0f75b61 diff --git a/ginac/matrix.cpp b/ginac/matrix.cpp index 97b47362..1f4ed18b 100644 --- a/ginac/matrix.cpp +++ b/ginac/matrix.cpp @@ -21,12 +21,14 @@ */ #include +#include #include #include "matrix.h" #include "archive.h" #include "utils.h" #include "debugmsg.h" +#include "numeric.h" #ifndef NO_NAMESPACE_GINAC namespace GiNaC { @@ -248,14 +250,12 @@ ex matrix::eval(int level) const debugmsg("matrix eval",LOGLEVEL_MEMBER_FUNCTION); // check if we have to do anything at all - if ((level==1)&&(flags & status_flags::evaluated)) { + if ((level==1)&&(flags & status_flags::evaluated)) return *this; - } // emergency break - if (level == -max_recursion_level) { + if (level == -max_recursion_level) throw (std::runtime_error("matrix::eval(): recursion limit exceeded")); - } // eval() entry by entry exvector m2(row*col); @@ -276,9 +276,8 @@ ex matrix::evalf(int level) const debugmsg("matrix evalf",LOGLEVEL_MEMBER_FUNCTION); // check if we have to do anything at all - if (level==1) { + if (level==1) return *this; - } // emergency break if (level == -max_recursion_level) { @@ -301,23 +300,21 @@ ex matrix::evalf(int level) const int matrix::compare_same_type(const basic & other) const { GINAC_ASSERT(is_exactly_of_type(other, matrix)); - const matrix & o=static_cast(const_cast(other)); + const matrix & o = static_cast(const_cast(other)); // compare number of rows - if (row != o.rows()) { + if (row != o.rows()) return row < o.rows() ? -1 : 1; - } // compare number of columns - if (col != o.cols()) { + if (col != o.cols()) return col < o.cols() ? -1 : 1; - } // equal number of rows and columns, compare individual elements int cmpval; for (unsigned r=0; rm); exvector::iterator i; @@ -351,14 +347,14 @@ matrix matrix::add(const matrix & other) const return matrix(row,col,sum); } + /** Difference of matrices. * * @exception logic_error (incompatible matrices) */ matrix matrix::sub(const matrix & other) const { - if (col != other.col || row != other.row) { + if (col != other.col || row != other.row) throw (std::logic_error("matrix::sub(): incompatible matrices")); - } exvector dif(this->m); exvector::iterator i; @@ -371,14 +367,14 @@ matrix matrix::sub(const matrix & other) const return matrix(row,col,dif); } + /** Product of matrices. * * @exception logic_error (incompatible matrices) */ matrix matrix::mul(const matrix & other) const { - if (col != other.row) { + if (col != other.row) throw (std::logic_error("matrix::mul(): incompatible matrices")); - } exvector prod(row*other.col); for (unsigned i=0; i=row || co<0 || co>=col) { + if (ro<0 || ro>=row || co<0 || co>=col) throw (std::range_error("matrix::operator(): index out of range")); - } return m[ro*col+co]; } + /** Set individual elements manually. * * @exception range_error (index out of range) */ matrix & matrix::set(unsigned ro, unsigned co, ex value) { - if (ro<0 || ro>=row || co<0 || co>=col) { + if (ro<0 || ro>=row || co<0 || co>=col) throw (std::range_error("matrix::set(): index out of range")); - } ensure_if_modifiable(); - m[ro*col+co]=value; + m[ro*col+co] = value; return *this; } + /** Transposed of an m x n matrix, producing a new n x m matrix object that * represents the transposed. */ matrix matrix::transpose(void) const { exvector trans(col*row); - for (unsigned r=0; r -int permutation_sign(vector s) -{ - if (s.size() < 2) - return 0; - int sigma=1; - for (typename vector::iterator i=s.begin(); i!=s.end()-1; ++i) { - for (typename vector::iterator j=i+1; j!=s.end(); ++j) { - if (*i == *j) - return 0; - if (*i > *j) { - iter_swap(i,j); - sigma = -sigma; - } - } - } - return sigma; -} - -/** Determinant built by application of the full permutation group. This - * routine is only called internally by matrix::determinant(). */ -ex determinant_symbolic_perm(const matrix & M) -{ - GINAC_ASSERT(M.rows()==M.cols()); // cannot happen, just in case... - - if (M.rows()==1) { // speed things up - return M(0,0); - } - - ex det; - ex term; - vector sigma(M.cols()); - for (unsigned i=0; izero_in_last_row)||(zero_in_this_row=n)); - zero_in_last_row=zero_in_this_row; + zero_in_last_row = zero_in_this_row; } #endif // def DO_GINAC_ASSERT + /* + cout << "after" << endl; + cout << "a=" << a << endl; + cout << "b=" << b << endl; + */ + // assemble solution matrix sol(n,1); - unsigned last_assigned_sol=n+1; + unsigned last_assigned_sol = n+1; for (unsigned r=m; r>0; --r) { - unsigned first_non_zero=1; - while ((first_non_zero<=n)&&(a.ffe_get(r,first_non_zero).is_zero())) { + unsigned first_non_zero = 1; + while ((first_non_zero<=n)&&(a.ffe_get(r,first_non_zero).is_zero())) first_non_zero++; - } if (first_non_zero>n) { // row consists only of zeroes, corresponding rhs must be 0 as well if (!b.ffe_get(r,1).is_zero()) { @@ -813,34 +691,26 @@ matrix matrix::fraction_free_elim(const matrix & vars, for (unsigned c=first_non_zero+1; c<=last_assigned_sol-1; ++c) { sol.ffe_set(c,1,vars.ffe_get(c,1)); } - ex e=b.ffe_get(r,1); + ex e = b.ffe_get(r,1); for (unsigned c=first_non_zero+1; c<=n; ++c) { e=e-a.ffe_get(r,c)*sol.ffe_get(c,1); } sol.ffe_set(first_non_zero,1, (e/a.ffe_get(r,first_non_zero)).normal()); - last_assigned_sol=first_non_zero; + last_assigned_sol = first_non_zero; } } // assign solutions for vars between 1 and // last_assigned_sol-1: free parameters - for (unsigned c=1; c<=last_assigned_sol-1; ++c) { + for (unsigned c=1; c<=last_assigned_sol-1; ++c) sol.ffe_set(c,1,vars.ffe_get(c,1)); - } - - /* - for (unsigned c=1; c<=n; ++c) { - cout << vars.ffe_get(c,1) << "->" << sol.ffe_get(c,1) << endl; - } - */ #ifdef DO_GINAC_ASSERT // test solution with echelon matrix for (unsigned r=1; r<=m; ++r) { - ex e=0; - for (unsigned c=1; c<=n; ++c) { - e=e+a.ffe_get(r,c)*sol.ffe_get(c,1); - } + ex e = 0; + for (unsigned c=1; c<=n; ++c) + e = e+a.ffe_get(r,c)*sol.ffe_get(c,1); if (!(e-b.ffe_get(r,1)).normal().is_zero()) { cout << "e=" << e; cout << "b.ffe_get(" << r<<",1)=" << b.ffe_get(r,1) << endl; @@ -848,25 +718,24 @@ matrix matrix::fraction_free_elim(const matrix & vars, } GINAC_ASSERT((e-b.ffe_get(r,1)).normal().is_zero()); } - + // test solution with original matrix for (unsigned r=1; r<=m; ++r) { - ex e=0; - for (unsigned c=1; c<=n; ++c) { - e=e+ffe_get(r,c)*sol.ffe_get(c,1); - } + ex e = 0; + for (unsigned c=1; c<=n; ++c) + e = e+ffe_get(r,c)*sol.ffe_get(c,1); try { - if (!(e-rhs.ffe_get(r,1)).normal().is_zero()) { - cout << "e=" << e << endl; - e.printtree(cout); - ex en=e.normal(); - cout << "e.normal()=" << en << endl; - en.printtree(cout); - cout << "rhs.ffe_get(" << r<<",1)=" << rhs.ffe_get(r,1) << endl; - cout << "diff=" << (e-rhs.ffe_get(r,1)).normal() << endl; - } + if (!(e-rhs.ffe_get(r,1)).normal().is_zero()) { + cout << "e=" << e << endl; + e.printtree(cout); + ex en = e.normal(); + cout << "e.normal()=" << en << endl; + en.printtree(cout); + cout << "rhs.ffe_get(" << r<<",1)=" << rhs.ffe_get(r,1) << endl; + cout << "diff=" << (e-rhs.ffe_get(r,1)).normal() << endl; + } } catch (...) { - ex xxx=e-rhs.ffe_get(r,1); + ex xxx = e - rhs.ffe_get(r,1); cerr << "xxx=" << xxx << endl << endl; } GINAC_ASSERT((e-rhs.ffe_get(r,1)).normal().is_zero()); @@ -874,76 +743,319 @@ matrix matrix::fraction_free_elim(const matrix & vars, #endif // def DO_GINAC_ASSERT return sol; -} +} + +/** Solve a set of equations for an m x n matrix. + * + * @param vars n x p matrix + * @param rhs m x p matrix + * @exception logic_error (incompatible matrices) + * @exception runtime_error (singular matrix) */ +matrix matrix::solve(const matrix & vars, + const matrix & rhs) const +{ + if ((row != rhs.row) || (col != vars.row) || (rhs.col != vars.col)) + throw (std::logic_error("matrix::solve(): incompatible matrices")); -/** Solve simultaneous set of equations. */ -matrix matrix::solve(const matrix & v) const + throw (std::runtime_error("FIXME: need implementation.")); +} + +/** Old and obsolete interface: */ +matrix matrix::old_solve(const matrix & v) const { - if (!(row == col && col == v.row)) { + if ((v.row != col) || (col != v.row)) throw (std::logic_error("matrix::solve(): incompatible matrices")); - } - // build the extended matrix of *this with v attached to the right + // build the augmented matrix of *this with v attached to the right matrix tmp(row,col+v.col); for (unsigned r=0; rm[r*col+c]; + for (unsigned c=0; c0; --r) { + for (unsigned i=r; i=0; --r) { - sol[r*v.col+c] = tmp[r*tmp.col+c]; - for (unsigned i=r+1; irow==1) + return m[0]; + if (this->row==2) + return (m[0]*m[3]-m[2]*m[1]).expand(); + if (this->row==3) + return (m[0]*m[4]*m[8]-m[0]*m[5]*m[7]- + m[1]*m[3]*m[8]+m[2]*m[3]*m[7]+ + m[1]*m[5]*m[6]-m[2]*m[4]*m[6]).expand(); + + // This algorithm can best be understood by looking at a naive + // implementation of Laplace-expansion, like this one: + // ex det; + // matrix minorM(this->row-1,this->col-1); + // for (unsigned r1=0; r1row; ++r1) { + // // shortcut if element(r1,0) vanishes + // if (m[r1*col].is_zero()) + // continue; + // // assemble the minor matrix + // for (unsigned r=0; r Pkey; + Pkey.reserve(this->col); + // key for minor determinant (a subpartition of Pkey) + vector Mkey; + Mkey.reserve(this->col-1); + // we store our subminors in maps, keys being the rows they arise from + typedef map,class ex> Rmap; + typedef map,class ex>::value_type Rmap_value; + Rmap A; + Rmap B; + ex det; + // initialize A with last column: + for (unsigned r=0; rcol; ++r) { + Pkey.erase(Pkey.begin(),Pkey.end()); + Pkey.push_back(r); + A.insert(Rmap_value(Pkey,m[this->col*r+this->col-1])); + } + // proceed from right to left through matrix + for (int c=this->col-2; c>=0; --c) { + Pkey.erase(Pkey.begin(),Pkey.end()); // don't change capacity + Mkey.erase(Mkey.begin(),Mkey.end()); + for (unsigned i=0; icol-c; ++i) + Pkey.push_back(i); + unsigned fc = 0; // controls logic for our strange flipper counter + do { + A.insert(Rmap_value(Pkey,_ex0())); + det = _ex0(); + for (unsigned r=0; rcol-c; ++r) { + // maybe there is nothing to do? + if (m[Pkey[r]*this->col+c].is_zero()) + continue; + // create the sorted key for all possible minors + Mkey.erase(Mkey.begin(),Mkey.end()); + for (unsigned i=0; icol-c; ++i) + if (i!=r) + Mkey.push_back(Pkey[i]); + // Fetch the minors and compute the new determinant + if (r%2) + det -= m[Pkey[r]*this->col+c]*A[Mkey]; + else + det += m[Pkey[r]*this->col+c]*A[Mkey]; } + // prevent build-up of deep nesting of expressions saves time: + det = det.expand(); + // store the new determinant at its place in B: + B.insert(Rmap_value(Pkey,det)); + // increment our strange flipper counter + for (fc=this->col-c; fc>0; --fc) { + ++Pkey[fc-1]; + if (Pkey[fc-1]col-c) + for (unsigned j=fc; jcol-c; ++j) + Pkey[j] = Pkey[j-1]+1; + } while(fc); + // next column, so change the role of A and B: + A = B; + B.clear(); + } + + return det; +} + + +/** Determinant built by application of the full permutation group. This + * routine is only called internally by matrix::determinant(). */ +ex matrix::determinant_perm(void) const +{ + if (rows()==1) // speed things up + return m[0]; + + ex det; + ex term; + vector sigma(col); + for (unsigned i=0; i 0) + sign = -sign; + for (unsigned r2=r1+1; r2m[r2*col+c] -= this->m[r2*col+r1]*this->m[r1*col+c]/this->m[r1*col+r1]; + for (unsigned c=0; c<=r1; ++c) + this->m[r2*col+c] = _ex0(); } } - return matrix(v.row, v.col, sol); + + return sign; } -// protected /** Partial pivoting method. - * Usual pivoting returns the index to the element with the largest absolute - * value and swaps the current row with the one where the element was found. - * Here it does the same with the first non-zero element. (This works fine, - * but may be far from optimal for numerics.) */ -int matrix::pivot(unsigned ro) + * Usual pivoting (symbolic==false) returns the index to the element with the + * largest absolute value in column ro and swaps the current row with the one + * where the element was found. With (symbolic==true) it does the same thing + * with the first non-zero element. + * + * @param ro is the row to be inspected + * @param symbolic signal if we want the first non-zero element to be pivoted + * (true) or the one with the largest absolute value (false). + * @return 0 if no interchange occured, -1 if all are zero (usually signaling + * a degeneracy) and positive integer k means that rows ro and k were swapped. + */ +int matrix::pivot(unsigned ro, bool symbolic) { - unsigned k=ro; + unsigned k = ro; - for (unsigned r=ro; r maxn && + !tmp.is_zero()) { + maxn = tmp; + k = r; + } } } - if (m[k*col+ro].is_zero()) { + if (m[k*col+ro].is_zero()) return -1; - } if (k!=ro) { // swap rows + ensure_if_modifiable(); for (unsigned c=0; c