X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Finifcns_trans.cpp;h=f0d785904176bd4519b6d35f127228d980e93d2e;hp=507e18f51639f1c003280064b982f81a7d8f27e9;hb=619d77d2676f7f1a562fb9fefc0ba6754fe2d750;hpb=d448856f20cb58f939ddbf636e7f72e3599b1468 diff --git a/ginac/inifcns_trans.cpp b/ginac/inifcns_trans.cpp index 507e18f5..f0d78590 100644 --- a/ginac/inifcns_trans.cpp +++ b/ginac/inifcns_trans.cpp @@ -4,7 +4,7 @@ * functions. */ /* - * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2007 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -18,7 +18,7 @@ * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include @@ -29,6 +29,7 @@ #include "constant.h" #include "numeric.h" #include "power.h" +#include "operators.h" #include "relational.h" #include "symbol.h" #include "pseries.h" @@ -52,26 +53,28 @@ static ex exp_eval(const ex & x) { // exp(0) -> 1 if (x.is_zero()) { - return _ex1(); + return _ex1; } + // exp(n*Pi*I/2) -> {+1|+I|-1|-I} - const ex TwoExOverPiI=(_ex2()*x)/(Pi*I); + const ex TwoExOverPiI=(_ex2*x)/(Pi*I); if (TwoExOverPiI.info(info_flags::integer)) { - numeric z=mod(ex_to(TwoExOverPiI),_num4()); - if (z.is_equal(_num0())) - return _ex1(); - if (z.is_equal(_num1())) + const numeric z = mod(ex_to(TwoExOverPiI),*_num4_p); + if (z.is_equal(*_num0_p)) + return _ex1; + if (z.is_equal(*_num1_p)) return ex(I); - if (z.is_equal(_num2())) - return _ex_1(); - if (z.is_equal(_num3())) + if (z.is_equal(*_num2_p)) + return _ex_1; + if (z.is_equal(*_num3_p)) return ex(-I); } + // exp(log(x)) -> x if (is_ex_the_function(x, log)) return x.op(0); - // exp(float) + // exp(float) -> float if (x.info(info_flags::numeric) && !x.info(info_flags::crational)) return exp(ex_to(x)); @@ -86,9 +89,21 @@ static ex exp_deriv(const ex & x, unsigned deriv_param) return exp(x); } +static ex exp_real_part(const ex & x) +{ + return exp(GiNaC::real_part(x))*cos(GiNaC::imag_part(x)); +} + +static ex exp_imag_part(const ex & x) +{ + return exp(GiNaC::real_part(x))*sin(GiNaC::imag_part(x)); +} + REGISTER_FUNCTION(exp, eval_func(exp_eval). evalf_func(exp_evalf). derivative_func(exp_deriv). + real_part_func(exp_real_part). + imag_part_func(exp_imag_part). latex_name("\\exp")); ////////// @@ -108,26 +123,25 @@ static ex log_eval(const ex & x) if (x.info(info_flags::numeric)) { if (x.is_zero()) // log(0) -> infinity throw(pole_error("log_eval(): log(0)",0)); - if (x.info(info_flags::real) && x.info(info_flags::negative)) + if (x.info(info_flags::rational) && x.info(info_flags::negative)) return (log(-x)+I*Pi); - if (x.is_equal(_ex1())) // log(1) -> 0 - return _ex0(); + if (x.is_equal(_ex1)) // log(1) -> 0 + return _ex0; if (x.is_equal(I)) // log(I) -> Pi*I/2 - return (Pi*I*_num1_2()); + return (Pi*I*_ex1_2); if (x.is_equal(-I)) // log(-I) -> -Pi*I/2 - return (Pi*I*_num_1_2()); - // log(float) + return (Pi*I*_ex_1_2); + + // log(float) -> float if (!x.info(info_flags::crational)) return log(ex_to(x)); } + // log(exp(t)) -> t (if -Pi < t.imag() <= Pi): if (is_ex_the_function(x, exp)) { - ex t = x.op(0); - if (t.info(info_flags::numeric)) { - numeric nt = ex_to(t); - if (nt.is_real()) - return t; - } + const ex &t = x.op(0); + if (t.info(info_flags::real)) + return t; } return log(x).hold(); @@ -138,7 +152,7 @@ static ex log_deriv(const ex & x, unsigned deriv_param) GINAC_ASSERT(deriv_param==0); // d/dx log(x) -> 1/x - return power(x, _ex_1()); + return power(x, _ex_1); } static ex log_series(const ex &arg, @@ -146,12 +160,12 @@ static ex log_series(const ex &arg, int order, unsigned options) { - GINAC_ASSERT(is_exactly_a(rel.lhs())); + GINAC_ASSERT(is_a(rel.lhs())); ex arg_pt; bool must_expand_arg = false; // maybe substitution of rel into arg fails because of a pole try { - arg_pt = arg.subs(rel); + arg_pt = arg.subs(rel, subs_options::no_pattern); } catch (pole_error) { must_expand_arg = true; } @@ -177,7 +191,7 @@ static ex log_series(const ex &arg, } while (!argser.is_terminating() && argser.nops()==1); const symbol &s = ex_to(rel.lhs()); - const ex point = rel.rhs(); + const ex &point = rel.rhs(); const int n = argser.ldegree(s); epvector seq; // construct what we carelessly called the n*log(x) term above @@ -185,13 +199,29 @@ static ex log_series(const ex &arg, // expand the log, but only if coeff is real and > 0, since otherwise // it would make the branch cut run into the wrong direction if (coeff.info(info_flags::positive)) - seq.push_back(expair(n*log(s-point)+log(coeff), _ex0())); + seq.push_back(expair(n*log(s-point)+log(coeff), _ex0)); else - seq.push_back(expair(log(coeff*pow(s-point, n)), _ex0())); + seq.push_back(expair(log(coeff*pow(s-point, n)), _ex0)); if (!argser.is_terminating() || argser.nops()!=1) { // in this case n more (or less) terms are needed // (sadly, to generate them, we have to start from the beginning) + if (n == 0 && coeff == 1) { + epvector epv; + ex acc = (new pseries(rel, epv))->setflag(status_flags::dynallocated); + epv.reserve(2); + epv.push_back(expair(-1, _ex0)); + epv.push_back(expair(Order(_ex1), order)); + ex rest = pseries(rel, epv).add_series(argser); + for (int i = order-1; i>0; --i) { + epvector cterm; + cterm.reserve(1); + cterm.push_back(expair(i%2 ? _ex1/i : _ex_1/i, _ex0)); + acc = pseries(rel, cterm).add_series(ex_to(acc)); + acc = (ex_to(rest)).mul_series(ex_to(acc)); + } + return acc; + } const ex newarg = ex_to((arg/coeff).series(rel, order+n, options)).shift_exponents(-n).convert_to_poly(true); return pseries(rel, seq).add_series(ex_to(log(newarg).series(rel, order, options))); } else // it was a monomial @@ -203,21 +233,37 @@ static ex log_series(const ex &arg, // This is the branch cut: assemble the primitive series manually and // then add the corresponding complex step function. const symbol &s = ex_to(rel.lhs()); - const ex point = rel.rhs(); + const ex &point = rel.rhs(); const symbol foo; - const ex replarg = series(log(arg), s==foo, order).subs(foo==point); + const ex replarg = series(log(arg), s==foo, order).subs(foo==point, subs_options::no_pattern); epvector seq; - seq.push_back(expair(-I*csgn(arg*I)*Pi, _ex0())); - seq.push_back(expair(Order(_ex1()), order)); + seq.push_back(expair(-I*csgn(arg*I)*Pi, _ex0)); + seq.push_back(expair(Order(_ex1), order)); return series(replarg - I*Pi + pseries(rel, seq), rel, order); } throw do_taylor(); // caught by function::series() } +static ex log_real_part(const ex & x) +{ + if (x.info(info_flags::nonnegative)) + return log(x).hold(); + return log(abs(x)); +} + +static ex log_imag_part(const ex & x) +{ + if (x.info(info_flags::nonnegative)) + return 0; + return atan2(GiNaC::imag_part(x), GiNaC::real_part(x)); +} + REGISTER_FUNCTION(log, eval_func(log_eval). evalf_func(log_evalf). derivative_func(log_deriv). series_func(log_series). + real_part_func(log_real_part). + imag_part_func(log_imag_part). latex_name("\\ln")); ////////// @@ -235,55 +281,62 @@ static ex sin_evalf(const ex & x) static ex sin_eval(const ex & x) { // sin(n/d*Pi) -> { all known non-nested radicals } - const ex SixtyExOverPi = _ex60()*x/Pi; - ex sign = _ex1(); + const ex SixtyExOverPi = _ex60*x/Pi; + ex sign = _ex1; if (SixtyExOverPi.info(info_flags::integer)) { - numeric z = mod(ex_to(SixtyExOverPi),_num120()); - if (z>=_num60()) { + numeric z = mod(ex_to(SixtyExOverPi),*_num120_p); + if (z>=*_num60_p) { // wrap to interval [0, Pi) - z -= _num60(); - sign = _ex_1(); + z -= *_num60_p; + sign = _ex_1; } - if (z>_num30()) { + if (z>*_num30_p) { // wrap to interval [0, Pi/2) - z = _num60()-z; + z = *_num60_p-z; } - if (z.is_equal(_num0())) // sin(0) -> 0 - return _ex0(); - if (z.is_equal(_num5())) // sin(Pi/12) -> sqrt(6)/4*(1-sqrt(3)/3) - return sign*_ex1_4()*power(_ex6(),_ex1_2())*(_ex1()+_ex_1_3()*power(_ex3(),_ex1_2())); - if (z.is_equal(_num6())) // sin(Pi/10) -> sqrt(5)/4-1/4 - return sign*(_ex1_4()*power(_ex5(),_ex1_2())+_ex_1_4()); - if (z.is_equal(_num10())) // sin(Pi/6) -> 1/2 - return sign*_ex1_2(); - if (z.is_equal(_num15())) // sin(Pi/4) -> sqrt(2)/2 - return sign*_ex1_2()*power(_ex2(),_ex1_2()); - if (z.is_equal(_num18())) // sin(3/10*Pi) -> sqrt(5)/4+1/4 - return sign*(_ex1_4()*power(_ex5(),_ex1_2())+_ex1_4()); - if (z.is_equal(_num20())) // sin(Pi/3) -> sqrt(3)/2 - return sign*_ex1_2()*power(_ex3(),_ex1_2()); - if (z.is_equal(_num25())) // sin(5/12*Pi) -> sqrt(6)/4*(1+sqrt(3)/3) - return sign*_ex1_4()*power(_ex6(),_ex1_2())*(_ex1()+_ex1_3()*power(_ex3(),_ex1_2())); - if (z.is_equal(_num30())) // sin(Pi/2) -> 1 - return sign*_ex1(); + if (z.is_equal(*_num0_p)) // sin(0) -> 0 + return _ex0; + if (z.is_equal(*_num5_p)) // sin(Pi/12) -> sqrt(6)/4*(1-sqrt(3)/3) + return sign*_ex1_4*sqrt(_ex6)*(_ex1+_ex_1_3*sqrt(_ex3)); + if (z.is_equal(*_num6_p)) // sin(Pi/10) -> sqrt(5)/4-1/4 + return sign*(_ex1_4*sqrt(_ex5)+_ex_1_4); + if (z.is_equal(*_num10_p)) // sin(Pi/6) -> 1/2 + return sign*_ex1_2; + if (z.is_equal(*_num15_p)) // sin(Pi/4) -> sqrt(2)/2 + return sign*_ex1_2*sqrt(_ex2); + if (z.is_equal(*_num18_p)) // sin(3/10*Pi) -> sqrt(5)/4+1/4 + return sign*(_ex1_4*sqrt(_ex5)+_ex1_4); + if (z.is_equal(*_num20_p)) // sin(Pi/3) -> sqrt(3)/2 + return sign*_ex1_2*sqrt(_ex3); + if (z.is_equal(*_num25_p)) // sin(5/12*Pi) -> sqrt(6)/4*(1+sqrt(3)/3) + return sign*_ex1_4*sqrt(_ex6)*(_ex1+_ex1_3*sqrt(_ex3)); + if (z.is_equal(*_num30_p)) // sin(Pi/2) -> 1 + return sign; } - + if (is_exactly_a(x)) { - ex t = x.op(0); + const ex &t = x.op(0); + // sin(asin(x)) -> x if (is_ex_the_function(x, asin)) return t; + // sin(acos(x)) -> sqrt(1-x^2) if (is_ex_the_function(x, acos)) - return power(_ex1()-power(t,_ex2()),_ex1_2()); - // sin(atan(x)) -> x*(1+x^2)^(-1/2) + return sqrt(_ex1-power(t,_ex2)); + + // sin(atan(x)) -> x/sqrt(1+x^2) if (is_ex_the_function(x, atan)) - return t*power(_ex1()+power(t,_ex2()),_ex_1_2()); + return t*power(_ex1+power(t,_ex2),_ex_1_2); } // sin(float) -> float if (x.info(info_flags::numeric) && !x.info(info_flags::crational)) return sin(ex_to(x)); + + // sin() is odd + if (x.info(info_flags::negative)) + return -sin(-x); return sin(x).hold(); } @@ -296,9 +349,21 @@ static ex sin_deriv(const ex & x, unsigned deriv_param) return cos(x); } +static ex sin_real_part(const ex & x) +{ + return cosh(GiNaC::imag_part(x))*sin(GiNaC::real_part(x)); +} + +static ex sin_imag_part(const ex & x) +{ + return sinh(GiNaC::imag_part(x))*cos(GiNaC::real_part(x)); +} + REGISTER_FUNCTION(sin, eval_func(sin_eval). evalf_func(sin_evalf). derivative_func(sin_deriv). + real_part_func(sin_real_part). + imag_part_func(sin_imag_part). latex_name("\\sin")); ////////// @@ -316,56 +381,63 @@ static ex cos_evalf(const ex & x) static ex cos_eval(const ex & x) { // cos(n/d*Pi) -> { all known non-nested radicals } - const ex SixtyExOverPi = _ex60()*x/Pi; - ex sign = _ex1(); + const ex SixtyExOverPi = _ex60*x/Pi; + ex sign = _ex1; if (SixtyExOverPi.info(info_flags::integer)) { - numeric z = mod(ex_to(SixtyExOverPi),_num120()); - if (z>=_num60()) { + numeric z = mod(ex_to(SixtyExOverPi),*_num120_p); + if (z>=*_num60_p) { // wrap to interval [0, Pi) - z = _num120()-z; + z = *_num120_p-z; } - if (z>=_num30()) { + if (z>=*_num30_p) { // wrap to interval [0, Pi/2) - z = _num60()-z; - sign = _ex_1(); + z = *_num60_p-z; + sign = _ex_1; } - if (z.is_equal(_num0())) // cos(0) -> 1 - return sign*_ex1(); - if (z.is_equal(_num5())) // cos(Pi/12) -> sqrt(6)/4*(1+sqrt(3)/3) - return sign*_ex1_4()*power(_ex6(),_ex1_2())*(_ex1()+_ex1_3()*power(_ex3(),_ex1_2())); - if (z.is_equal(_num10())) // cos(Pi/6) -> sqrt(3)/2 - return sign*_ex1_2()*power(_ex3(),_ex1_2()); - if (z.is_equal(_num12())) // cos(Pi/5) -> sqrt(5)/4+1/4 - return sign*(_ex1_4()*power(_ex5(),_ex1_2())+_ex1_4()); - if (z.is_equal(_num15())) // cos(Pi/4) -> sqrt(2)/2 - return sign*_ex1_2()*power(_ex2(),_ex1_2()); - if (z.is_equal(_num20())) // cos(Pi/3) -> 1/2 - return sign*_ex1_2(); - if (z.is_equal(_num24())) // cos(2/5*Pi) -> sqrt(5)/4-1/4x - return sign*(_ex1_4()*power(_ex5(),_ex1_2())+_ex_1_4()); - if (z.is_equal(_num25())) // cos(5/12*Pi) -> sqrt(6)/4*(1-sqrt(3)/3) - return sign*_ex1_4()*power(_ex6(),_ex1_2())*(_ex1()+_ex_1_3()*power(_ex3(),_ex1_2())); - if (z.is_equal(_num30())) // cos(Pi/2) -> 0 - return sign*_ex0(); + if (z.is_equal(*_num0_p)) // cos(0) -> 1 + return sign; + if (z.is_equal(*_num5_p)) // cos(Pi/12) -> sqrt(6)/4*(1+sqrt(3)/3) + return sign*_ex1_4*sqrt(_ex6)*(_ex1+_ex1_3*sqrt(_ex3)); + if (z.is_equal(*_num10_p)) // cos(Pi/6) -> sqrt(3)/2 + return sign*_ex1_2*sqrt(_ex3); + if (z.is_equal(*_num12_p)) // cos(Pi/5) -> sqrt(5)/4+1/4 + return sign*(_ex1_4*sqrt(_ex5)+_ex1_4); + if (z.is_equal(*_num15_p)) // cos(Pi/4) -> sqrt(2)/2 + return sign*_ex1_2*sqrt(_ex2); + if (z.is_equal(*_num20_p)) // cos(Pi/3) -> 1/2 + return sign*_ex1_2; + if (z.is_equal(*_num24_p)) // cos(2/5*Pi) -> sqrt(5)/4-1/4x + return sign*(_ex1_4*sqrt(_ex5)+_ex_1_4); + if (z.is_equal(*_num25_p)) // cos(5/12*Pi) -> sqrt(6)/4*(1-sqrt(3)/3) + return sign*_ex1_4*sqrt(_ex6)*(_ex1+_ex_1_3*sqrt(_ex3)); + if (z.is_equal(*_num30_p)) // cos(Pi/2) -> 0 + return _ex0; } - + if (is_exactly_a(x)) { - ex t = x.op(0); + const ex &t = x.op(0); + // cos(acos(x)) -> x if (is_ex_the_function(x, acos)) return t; - // cos(asin(x)) -> (1-x^2)^(1/2) + + // cos(asin(x)) -> sqrt(1-x^2) if (is_ex_the_function(x, asin)) - return power(_ex1()-power(t,_ex2()),_ex1_2()); - // cos(atan(x)) -> (1+x^2)^(-1/2) + return sqrt(_ex1-power(t,_ex2)); + + // cos(atan(x)) -> 1/sqrt(1+x^2) if (is_ex_the_function(x, atan)) - return power(_ex1()+power(t,_ex2()),_ex_1_2()); + return power(_ex1+power(t,_ex2),_ex_1_2); } // cos(float) -> float if (x.info(info_flags::numeric) && !x.info(info_flags::crational)) return cos(ex_to(x)); + // cos() is even + if (x.info(info_flags::negative)) + return cos(-x); + return cos(x).hold(); } @@ -374,12 +446,24 @@ static ex cos_deriv(const ex & x, unsigned deriv_param) GINAC_ASSERT(deriv_param==0); // d/dx cos(x) -> -sin(x) - return _ex_1()*sin(x); + return -sin(x); +} + +static ex cos_real_part(const ex & x) +{ + return cosh(GiNaC::imag_part(x))*cos(GiNaC::real_part(x)); +} + +static ex cos_imag_part(const ex & x) +{ + return -sinh(GiNaC::imag_part(x))*sin(GiNaC::real_part(x)); } REGISTER_FUNCTION(cos, eval_func(cos_eval). evalf_func(cos_evalf). derivative_func(cos_deriv). + real_part_func(cos_real_part). + imag_part_func(cos_imag_part). latex_name("\\cos")); ////////// @@ -397,46 +481,49 @@ static ex tan_evalf(const ex & x) static ex tan_eval(const ex & x) { // tan(n/d*Pi) -> { all known non-nested radicals } - const ex SixtyExOverPi = _ex60()*x/Pi; - ex sign = _ex1(); + const ex SixtyExOverPi = _ex60*x/Pi; + ex sign = _ex1; if (SixtyExOverPi.info(info_flags::integer)) { - numeric z = mod(ex_to(SixtyExOverPi),_num60()); - if (z>=_num60()) { + numeric z = mod(ex_to(SixtyExOverPi),*_num60_p); + if (z>=*_num60_p) { // wrap to interval [0, Pi) - z -= _num60(); + z -= *_num60_p; } - if (z>=_num30()) { + if (z>=*_num30_p) { // wrap to interval [0, Pi/2) - z = _num60()-z; - sign = _ex_1(); + z = *_num60_p-z; + sign = _ex_1; } - if (z.is_equal(_num0())) // tan(0) -> 0 - return _ex0(); - if (z.is_equal(_num5())) // tan(Pi/12) -> 2-sqrt(3) - return sign*(_ex2()-power(_ex3(),_ex1_2())); - if (z.is_equal(_num10())) // tan(Pi/6) -> sqrt(3)/3 - return sign*_ex1_3()*power(_ex3(),_ex1_2()); - if (z.is_equal(_num15())) // tan(Pi/4) -> 1 - return sign*_ex1(); - if (z.is_equal(_num20())) // tan(Pi/3) -> sqrt(3) - return sign*power(_ex3(),_ex1_2()); - if (z.is_equal(_num25())) // tan(5/12*Pi) -> 2+sqrt(3) - return sign*(power(_ex3(),_ex1_2())+_ex2()); - if (z.is_equal(_num30())) // tan(Pi/2) -> infinity + if (z.is_equal(*_num0_p)) // tan(0) -> 0 + return _ex0; + if (z.is_equal(*_num5_p)) // tan(Pi/12) -> 2-sqrt(3) + return sign*(_ex2-sqrt(_ex3)); + if (z.is_equal(*_num10_p)) // tan(Pi/6) -> sqrt(3)/3 + return sign*_ex1_3*sqrt(_ex3); + if (z.is_equal(*_num15_p)) // tan(Pi/4) -> 1 + return sign; + if (z.is_equal(*_num20_p)) // tan(Pi/3) -> sqrt(3) + return sign*sqrt(_ex3); + if (z.is_equal(*_num25_p)) // tan(5/12*Pi) -> 2+sqrt(3) + return sign*(sqrt(_ex3)+_ex2); + if (z.is_equal(*_num30_p)) // tan(Pi/2) -> infinity throw (pole_error("tan_eval(): simple pole",1)); } - + if (is_exactly_a(x)) { - ex t = x.op(0); + const ex &t = x.op(0); + // tan(atan(x)) -> x if (is_ex_the_function(x, atan)) return t; - // tan(asin(x)) -> x*(1+x^2)^(-1/2) + + // tan(asin(x)) -> x/sqrt(1+x^2) if (is_ex_the_function(x, asin)) - return t*power(_ex1()-power(t,_ex2()),_ex_1_2()); - // tan(acos(x)) -> (1-x^2)^(1/2)/x + return t*power(_ex1-power(t,_ex2),_ex_1_2); + + // tan(acos(x)) -> sqrt(1-x^2)/x if (is_ex_the_function(x, acos)) - return power(t,_ex_1())*power(_ex1()-power(t,_ex2()),_ex1_2()); + return power(t,_ex_1)*sqrt(_ex1-power(t,_ex2)); } // tan(float) -> float @@ -444,6 +531,10 @@ static ex tan_eval(const ex & x) return tan(ex_to(x)); } + // tan() is odd + if (x.info(info_flags::negative)) + return -tan(-x); + return tan(x).hold(); } @@ -452,7 +543,21 @@ static ex tan_deriv(const ex & x, unsigned deriv_param) GINAC_ASSERT(deriv_param==0); // d/dx tan(x) -> 1+tan(x)^2; - return (_ex1()+power(tan(x),_ex2())); + return (_ex1+power(tan(x),_ex2)); +} + +static ex tan_real_part(const ex & x) +{ + ex a = GiNaC::real_part(x); + ex b = GiNaC::imag_part(x); + return tan(a)/(1+power(tan(a),2)*power(tan(b),2)); +} + +static ex tan_imag_part(const ex & x) +{ + ex a = GiNaC::real_part(x); + ex b = GiNaC::imag_part(x); + return tanh(b)/(1+power(tan(a),2)*power(tan(b),2)); } static ex tan_series(const ex &x, @@ -460,21 +565,23 @@ static ex tan_series(const ex &x, int order, unsigned options) { - GINAC_ASSERT(is_exactly_a(rel.lhs())); + GINAC_ASSERT(is_a(rel.lhs())); // method: // Taylor series where there is no pole falls back to tan_deriv. // On a pole simply expand sin(x)/cos(x). - const ex x_pt = x.subs(rel); + const ex x_pt = x.subs(rel, subs_options::no_pattern); if (!(2*x_pt/Pi).info(info_flags::odd)) throw do_taylor(); // caught by function::series() // if we got here we have to care for a simple pole - return (sin(x)/cos(x)).series(rel, order+2, options); + return (sin(x)/cos(x)).series(rel, order, options); } REGISTER_FUNCTION(tan, eval_func(tan_eval). evalf_func(tan_evalf). derivative_func(tan_deriv). series_func(tan_series). + real_part_func(tan_real_part). + imag_part_func(tan_imag_part). latex_name("\\tan")); ////////// @@ -492,24 +599,34 @@ static ex asin_evalf(const ex & x) static ex asin_eval(const ex & x) { if (x.info(info_flags::numeric)) { + // asin(0) -> 0 if (x.is_zero()) return x; + // asin(1/2) -> Pi/6 - if (x.is_equal(_ex1_2())) + if (x.is_equal(_ex1_2)) return numeric(1,6)*Pi; + // asin(1) -> Pi/2 - if (x.is_equal(_ex1())) - return _num1_2()*Pi; + if (x.is_equal(_ex1)) + return _ex1_2*Pi; + // asin(-1/2) -> -Pi/6 - if (x.is_equal(_ex_1_2())) + if (x.is_equal(_ex_1_2)) return numeric(-1,6)*Pi; + // asin(-1) -> -Pi/2 - if (x.is_equal(_ex_1())) - return _num_1_2()*Pi; + if (x.is_equal(_ex_1)) + return _ex_1_2*Pi; + // asin(float) -> float if (!x.info(info_flags::crational)) return asin(ex_to(x)); + + // asin() is odd + if (x.info(info_flags::negative)) + return -asin(-x); } return asin(x).hold(); @@ -520,7 +637,7 @@ static ex asin_deriv(const ex & x, unsigned deriv_param) GINAC_ASSERT(deriv_param==0); // d/dx asin(x) -> 1/sqrt(1-x^2) - return power(1-power(x,_ex2()),_ex_1_2()); + return power(1-power(x,_ex2),_ex_1_2); } REGISTER_FUNCTION(asin, eval_func(asin_eval). @@ -543,24 +660,34 @@ static ex acos_evalf(const ex & x) static ex acos_eval(const ex & x) { if (x.info(info_flags::numeric)) { + // acos(1) -> 0 - if (x.is_equal(_ex1())) - return _ex0(); + if (x.is_equal(_ex1)) + return _ex0; + // acos(1/2) -> Pi/3 - if (x.is_equal(_ex1_2())) - return _ex1_3()*Pi; + if (x.is_equal(_ex1_2)) + return _ex1_3*Pi; + // acos(0) -> Pi/2 if (x.is_zero()) - return _ex1_2()*Pi; + return _ex1_2*Pi; + // acos(-1/2) -> 2/3*Pi - if (x.is_equal(_ex_1_2())) + if (x.is_equal(_ex_1_2)) return numeric(2,3)*Pi; + // acos(-1) -> Pi - if (x.is_equal(_ex_1())) + if (x.is_equal(_ex_1)) return Pi; + // acos(float) -> float if (!x.info(info_flags::crational)) return acos(ex_to(x)); + + // acos(-x) -> Pi-acos(x) + if (x.info(info_flags::negative)) + return Pi-acos(-x); } return acos(x).hold(); @@ -571,7 +698,7 @@ static ex acos_deriv(const ex & x, unsigned deriv_param) GINAC_ASSERT(deriv_param==0); // d/dx acos(x) -> -1/sqrt(1-x^2) - return _ex_1()*power(1-power(x,_ex2()),_ex_1_2()); + return -power(1-power(x,_ex2),_ex_1_2); } REGISTER_FUNCTION(acos, eval_func(acos_eval). @@ -594,20 +721,29 @@ static ex atan_evalf(const ex & x) static ex atan_eval(const ex & x) { if (x.info(info_flags::numeric)) { + // atan(0) -> 0 if (x.is_zero()) - return _ex0(); + return _ex0; + // atan(1) -> Pi/4 - if (x.is_equal(_ex1())) - return _ex1_4()*Pi; + if (x.is_equal(_ex1)) + return _ex1_4*Pi; + // atan(-1) -> -Pi/4 - if (x.is_equal(_ex_1())) - return _ex_1_4()*Pi; + if (x.is_equal(_ex_1)) + return _ex_1_4*Pi; + if (x.is_equal(I) || x.is_equal(-I)) throw (pole_error("atan_eval(): logarithmic pole",0)); + // atan(float) -> float if (!x.info(info_flags::crational)) return atan(ex_to(x)); + + // atan() is odd + if (x.info(info_flags::negative)) + return -atan(-x); } return atan(x).hold(); @@ -618,7 +754,7 @@ static ex atan_deriv(const ex & x, unsigned deriv_param) GINAC_ASSERT(deriv_param==0); // d/dx atan(x) -> 1/(1+x^2) - return power(_ex1()+power(x,_ex2()), _ex_1()); + return power(_ex1+power(x,_ex2), _ex_1); } static ex atan_series(const ex &arg, @@ -626,7 +762,7 @@ static ex atan_series(const ex &arg, int order, unsigned options) { - GINAC_ASSERT(is_exactly_a(rel.lhs())); + GINAC_ASSERT(is_a(rel.lhs())); // method: // Taylor series where there is no pole or cut falls back to atan_deriv. // There are two branch cuts, one runnig from I up the imaginary axis and @@ -635,10 +771,10 @@ static ex atan_series(const ex &arg, // On the branch cuts and the poles series expand // (log(1+I*x)-log(1-I*x))/(2*I) // instead. - const ex arg_pt = arg.subs(rel); + const ex arg_pt = arg.subs(rel, subs_options::no_pattern); if (!(I*arg_pt).info(info_flags::real)) throw do_taylor(); // Re(x) != 0 - if ((I*arg_pt).info(info_flags::real) && abs(I*arg_pt)<_ex1()) + if ((I*arg_pt).info(info_flags::real) && abs(I*arg_pt)<_ex1) throw do_taylor(); // Re(x) == 0, but abs(x)<1 // care for the poles, using the defining formula for atan()... if (arg_pt.is_equal(I) || arg_pt.is_equal(-I)) @@ -648,17 +784,17 @@ static ex atan_series(const ex &arg, // This is the branch cut: assemble the primitive series manually and // then add the corresponding complex step function. const symbol &s = ex_to(rel.lhs()); - const ex point = rel.rhs(); + const ex &point = rel.rhs(); const symbol foo; - const ex replarg = series(atan(arg), s==foo, order).subs(foo==point); - ex Order0correction = replarg.op(0)+csgn(arg)*Pi*_ex_1_2(); - if ((I*arg_pt)<_ex0()) - Order0correction += log((I*arg_pt+_ex_1())/(I*arg_pt+_ex1()))*I*_ex_1_2(); + const ex replarg = series(atan(arg), s==foo, order).subs(foo==point, subs_options::no_pattern); + ex Order0correction = replarg.op(0)+csgn(arg)*Pi*_ex_1_2; + if ((I*arg_pt)<_ex0) + Order0correction += log((I*arg_pt+_ex_1)/(I*arg_pt+_ex1))*I*_ex_1_2; else - Order0correction += log((I*arg_pt+_ex1())/(I*arg_pt+_ex_1()))*I*_ex1_2(); + Order0correction += log((I*arg_pt+_ex1)/(I*arg_pt+_ex_1))*I*_ex1_2; epvector seq; - seq.push_back(expair(Order0correction, _ex0())); - seq.push_back(expair(Order(_ex1()), order)); + seq.push_back(expair(Order0correction, _ex0)); + seq.push_back(expair(Order(_ex1), order)); return series(replarg - pseries(rel, seq), rel, order); } throw do_taylor(); @@ -677,19 +813,77 @@ REGISTER_FUNCTION(atan, eval_func(atan_eval). static ex atan2_evalf(const ex &y, const ex &x) { if (is_exactly_a(y) && is_exactly_a(x)) - return atan2(ex_to(y), ex_to(x)); + return atan(ex_to(y), ex_to(x)); return atan2(y, x).hold(); } static ex atan2_eval(const ex & y, const ex & x) { - if (y.info(info_flags::numeric) && !y.info(info_flags::crational) && - x.info(info_flags::numeric) && !x.info(info_flags::crational)) { - return atan2_evalf(y,x); + if (y.is_zero()) { + + // atan(0, 0) -> 0 + if (x.is_zero()) + return _ex0; + + // atan(0, x), x real and positive -> 0 + if (x.info(info_flags::positive)) + return _ex0; + + // atan(0, x), x real and negative -> -Pi + if (x.info(info_flags::negative)) + return _ex_1*Pi; } - - return atan2(y,x).hold(); + + if (x.is_zero()) { + + // atan(y, 0), y real and positive -> Pi/2 + if (y.info(info_flags::positive)) + return _ex1_2*Pi; + + // atan(y, 0), y real and negative -> -Pi/2 + if (y.info(info_flags::negative)) + return _ex_1_2*Pi; + } + + if (y.is_equal(x)) { + + // atan(y, y), y real and positive -> Pi/4 + if (y.info(info_flags::positive)) + return _ex1_4*Pi; + + // atan(y, y), y real and negative -> -3/4*Pi + if (y.info(info_flags::negative)) + return numeric(-3, 4)*Pi; + } + + if (y.is_equal(-x)) { + + // atan(y, -y), y real and positive -> 3*Pi/4 + if (y.info(info_flags::positive)) + return numeric(3, 4)*Pi; + + // atan(y, -y), y real and negative -> -Pi/4 + if (y.info(info_flags::negative)) + return _ex_1_4*Pi; + } + + // atan(float, float) -> float + if (is_a(y) && is_a(x) && !y.info(info_flags::crational) + && !x.info(info_flags::crational)) + return atan(ex_to(y), ex_to(x)); + + // atan(real, real) -> atan(y/x) +/- Pi + if (y.info(info_flags::real) && x.info(info_flags::real)) { + if (x.info(info_flags::positive)) + return atan(y/x); + else if(y.info(info_flags::positive)) + return atan(y/x)+Pi; + else + return atan(y/x)-Pi; + } + + return atan2(y, x).hold(); } static ex atan2_deriv(const ex & y, const ex & x, unsigned deriv_param) @@ -698,10 +892,10 @@ static ex atan2_deriv(const ex & y, const ex & x, unsigned deriv_param) if (deriv_param==0) { // d/dy atan(y,x) - return x*power(power(x,_ex2())+power(y,_ex2()),_ex_1()); + return x*power(power(x,_ex2)+power(y,_ex2),_ex_1); } // d/dx atan(y,x) - return -y*power(power(x,_ex2())+power(y,_ex2()),_ex_1()); + return -y*power(power(x,_ex2)+power(y,_ex2),_ex_1); } REGISTER_FUNCTION(atan2, eval_func(atan2_eval). @@ -723,10 +917,18 @@ static ex sinh_evalf(const ex & x) static ex sinh_eval(const ex & x) { if (x.info(info_flags::numeric)) { - if (x.is_zero()) // sinh(0) -> 0 - return _ex0(); - if (!x.info(info_flags::crational)) // sinh(float) -> float + + // sinh(0) -> 0 + if (x.is_zero()) + return _ex0; + + // sinh(float) -> float + if (!x.info(info_flags::crational)) return sinh(ex_to(x)); + + // sinh() is odd + if (x.info(info_flags::negative)) + return -sinh(-x); } if ((x/Pi).info(info_flags::numeric) && @@ -734,16 +936,19 @@ static ex sinh_eval(const ex & x) return I*sin(x/I); if (is_exactly_a(x)) { - ex t = x.op(0); + const ex &t = x.op(0); + // sinh(asinh(x)) -> x if (is_ex_the_function(x, asinh)) return t; - // sinh(acosh(x)) -> (x-1)^(1/2) * (x+1)^(1/2) + + // sinh(acosh(x)) -> sqrt(x-1) * sqrt(x+1) if (is_ex_the_function(x, acosh)) - return power(t-_ex1(),_ex1_2())*power(t+_ex1(),_ex1_2()); - // sinh(atanh(x)) -> x*(1-x^2)^(-1/2) + return sqrt(t-_ex1)*sqrt(t+_ex1); + + // sinh(atanh(x)) -> x/sqrt(1-x^2) if (is_ex_the_function(x, atanh)) - return t*power(_ex1()-power(t,_ex2()),_ex_1_2()); + return t*power(_ex1-power(t,_ex2),_ex_1_2); } return sinh(x).hold(); @@ -757,9 +962,21 @@ static ex sinh_deriv(const ex & x, unsigned deriv_param) return cosh(x); } +static ex sinh_real_part(const ex & x) +{ + return sinh(GiNaC::real_part(x))*cos(GiNaC::imag_part(x)); +} + +static ex sinh_imag_part(const ex & x) +{ + return cosh(GiNaC::real_part(x))*sin(GiNaC::imag_part(x)); +} + REGISTER_FUNCTION(sinh, eval_func(sinh_eval). evalf_func(sinh_evalf). derivative_func(sinh_deriv). + real_part_func(sinh_real_part). + imag_part_func(sinh_imag_part). latex_name("\\sinh")); ////////// @@ -777,10 +994,18 @@ static ex cosh_evalf(const ex & x) static ex cosh_eval(const ex & x) { if (x.info(info_flags::numeric)) { - if (x.is_zero()) // cosh(0) -> 1 - return _ex1(); - if (!x.info(info_flags::crational)) // cosh(float) -> float + + // cosh(0) -> 1 + if (x.is_zero()) + return _ex1; + + // cosh(float) -> float + if (!x.info(info_flags::crational)) return cosh(ex_to(x)); + + // cosh() is even + if (x.info(info_flags::negative)) + return cosh(-x); } if ((x/Pi).info(info_flags::numeric) && @@ -788,16 +1013,19 @@ static ex cosh_eval(const ex & x) return cos(x/I); if (is_exactly_a(x)) { - ex t = x.op(0); + const ex &t = x.op(0); + // cosh(acosh(x)) -> x if (is_ex_the_function(x, acosh)) return t; - // cosh(asinh(x)) -> (1+x^2)^(1/2) + + // cosh(asinh(x)) -> sqrt(1+x^2) if (is_ex_the_function(x, asinh)) - return power(_ex1()+power(t,_ex2()),_ex1_2()); - // cosh(atanh(x)) -> (1-x^2)^(-1/2) + return sqrt(_ex1+power(t,_ex2)); + + // cosh(atanh(x)) -> 1/sqrt(1-x^2) if (is_ex_the_function(x, atanh)) - return power(_ex1()-power(t,_ex2()),_ex_1_2()); + return power(_ex1-power(t,_ex2),_ex_1_2); } return cosh(x).hold(); @@ -811,9 +1039,21 @@ static ex cosh_deriv(const ex & x, unsigned deriv_param) return sinh(x); } +static ex cosh_real_part(const ex & x) +{ + return cosh(GiNaC::real_part(x))*cos(GiNaC::imag_part(x)); +} + +static ex cosh_imag_part(const ex & x) +{ + return sinh(GiNaC::real_part(x))*sin(GiNaC::imag_part(x)); +} + REGISTER_FUNCTION(cosh, eval_func(cosh_eval). evalf_func(cosh_evalf). derivative_func(cosh_deriv). + real_part_func(cosh_real_part). + imag_part_func(cosh_imag_part). latex_name("\\cosh")); ////////// @@ -831,10 +1071,18 @@ static ex tanh_evalf(const ex & x) static ex tanh_eval(const ex & x) { if (x.info(info_flags::numeric)) { - if (x.is_zero()) // tanh(0) -> 0 - return _ex0(); - if (!x.info(info_flags::crational)) // tanh(float) -> float + + // tanh(0) -> 0 + if (x.is_zero()) + return _ex0; + + // tanh(float) -> float + if (!x.info(info_flags::crational)) return tanh(ex_to(x)); + + // tanh() is odd + if (x.info(info_flags::negative)) + return -tanh(-x); } if ((x/Pi).info(info_flags::numeric) && @@ -842,16 +1090,19 @@ static ex tanh_eval(const ex & x) return I*tan(x/I); if (is_exactly_a(x)) { - ex t = x.op(0); + const ex &t = x.op(0); + // tanh(atanh(x)) -> x if (is_ex_the_function(x, atanh)) return t; - // tanh(asinh(x)) -> x*(1+x^2)^(-1/2) + + // tanh(asinh(x)) -> x/sqrt(1+x^2) if (is_ex_the_function(x, asinh)) - return t*power(_ex1()+power(t,_ex2()),_ex_1_2()); - // tanh(acosh(x)) -> (x-1)^(1/2)*(x+1)^(1/2)/x + return t*power(_ex1+power(t,_ex2),_ex_1_2); + + // tanh(acosh(x)) -> sqrt(x-1)*sqrt(x+1)/x if (is_ex_the_function(x, acosh)) - return power(t-_ex1(),_ex1_2())*power(t+_ex1(),_ex1_2())*power(t,_ex_1()); + return sqrt(t-_ex1)*sqrt(t+_ex1)*power(t,_ex_1); } return tanh(x).hold(); @@ -862,7 +1113,7 @@ static ex tanh_deriv(const ex & x, unsigned deriv_param) GINAC_ASSERT(deriv_param==0); // d/dx tanh(x) -> 1-tanh(x)^2 - return _ex1()-power(tanh(x),_ex2()); + return _ex1-power(tanh(x),_ex2); } static ex tanh_series(const ex &x, @@ -870,21 +1121,37 @@ static ex tanh_series(const ex &x, int order, unsigned options) { - GINAC_ASSERT(is_exactly_a(rel.lhs())); + GINAC_ASSERT(is_a(rel.lhs())); // method: // Taylor series where there is no pole falls back to tanh_deriv. // On a pole simply expand sinh(x)/cosh(x). - const ex x_pt = x.subs(rel); + const ex x_pt = x.subs(rel, subs_options::no_pattern); if (!(2*I*x_pt/Pi).info(info_flags::odd)) throw do_taylor(); // caught by function::series() // if we got here we have to care for a simple pole - return (sinh(x)/cosh(x)).series(rel, order+2, options); + return (sinh(x)/cosh(x)).series(rel, order, options); +} + +static ex tanh_real_part(const ex & x) +{ + ex a = GiNaC::real_part(x); + ex b = GiNaC::imag_part(x); + return tanh(a)/(1+power(tanh(a),2)*power(tan(b),2)); +} + +static ex tanh_imag_part(const ex & x) +{ + ex a = GiNaC::real_part(x); + ex b = GiNaC::imag_part(x); + return tan(b)/(1+power(tanh(a),2)*power(tan(b),2)); } REGISTER_FUNCTION(tanh, eval_func(tanh_eval). evalf_func(tanh_evalf). derivative_func(tanh_deriv). series_func(tanh_series). + real_part_func(tanh_real_part). + imag_part_func(tanh_imag_part). latex_name("\\tanh")); ////////// @@ -902,12 +1169,18 @@ static ex asinh_evalf(const ex & x) static ex asinh_eval(const ex & x) { if (x.info(info_flags::numeric)) { + // asinh(0) -> 0 if (x.is_zero()) - return _ex0(); + return _ex0; + // asinh(float) -> float if (!x.info(info_flags::crational)) return asinh(ex_to(x)); + + // asinh() is odd + if (x.info(info_flags::negative)) + return -asinh(-x); } return asinh(x).hold(); @@ -918,7 +1191,7 @@ static ex asinh_deriv(const ex & x, unsigned deriv_param) GINAC_ASSERT(deriv_param==0); // d/dx asinh(x) -> 1/sqrt(1+x^2) - return power(_ex1()+power(x,_ex2()),_ex_1_2()); + return power(_ex1+power(x,_ex2),_ex_1_2); } REGISTER_FUNCTION(asinh, eval_func(asinh_eval). @@ -940,18 +1213,26 @@ static ex acosh_evalf(const ex & x) static ex acosh_eval(const ex & x) { if (x.info(info_flags::numeric)) { + // acosh(0) -> Pi*I/2 if (x.is_zero()) return Pi*I*numeric(1,2); + // acosh(1) -> 0 - if (x.is_equal(_ex1())) - return _ex0(); + if (x.is_equal(_ex1)) + return _ex0; + // acosh(-1) -> Pi*I - if (x.is_equal(_ex_1())) + if (x.is_equal(_ex_1)) return Pi*I; + // acosh(float) -> float if (!x.info(info_flags::crational)) return acosh(ex_to(x)); + + // acosh(-x) -> Pi*I-acosh(x) + if (x.info(info_flags::negative)) + return Pi*I-acosh(-x); } return acosh(x).hold(); @@ -962,7 +1243,7 @@ static ex acosh_deriv(const ex & x, unsigned deriv_param) GINAC_ASSERT(deriv_param==0); // d/dx acosh(x) -> 1/(sqrt(x-1)*sqrt(x+1)) - return power(x+_ex_1(),_ex_1_2())*power(x+_ex1(),_ex_1_2()); + return power(x+_ex_1,_ex_1_2)*power(x+_ex1,_ex_1_2); } REGISTER_FUNCTION(acosh, eval_func(acosh_eval). @@ -984,15 +1265,22 @@ static ex atanh_evalf(const ex & x) static ex atanh_eval(const ex & x) { if (x.info(info_flags::numeric)) { + // atanh(0) -> 0 if (x.is_zero()) - return _ex0(); + return _ex0; + // atanh({+|-}1) -> throw - if (x.is_equal(_ex1()) || x.is_equal(_ex_1())) + if (x.is_equal(_ex1) || x.is_equal(_ex_1)) throw (pole_error("atanh_eval(): logarithmic pole",0)); + // atanh(float) -> float if (!x.info(info_flags::crational)) return atanh(ex_to(x)); + + // atanh() is odd + if (x.info(info_flags::negative)) + return -atanh(-x); } return atanh(x).hold(); @@ -1003,7 +1291,7 @@ static ex atanh_deriv(const ex & x, unsigned deriv_param) GINAC_ASSERT(deriv_param==0); // d/dx atanh(x) -> 1/(1-x^2) - return power(_ex1()-power(x,_ex2()),_ex_1()); + return power(_ex1-power(x,_ex2),_ex_1); } static ex atanh_series(const ex &arg, @@ -1011,7 +1299,7 @@ static ex atanh_series(const ex &arg, int order, unsigned options) { - GINAC_ASSERT(is_exactly_a(rel.lhs())); + GINAC_ASSERT(is_a(rel.lhs())); // method: // Taylor series where there is no pole or cut falls back to atanh_deriv. // There are two branch cuts, one runnig from 1 up the real axis and one @@ -1019,31 +1307,31 @@ static ex atanh_series(const ex &arg, // On the branch cuts and the poles series expand // (log(1+x)-log(1-x))/2 // instead. - const ex arg_pt = arg.subs(rel); + const ex arg_pt = arg.subs(rel, subs_options::no_pattern); if (!(arg_pt).info(info_flags::real)) throw do_taylor(); // Im(x) != 0 - if ((arg_pt).info(info_flags::real) && abs(arg_pt)<_ex1()) + if ((arg_pt).info(info_flags::real) && abs(arg_pt)<_ex1) throw do_taylor(); // Im(x) == 0, but abs(x)<1 // care for the poles, using the defining formula for atanh()... - if (arg_pt.is_equal(_ex1()) || arg_pt.is_equal(_ex_1())) - return ((log(_ex1()+arg)-log(_ex1()-arg))*_ex1_2()).series(rel, order, options); + if (arg_pt.is_equal(_ex1) || arg_pt.is_equal(_ex_1)) + return ((log(_ex1+arg)-log(_ex1-arg))*_ex1_2).series(rel, order, options); // ...and the branch cuts (the discontinuity at the cut being just I*Pi) if (!(options & series_options::suppress_branchcut)) { // method: // This is the branch cut: assemble the primitive series manually and // then add the corresponding complex step function. const symbol &s = ex_to(rel.lhs()); - const ex point = rel.rhs(); + const ex &point = rel.rhs(); const symbol foo; - const ex replarg = series(atanh(arg), s==foo, order).subs(foo==point); - ex Order0correction = replarg.op(0)+csgn(I*arg)*Pi*I*_ex1_2(); - if (arg_pt<_ex0()) - Order0correction += log((arg_pt+_ex_1())/(arg_pt+_ex1()))*_ex1_2(); + const ex replarg = series(atanh(arg), s==foo, order).subs(foo==point, subs_options::no_pattern); + ex Order0correction = replarg.op(0)+csgn(I*arg)*Pi*I*_ex1_2; + if (arg_pt<_ex0) + Order0correction += log((arg_pt+_ex_1)/(arg_pt+_ex1))*_ex1_2; else - Order0correction += log((arg_pt+_ex1())/(arg_pt+_ex_1()))*_ex_1_2(); + Order0correction += log((arg_pt+_ex1)/(arg_pt+_ex_1))*_ex_1_2; epvector seq; - seq.push_back(expair(Order0correction, _ex0())); - seq.push_back(expair(Order(_ex1()), order)); + seq.push_back(expair(Order0correction, _ex0)); + seq.push_back(expair(Order(_ex1), order)); return series(replarg - pseries(rel, seq), rel, order); } throw do_taylor();