X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Finifcns_trans.cpp;h=c5551f75a2e77e4c247914d4cd531df458b7b1c9;hp=cbf370dbb16542f1be19e16566a547a998e90f01;hb=bee5f67dae5b409bc53ff71cb98f6630832540e7;hpb=70a32266cc1ada19b307b859305f215b5297bc7c diff --git a/ginac/inifcns_trans.cpp b/ginac/inifcns_trans.cpp index cbf370db..c5551f75 100644 --- a/ginac/inifcns_trans.cpp +++ b/ginac/inifcns_trans.cpp @@ -4,7 +4,7 @@ * functions. */ /* - * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2011 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -18,22 +18,25 @@ * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ -#include -#include - #include "inifcns.h" #include "ex.h" #include "constant.h" +#include "add.h" +#include "mul.h" #include "numeric.h" #include "power.h" +#include "operators.h" #include "relational.h" #include "symbol.h" #include "pseries.h" #include "utils.h" +#include +#include + namespace GiNaC { ////////// @@ -54,30 +57,53 @@ static ex exp_eval(const ex & x) if (x.is_zero()) { return _ex1; } + // exp(n*Pi*I/2) -> {+1|+I|-1|-I} const ex TwoExOverPiI=(_ex2*x)/(Pi*I); if (TwoExOverPiI.info(info_flags::integer)) { - const numeric z = mod(ex_to(TwoExOverPiI),_num4); - if (z.is_equal(_num0)) + const numeric z = mod(ex_to(TwoExOverPiI),*_num4_p); + if (z.is_equal(*_num0_p)) return _ex1; - if (z.is_equal(_num1)) + if (z.is_equal(*_num1_p)) return ex(I); - if (z.is_equal(_num2)) + if (z.is_equal(*_num2_p)) return _ex_1; - if (z.is_equal(_num3)) + if (z.is_equal(*_num3_p)) return ex(-I); } + // exp(log(x)) -> x if (is_ex_the_function(x, log)) return x.op(0); - // exp(float) + // exp(float) -> float if (x.info(info_flags::numeric) && !x.info(info_flags::crational)) return exp(ex_to(x)); return exp(x).hold(); } +static ex exp_expand(const ex & arg, unsigned options) +{ + ex exp_arg; + if (options & expand_options::expand_function_args) + exp_arg = arg.expand(options); + else + exp_arg=arg; + + if ((options & expand_options::expand_transcendental) + && is_exactly_a(exp_arg)) { + exvector prodseq; + prodseq.reserve(exp_arg.nops()); + for (const_iterator i = exp_arg.begin(); i != exp_arg.end(); ++i) + prodseq.push_back(exp(*i)); + + return (new mul(prodseq))->setflag(status_flags::dynallocated | status_flags::expanded); + } + + return exp(exp_arg).hold(); +} + static ex exp_deriv(const ex & x, unsigned deriv_param) { GINAC_ASSERT(deriv_param==0); @@ -86,9 +112,29 @@ static ex exp_deriv(const ex & x, unsigned deriv_param) return exp(x); } +static ex exp_real_part(const ex & x) +{ + return exp(GiNaC::real_part(x))*cos(GiNaC::imag_part(x)); +} + +static ex exp_imag_part(const ex & x) +{ + return exp(GiNaC::real_part(x))*sin(GiNaC::imag_part(x)); +} + +static ex exp_conjugate(const ex & x) +{ + // conjugate(exp(x))==exp(conjugate(x)) + return exp(x.conjugate()); +} + REGISTER_FUNCTION(exp, eval_func(exp_eval). evalf_func(exp_evalf). + expand_func(exp_expand). derivative_func(exp_deriv). + real_part_func(exp_real_part). + imag_part_func(exp_imag_part). + conjugate_func(exp_conjugate). latex_name("\\exp")); ////////// @@ -108,28 +154,27 @@ static ex log_eval(const ex & x) if (x.info(info_flags::numeric)) { if (x.is_zero()) // log(0) -> infinity throw(pole_error("log_eval(): log(0)",0)); - if (x.info(info_flags::real) && x.info(info_flags::negative)) + if (x.info(info_flags::rational) && x.info(info_flags::negative)) return (log(-x)+I*Pi); if (x.is_equal(_ex1)) // log(1) -> 0 return _ex0; if (x.is_equal(I)) // log(I) -> Pi*I/2 - return (Pi*I*_num1_2); + return (Pi*I*_ex1_2); if (x.is_equal(-I)) // log(-I) -> -Pi*I/2 - return (Pi*I*_num_1_2); - // log(float) + return (Pi*I*_ex_1_2); + + // log(float) -> float if (!x.info(info_flags::crational)) return log(ex_to(x)); } + // log(exp(t)) -> t (if -Pi < t.imag() <= Pi): if (is_ex_the_function(x, exp)) { const ex &t = x.op(0); - if (t.info(info_flags::numeric)) { - const numeric &nt = ex_to(t); - if (nt.is_real()) - return t; - } + if (t.info(info_flags::real)) + return t; } - + return log(x).hold(); } @@ -146,12 +191,12 @@ static ex log_series(const ex &arg, int order, unsigned options) { - GINAC_ASSERT(is_exactly_a(rel.lhs())); + GINAC_ASSERT(is_a(rel.lhs())); ex arg_pt; bool must_expand_arg = false; // maybe substitution of rel into arg fails because of a pole try { - arg_pt = arg.subs(rel); + arg_pt = arg.subs(rel, subs_options::no_pattern); } catch (pole_error) { must_expand_arg = true; } @@ -192,6 +237,22 @@ static ex log_series(const ex &arg, if (!argser.is_terminating() || argser.nops()!=1) { // in this case n more (or less) terms are needed // (sadly, to generate them, we have to start from the beginning) + if (n == 0 && coeff == 1) { + epvector epv; + ex acc = (new pseries(rel, epv))->setflag(status_flags::dynallocated); + epv.reserve(2); + epv.push_back(expair(-1, _ex0)); + epv.push_back(expair(Order(_ex1), order)); + ex rest = pseries(rel, epv).add_series(argser); + for (int i = order-1; i>0; --i) { + epvector cterm; + cterm.reserve(1); + cterm.push_back(expair(i%2 ? _ex1/i : _ex_1/i, _ex0)); + acc = pseries(rel, cterm).add_series(ex_to(acc)); + acc = (ex_to(rest)).mul_series(ex_to(acc)); + } + return acc; + } const ex newarg = ex_to((arg/coeff).series(rel, order+n, options)).shift_exponents(-n).convert_to_poly(true); return pseries(rel, seq).add_series(ex_to(log(newarg).series(rel, order, options))); } else // it was a monomial @@ -205,7 +266,7 @@ static ex log_series(const ex &arg, const symbol &s = ex_to(rel.lhs()); const ex &point = rel.rhs(); const symbol foo; - const ex replarg = series(log(arg), s==foo, order).subs(foo==point); + const ex replarg = series(log(arg), s==foo, order).subs(foo==point, subs_options::no_pattern); epvector seq; seq.push_back(expair(-I*csgn(arg*I)*Pi, _ex0)); seq.push_back(expair(Order(_ex1), order)); @@ -214,10 +275,89 @@ static ex log_series(const ex &arg, throw do_taylor(); // caught by function::series() } +static ex log_real_part(const ex & x) +{ + if (x.info(info_flags::nonnegative)) + return log(x).hold(); + return log(abs(x)); +} + +static ex log_imag_part(const ex & x) +{ + if (x.info(info_flags::nonnegative)) + return 0; + return atan2(GiNaC::imag_part(x), GiNaC::real_part(x)); +} + +static ex log_expand(const ex & arg, unsigned options) +{ + if ((options & expand_options::expand_transcendental) + && is_exactly_a(arg) && !arg.info(info_flags::indefinite)) { + exvector sumseq; + exvector prodseq; + sumseq.reserve(arg.nops()); + prodseq.reserve(arg.nops()); + bool possign=true; + + // searching for positive/negative factors + for (const_iterator i = arg.begin(); i != arg.end(); ++i) { + ex e; + if (options & expand_options::expand_function_args) + e=i->expand(options); + else + e=*i; + if (e.info(info_flags::positive)) + sumseq.push_back(log(e)); + else if (e.info(info_flags::negative)) { + sumseq.push_back(log(-e)); + possign = !possign; + } else + prodseq.push_back(e); + } + + if (sumseq.size() > 0) { + ex newarg; + if (options & expand_options::expand_function_args) + newarg=((possign?_ex1:_ex_1)*mul(prodseq)).expand(options); + else { + newarg=(possign?_ex1:_ex_1)*mul(prodseq); + ex_to(newarg).setflag(status_flags::purely_indefinite); + } + return add(sumseq)+log(newarg); + } else { + if (!(options & expand_options::expand_function_args)) + ex_to(arg).setflag(status_flags::purely_indefinite); + } + } + + if (options & expand_options::expand_function_args) + return log(arg.expand(options)).hold(); + else + return log(arg).hold(); +} + +static ex log_conjugate(const ex & x) +{ + // conjugate(log(x))==log(conjugate(x)) unless on the branch cut which + // runs along the negative real axis. + if (x.info(info_flags::positive)) { + return log(x); + } + if (is_exactly_a(x) && + !x.imag_part().is_zero()) { + return log(x.conjugate()); + } + return conjugate_function(log(x)).hold(); +} + REGISTER_FUNCTION(log, eval_func(log_eval). evalf_func(log_evalf). + expand_func(log_expand). derivative_func(log_deriv). series_func(log_series). + real_part_func(log_real_part). + imag_part_func(log_imag_part). + conjugate_func(log_conjugate). latex_name("\\ln")); ////////// @@ -238,44 +378,47 @@ static ex sin_eval(const ex & x) const ex SixtyExOverPi = _ex60*x/Pi; ex sign = _ex1; if (SixtyExOverPi.info(info_flags::integer)) { - numeric z = mod(ex_to(SixtyExOverPi),_num120); - if (z>=_num60) { + numeric z = mod(ex_to(SixtyExOverPi),*_num120_p); + if (z>=*_num60_p) { // wrap to interval [0, Pi) - z -= _num60; + z -= *_num60_p; sign = _ex_1; } - if (z>_num30) { + if (z>*_num30_p) { // wrap to interval [0, Pi/2) - z = _num60-z; + z = *_num60_p-z; } - if (z.is_equal(_num0)) // sin(0) -> 0 + if (z.is_equal(*_num0_p)) // sin(0) -> 0 return _ex0; - if (z.is_equal(_num5)) // sin(Pi/12) -> sqrt(6)/4*(1-sqrt(3)/3) + if (z.is_equal(*_num5_p)) // sin(Pi/12) -> sqrt(6)/4*(1-sqrt(3)/3) return sign*_ex1_4*sqrt(_ex6)*(_ex1+_ex_1_3*sqrt(_ex3)); - if (z.is_equal(_num6)) // sin(Pi/10) -> sqrt(5)/4-1/4 + if (z.is_equal(*_num6_p)) // sin(Pi/10) -> sqrt(5)/4-1/4 return sign*(_ex1_4*sqrt(_ex5)+_ex_1_4); - if (z.is_equal(_num10)) // sin(Pi/6) -> 1/2 + if (z.is_equal(*_num10_p)) // sin(Pi/6) -> 1/2 return sign*_ex1_2; - if (z.is_equal(_num15)) // sin(Pi/4) -> sqrt(2)/2 + if (z.is_equal(*_num15_p)) // sin(Pi/4) -> sqrt(2)/2 return sign*_ex1_2*sqrt(_ex2); - if (z.is_equal(_num18)) // sin(3/10*Pi) -> sqrt(5)/4+1/4 + if (z.is_equal(*_num18_p)) // sin(3/10*Pi) -> sqrt(5)/4+1/4 return sign*(_ex1_4*sqrt(_ex5)+_ex1_4); - if (z.is_equal(_num20)) // sin(Pi/3) -> sqrt(3)/2 + if (z.is_equal(*_num20_p)) // sin(Pi/3) -> sqrt(3)/2 return sign*_ex1_2*sqrt(_ex3); - if (z.is_equal(_num25)) // sin(5/12*Pi) -> sqrt(6)/4*(1+sqrt(3)/3) + if (z.is_equal(*_num25_p)) // sin(5/12*Pi) -> sqrt(6)/4*(1+sqrt(3)/3) return sign*_ex1_4*sqrt(_ex6)*(_ex1+_ex1_3*sqrt(_ex3)); - if (z.is_equal(_num30)) // sin(Pi/2) -> 1 + if (z.is_equal(*_num30_p)) // sin(Pi/2) -> 1 return sign; } - + if (is_exactly_a(x)) { const ex &t = x.op(0); + // sin(asin(x)) -> x if (is_ex_the_function(x, asin)) return t; + // sin(acos(x)) -> sqrt(1-x^2) if (is_ex_the_function(x, acos)) return sqrt(_ex1-power(t,_ex2)); + // sin(atan(x)) -> x/sqrt(1+x^2) if (is_ex_the_function(x, atan)) return t*power(_ex1+power(t,_ex2),_ex_1_2); @@ -284,6 +427,10 @@ static ex sin_eval(const ex & x) // sin(float) -> float if (x.info(info_flags::numeric) && !x.info(info_flags::crational)) return sin(ex_to(x)); + + // sin() is odd + if (x.info(info_flags::negative)) + return -sin(-x); return sin(x).hold(); } @@ -296,9 +443,28 @@ static ex sin_deriv(const ex & x, unsigned deriv_param) return cos(x); } +static ex sin_real_part(const ex & x) +{ + return cosh(GiNaC::imag_part(x))*sin(GiNaC::real_part(x)); +} + +static ex sin_imag_part(const ex & x) +{ + return sinh(GiNaC::imag_part(x))*cos(GiNaC::real_part(x)); +} + +static ex sin_conjugate(const ex & x) +{ + // conjugate(sin(x))==sin(conjugate(x)) + return sin(x.conjugate()); +} + REGISTER_FUNCTION(sin, eval_func(sin_eval). evalf_func(sin_evalf). derivative_func(sin_deriv). + real_part_func(sin_real_part). + imag_part_func(sin_imag_part). + conjugate_func(sin_conjugate). latex_name("\\sin")); ////////// @@ -319,44 +485,47 @@ static ex cos_eval(const ex & x) const ex SixtyExOverPi = _ex60*x/Pi; ex sign = _ex1; if (SixtyExOverPi.info(info_flags::integer)) { - numeric z = mod(ex_to(SixtyExOverPi),_num120); - if (z>=_num60) { + numeric z = mod(ex_to(SixtyExOverPi),*_num120_p); + if (z>=*_num60_p) { // wrap to interval [0, Pi) - z = _num120-z; + z = *_num120_p-z; } - if (z>=_num30) { + if (z>=*_num30_p) { // wrap to interval [0, Pi/2) - z = _num60-z; + z = *_num60_p-z; sign = _ex_1; } - if (z.is_equal(_num0)) // cos(0) -> 1 + if (z.is_equal(*_num0_p)) // cos(0) -> 1 return sign; - if (z.is_equal(_num5)) // cos(Pi/12) -> sqrt(6)/4*(1+sqrt(3)/3) + if (z.is_equal(*_num5_p)) // cos(Pi/12) -> sqrt(6)/4*(1+sqrt(3)/3) return sign*_ex1_4*sqrt(_ex6)*(_ex1+_ex1_3*sqrt(_ex3)); - if (z.is_equal(_num10)) // cos(Pi/6) -> sqrt(3)/2 + if (z.is_equal(*_num10_p)) // cos(Pi/6) -> sqrt(3)/2 return sign*_ex1_2*sqrt(_ex3); - if (z.is_equal(_num12)) // cos(Pi/5) -> sqrt(5)/4+1/4 + if (z.is_equal(*_num12_p)) // cos(Pi/5) -> sqrt(5)/4+1/4 return sign*(_ex1_4*sqrt(_ex5)+_ex1_4); - if (z.is_equal(_num15)) // cos(Pi/4) -> sqrt(2)/2 + if (z.is_equal(*_num15_p)) // cos(Pi/4) -> sqrt(2)/2 return sign*_ex1_2*sqrt(_ex2); - if (z.is_equal(_num20)) // cos(Pi/3) -> 1/2 + if (z.is_equal(*_num20_p)) // cos(Pi/3) -> 1/2 return sign*_ex1_2; - if (z.is_equal(_num24)) // cos(2/5*Pi) -> sqrt(5)/4-1/4x + if (z.is_equal(*_num24_p)) // cos(2/5*Pi) -> sqrt(5)/4-1/4x return sign*(_ex1_4*sqrt(_ex5)+_ex_1_4); - if (z.is_equal(_num25)) // cos(5/12*Pi) -> sqrt(6)/4*(1-sqrt(3)/3) + if (z.is_equal(*_num25_p)) // cos(5/12*Pi) -> sqrt(6)/4*(1-sqrt(3)/3) return sign*_ex1_4*sqrt(_ex6)*(_ex1+_ex_1_3*sqrt(_ex3)); - if (z.is_equal(_num30)) // cos(Pi/2) -> 0 + if (z.is_equal(*_num30_p)) // cos(Pi/2) -> 0 return _ex0; } - + if (is_exactly_a(x)) { const ex &t = x.op(0); + // cos(acos(x)) -> x if (is_ex_the_function(x, acos)) return t; + // cos(asin(x)) -> sqrt(1-x^2) if (is_ex_the_function(x, asin)) return sqrt(_ex1-power(t,_ex2)); + // cos(atan(x)) -> 1/sqrt(1+x^2) if (is_ex_the_function(x, atan)) return power(_ex1+power(t,_ex2),_ex_1_2); @@ -366,6 +535,10 @@ static ex cos_eval(const ex & x) if (x.info(info_flags::numeric) && !x.info(info_flags::crational)) return cos(ex_to(x)); + // cos() is even + if (x.info(info_flags::negative)) + return cos(-x); + return cos(x).hold(); } @@ -377,9 +550,28 @@ static ex cos_deriv(const ex & x, unsigned deriv_param) return -sin(x); } +static ex cos_real_part(const ex & x) +{ + return cosh(GiNaC::imag_part(x))*cos(GiNaC::real_part(x)); +} + +static ex cos_imag_part(const ex & x) +{ + return -sinh(GiNaC::imag_part(x))*sin(GiNaC::real_part(x)); +} + +static ex cos_conjugate(const ex & x) +{ + // conjugate(cos(x))==cos(conjugate(x)) + return cos(x.conjugate()); +} + REGISTER_FUNCTION(cos, eval_func(cos_eval). evalf_func(cos_evalf). derivative_func(cos_deriv). + real_part_func(cos_real_part). + imag_part_func(cos_imag_part). + conjugate_func(cos_conjugate). latex_name("\\cos")); ////////// @@ -400,40 +592,43 @@ static ex tan_eval(const ex & x) const ex SixtyExOverPi = _ex60*x/Pi; ex sign = _ex1; if (SixtyExOverPi.info(info_flags::integer)) { - numeric z = mod(ex_to(SixtyExOverPi),_num60); - if (z>=_num60) { + numeric z = mod(ex_to(SixtyExOverPi),*_num60_p); + if (z>=*_num60_p) { // wrap to interval [0, Pi) - z -= _num60; + z -= *_num60_p; } - if (z>=_num30) { + if (z>=*_num30_p) { // wrap to interval [0, Pi/2) - z = _num60-z; + z = *_num60_p-z; sign = _ex_1; } - if (z.is_equal(_num0)) // tan(0) -> 0 + if (z.is_equal(*_num0_p)) // tan(0) -> 0 return _ex0; - if (z.is_equal(_num5)) // tan(Pi/12) -> 2-sqrt(3) + if (z.is_equal(*_num5_p)) // tan(Pi/12) -> 2-sqrt(3) return sign*(_ex2-sqrt(_ex3)); - if (z.is_equal(_num10)) // tan(Pi/6) -> sqrt(3)/3 + if (z.is_equal(*_num10_p)) // tan(Pi/6) -> sqrt(3)/3 return sign*_ex1_3*sqrt(_ex3); - if (z.is_equal(_num15)) // tan(Pi/4) -> 1 + if (z.is_equal(*_num15_p)) // tan(Pi/4) -> 1 return sign; - if (z.is_equal(_num20)) // tan(Pi/3) -> sqrt(3) + if (z.is_equal(*_num20_p)) // tan(Pi/3) -> sqrt(3) return sign*sqrt(_ex3); - if (z.is_equal(_num25)) // tan(5/12*Pi) -> 2+sqrt(3) + if (z.is_equal(*_num25_p)) // tan(5/12*Pi) -> 2+sqrt(3) return sign*(sqrt(_ex3)+_ex2); - if (z.is_equal(_num30)) // tan(Pi/2) -> infinity + if (z.is_equal(*_num30_p)) // tan(Pi/2) -> infinity throw (pole_error("tan_eval(): simple pole",1)); } - + if (is_exactly_a(x)) { const ex &t = x.op(0); + // tan(atan(x)) -> x if (is_ex_the_function(x, atan)) return t; + // tan(asin(x)) -> x/sqrt(1+x^2) if (is_ex_the_function(x, asin)) return t*power(_ex1-power(t,_ex2),_ex_1_2); + // tan(acos(x)) -> sqrt(1-x^2)/x if (is_ex_the_function(x, acos)) return power(t,_ex_1)*sqrt(_ex1-power(t,_ex2)); @@ -444,6 +639,10 @@ static ex tan_eval(const ex & x) return tan(ex_to(x)); } + // tan() is odd + if (x.info(info_flags::negative)) + return -tan(-x); + return tan(x).hold(); } @@ -455,26 +654,49 @@ static ex tan_deriv(const ex & x, unsigned deriv_param) return (_ex1+power(tan(x),_ex2)); } +static ex tan_real_part(const ex & x) +{ + ex a = GiNaC::real_part(x); + ex b = GiNaC::imag_part(x); + return tan(a)/(1+power(tan(a),2)*power(tan(b),2)); +} + +static ex tan_imag_part(const ex & x) +{ + ex a = GiNaC::real_part(x); + ex b = GiNaC::imag_part(x); + return tanh(b)/(1+power(tan(a),2)*power(tan(b),2)); +} + static ex tan_series(const ex &x, const relational &rel, int order, unsigned options) { - GINAC_ASSERT(is_exactly_a(rel.lhs())); + GINAC_ASSERT(is_a(rel.lhs())); // method: // Taylor series where there is no pole falls back to tan_deriv. // On a pole simply expand sin(x)/cos(x). - const ex x_pt = x.subs(rel); + const ex x_pt = x.subs(rel, subs_options::no_pattern); if (!(2*x_pt/Pi).info(info_flags::odd)) throw do_taylor(); // caught by function::series() // if we got here we have to care for a simple pole - return (sin(x)/cos(x)).series(rel, order+2, options); + return (sin(x)/cos(x)).series(rel, order, options); +} + +static ex tan_conjugate(const ex & x) +{ + // conjugate(tan(x))==tan(conjugate(x)) + return tan(x.conjugate()); } REGISTER_FUNCTION(tan, eval_func(tan_eval). evalf_func(tan_evalf). derivative_func(tan_deriv). series_func(tan_series). + real_part_func(tan_real_part). + imag_part_func(tan_imag_part). + conjugate_func(tan_conjugate). latex_name("\\tan")); ////////// @@ -492,24 +714,34 @@ static ex asin_evalf(const ex & x) static ex asin_eval(const ex & x) { if (x.info(info_flags::numeric)) { + // asin(0) -> 0 if (x.is_zero()) return x; + // asin(1/2) -> Pi/6 if (x.is_equal(_ex1_2)) return numeric(1,6)*Pi; + // asin(1) -> Pi/2 if (x.is_equal(_ex1)) - return _num1_2*Pi; + return _ex1_2*Pi; + // asin(-1/2) -> -Pi/6 if (x.is_equal(_ex_1_2)) return numeric(-1,6)*Pi; + // asin(-1) -> -Pi/2 if (x.is_equal(_ex_1)) - return _num_1_2*Pi; + return _ex_1_2*Pi; + // asin(float) -> float if (!x.info(info_flags::crational)) return asin(ex_to(x)); + + // asin() is odd + if (x.info(info_flags::negative)) + return -asin(-x); } return asin(x).hold(); @@ -523,9 +755,21 @@ static ex asin_deriv(const ex & x, unsigned deriv_param) return power(1-power(x,_ex2),_ex_1_2); } +static ex asin_conjugate(const ex & x) +{ + // conjugate(asin(x))==asin(conjugate(x)) unless on the branch cuts which + // run along the real axis outside the interval [-1, +1]. + if (is_exactly_a(x) && + (!x.imag_part().is_zero() || (x > *_num_1_p && x < *_num1_p))) { + return asin(x.conjugate()); + } + return conjugate_function(asin(x)).hold(); +} + REGISTER_FUNCTION(asin, eval_func(asin_eval). evalf_func(asin_evalf). derivative_func(asin_deriv). + conjugate_func(asin_conjugate). latex_name("\\arcsin")); ////////// @@ -543,24 +787,34 @@ static ex acos_evalf(const ex & x) static ex acos_eval(const ex & x) { if (x.info(info_flags::numeric)) { + // acos(1) -> 0 if (x.is_equal(_ex1)) return _ex0; + // acos(1/2) -> Pi/3 if (x.is_equal(_ex1_2)) return _ex1_3*Pi; + // acos(0) -> Pi/2 if (x.is_zero()) return _ex1_2*Pi; + // acos(-1/2) -> 2/3*Pi if (x.is_equal(_ex_1_2)) return numeric(2,3)*Pi; + // acos(-1) -> Pi if (x.is_equal(_ex_1)) return Pi; + // acos(float) -> float if (!x.info(info_flags::crational)) return acos(ex_to(x)); + + // acos(-x) -> Pi-acos(x) + if (x.info(info_flags::negative)) + return Pi-acos(-x); } return acos(x).hold(); @@ -574,9 +828,21 @@ static ex acos_deriv(const ex & x, unsigned deriv_param) return -power(1-power(x,_ex2),_ex_1_2); } +static ex acos_conjugate(const ex & x) +{ + // conjugate(acos(x))==acos(conjugate(x)) unless on the branch cuts which + // run along the real axis outside the interval [-1, +1]. + if (is_exactly_a(x) && + (!x.imag_part().is_zero() || (x > *_num_1_p && x < *_num1_p))) { + return acos(x.conjugate()); + } + return conjugate_function(acos(x)).hold(); +} + REGISTER_FUNCTION(acos, eval_func(acos_eval). evalf_func(acos_evalf). derivative_func(acos_deriv). + conjugate_func(acos_conjugate). latex_name("\\arccos")); ////////// @@ -594,20 +860,29 @@ static ex atan_evalf(const ex & x) static ex atan_eval(const ex & x) { if (x.info(info_flags::numeric)) { + // atan(0) -> 0 if (x.is_zero()) return _ex0; + // atan(1) -> Pi/4 if (x.is_equal(_ex1)) return _ex1_4*Pi; + // atan(-1) -> -Pi/4 if (x.is_equal(_ex_1)) return _ex_1_4*Pi; + if (x.is_equal(I) || x.is_equal(-I)) throw (pole_error("atan_eval(): logarithmic pole",0)); + // atan(float) -> float if (!x.info(info_flags::crational)) return atan(ex_to(x)); + + // atan() is odd + if (x.info(info_flags::negative)) + return -atan(-x); } return atan(x).hold(); @@ -626,7 +901,7 @@ static ex atan_series(const ex &arg, int order, unsigned options) { - GINAC_ASSERT(is_exactly_a(rel.lhs())); + GINAC_ASSERT(is_a(rel.lhs())); // method: // Taylor series where there is no pole or cut falls back to atan_deriv. // There are two branch cuts, one runnig from I up the imaginary axis and @@ -635,7 +910,7 @@ static ex atan_series(const ex &arg, // On the branch cuts and the poles series expand // (log(1+I*x)-log(1-I*x))/(2*I) // instead. - const ex arg_pt = arg.subs(rel); + const ex arg_pt = arg.subs(rel, subs_options::no_pattern); if (!(I*arg_pt).info(info_flags::real)) throw do_taylor(); // Re(x) != 0 if ((I*arg_pt).info(info_flags::real) && abs(I*arg_pt)<_ex1) @@ -650,7 +925,7 @@ static ex atan_series(const ex &arg, const symbol &s = ex_to(rel.lhs()); const ex &point = rel.rhs(); const symbol foo; - const ex replarg = series(atan(arg), s==foo, order).subs(foo==point); + const ex replarg = series(atan(arg), s==foo, order).subs(foo==point, subs_options::no_pattern); ex Order0correction = replarg.op(0)+csgn(arg)*Pi*_ex_1_2; if ((I*arg_pt)<_ex0) Order0correction += log((I*arg_pt+_ex_1)/(I*arg_pt+_ex1))*I*_ex_1_2; @@ -664,10 +939,27 @@ static ex atan_series(const ex &arg, throw do_taylor(); } +static ex atan_conjugate(const ex & x) +{ + // conjugate(atan(x))==atan(conjugate(x)) unless on the branch cuts which + // run along the imaginary axis outside the interval [-I, +I]. + if (x.info(info_flags::real)) + return atan(x); + if (is_exactly_a(x)) { + const numeric x_re = ex_to(x.real_part()); + const numeric x_im = ex_to(x.imag_part()); + if (!x_re.is_zero() || + (x_im > *_num_1_p && x_im < *_num1_p)) + return atan(x.conjugate()); + } + return conjugate_function(atan(x)).hold(); +} + REGISTER_FUNCTION(atan, eval_func(atan_eval). evalf_func(atan_evalf). derivative_func(atan_deriv). series_func(atan_series). + conjugate_func(atan_conjugate). latex_name("\\arctan")); ////////// @@ -677,19 +969,80 @@ REGISTER_FUNCTION(atan, eval_func(atan_eval). static ex atan2_evalf(const ex &y, const ex &x) { if (is_exactly_a(y) && is_exactly_a(x)) - return atan2(ex_to(y), ex_to(x)); + return atan(ex_to(y), ex_to(x)); return atan2(y, x).hold(); } static ex atan2_eval(const ex & y, const ex & x) { - if (y.info(info_flags::numeric) && !y.info(info_flags::crational) && - x.info(info_flags::numeric) && !x.info(info_flags::crational)) { - return atan2_evalf(y,x); + if (y.is_zero()) { + + // atan2(0, 0) -> 0 + if (x.is_zero()) + return _ex0; + + // atan2(0, x), x real and positive -> 0 + if (x.info(info_flags::positive)) + return _ex0; + + // atan2(0, x), x real and negative -> Pi + if (x.info(info_flags::negative)) + return Pi; } - - return atan2(y,x).hold(); + + if (x.is_zero()) { + + // atan2(y, 0), y real and positive -> Pi/2 + if (y.info(info_flags::positive)) + return _ex1_2*Pi; + + // atan2(y, 0), y real and negative -> -Pi/2 + if (y.info(info_flags::negative)) + return _ex_1_2*Pi; + } + + if (y.is_equal(x)) { + + // atan2(y, y), y real and positive -> Pi/4 + if (y.info(info_flags::positive)) + return _ex1_4*Pi; + + // atan2(y, y), y real and negative -> -3/4*Pi + if (y.info(info_flags::negative)) + return numeric(-3, 4)*Pi; + } + + if (y.is_equal(-x)) { + + // atan2(y, -y), y real and positive -> 3*Pi/4 + if (y.info(info_flags::positive)) + return numeric(3, 4)*Pi; + + // atan2(y, -y), y real and negative -> -Pi/4 + if (y.info(info_flags::negative)) + return _ex_1_4*Pi; + } + + // atan2(float, float) -> float + if (is_a(y) && !y.info(info_flags::crational) && + is_a(x) && !x.info(info_flags::crational)) + return atan(ex_to(y), ex_to(x)); + + // atan2(real, real) -> atan(y/x) +/- Pi + if (y.info(info_flags::real) && x.info(info_flags::real)) { + if (x.info(info_flags::positive)) + return atan(y/x); + + if (x.info(info_flags::negative)) { + if (y.info(info_flags::positive)) + return atan(y/x)+Pi; + if (y.info(info_flags::negative)) + return atan(y/x)-Pi; + } + } + + return atan2(y, x).hold(); } static ex atan2_deriv(const ex & y, const ex & x, unsigned deriv_param) @@ -697,10 +1050,10 @@ static ex atan2_deriv(const ex & y, const ex & x, unsigned deriv_param) GINAC_ASSERT(deriv_param<2); if (deriv_param==0) { - // d/dy atan(y,x) + // d/dy atan2(y,x) return x*power(power(x,_ex2)+power(y,_ex2),_ex_1); } - // d/dx atan(y,x) + // d/dx atan2(y,x) return -y*power(power(x,_ex2)+power(y,_ex2),_ex_1); } @@ -723,10 +1076,18 @@ static ex sinh_evalf(const ex & x) static ex sinh_eval(const ex & x) { if (x.info(info_flags::numeric)) { - if (x.is_zero()) // sinh(0) -> 0 + + // sinh(0) -> 0 + if (x.is_zero()) return _ex0; - if (!x.info(info_flags::crational)) // sinh(float) -> float + + // sinh(float) -> float + if (!x.info(info_flags::crational)) return sinh(ex_to(x)); + + // sinh() is odd + if (x.info(info_flags::negative)) + return -sinh(-x); } if ((x/Pi).info(info_flags::numeric) && @@ -735,12 +1096,15 @@ static ex sinh_eval(const ex & x) if (is_exactly_a(x)) { const ex &t = x.op(0); + // sinh(asinh(x)) -> x if (is_ex_the_function(x, asinh)) return t; + // sinh(acosh(x)) -> sqrt(x-1) * sqrt(x+1) if (is_ex_the_function(x, acosh)) return sqrt(t-_ex1)*sqrt(t+_ex1); + // sinh(atanh(x)) -> x/sqrt(1-x^2) if (is_ex_the_function(x, atanh)) return t*power(_ex1-power(t,_ex2),_ex_1_2); @@ -757,9 +1121,28 @@ static ex sinh_deriv(const ex & x, unsigned deriv_param) return cosh(x); } +static ex sinh_real_part(const ex & x) +{ + return sinh(GiNaC::real_part(x))*cos(GiNaC::imag_part(x)); +} + +static ex sinh_imag_part(const ex & x) +{ + return cosh(GiNaC::real_part(x))*sin(GiNaC::imag_part(x)); +} + +static ex sinh_conjugate(const ex & x) +{ + // conjugate(sinh(x))==sinh(conjugate(x)) + return sinh(x.conjugate()); +} + REGISTER_FUNCTION(sinh, eval_func(sinh_eval). evalf_func(sinh_evalf). derivative_func(sinh_deriv). + real_part_func(sinh_real_part). + imag_part_func(sinh_imag_part). + conjugate_func(sinh_conjugate). latex_name("\\sinh")); ////////// @@ -777,10 +1160,18 @@ static ex cosh_evalf(const ex & x) static ex cosh_eval(const ex & x) { if (x.info(info_flags::numeric)) { - if (x.is_zero()) // cosh(0) -> 1 + + // cosh(0) -> 1 + if (x.is_zero()) return _ex1; - if (!x.info(info_flags::crational)) // cosh(float) -> float + + // cosh(float) -> float + if (!x.info(info_flags::crational)) return cosh(ex_to(x)); + + // cosh() is even + if (x.info(info_flags::negative)) + return cosh(-x); } if ((x/Pi).info(info_flags::numeric) && @@ -789,12 +1180,15 @@ static ex cosh_eval(const ex & x) if (is_exactly_a(x)) { const ex &t = x.op(0); + // cosh(acosh(x)) -> x if (is_ex_the_function(x, acosh)) return t; + // cosh(asinh(x)) -> sqrt(1+x^2) if (is_ex_the_function(x, asinh)) return sqrt(_ex1+power(t,_ex2)); + // cosh(atanh(x)) -> 1/sqrt(1-x^2) if (is_ex_the_function(x, atanh)) return power(_ex1-power(t,_ex2),_ex_1_2); @@ -811,9 +1205,28 @@ static ex cosh_deriv(const ex & x, unsigned deriv_param) return sinh(x); } +static ex cosh_real_part(const ex & x) +{ + return cosh(GiNaC::real_part(x))*cos(GiNaC::imag_part(x)); +} + +static ex cosh_imag_part(const ex & x) +{ + return sinh(GiNaC::real_part(x))*sin(GiNaC::imag_part(x)); +} + +static ex cosh_conjugate(const ex & x) +{ + // conjugate(cosh(x))==cosh(conjugate(x)) + return cosh(x.conjugate()); +} + REGISTER_FUNCTION(cosh, eval_func(cosh_eval). evalf_func(cosh_evalf). derivative_func(cosh_deriv). + real_part_func(cosh_real_part). + imag_part_func(cosh_imag_part). + conjugate_func(cosh_conjugate). latex_name("\\cosh")); ////////// @@ -831,10 +1244,18 @@ static ex tanh_evalf(const ex & x) static ex tanh_eval(const ex & x) { if (x.info(info_flags::numeric)) { - if (x.is_zero()) // tanh(0) -> 0 + + // tanh(0) -> 0 + if (x.is_zero()) return _ex0; - if (!x.info(info_flags::crational)) // tanh(float) -> float + + // tanh(float) -> float + if (!x.info(info_flags::crational)) return tanh(ex_to(x)); + + // tanh() is odd + if (x.info(info_flags::negative)) + return -tanh(-x); } if ((x/Pi).info(info_flags::numeric) && @@ -843,12 +1264,15 @@ static ex tanh_eval(const ex & x) if (is_exactly_a(x)) { const ex &t = x.op(0); + // tanh(atanh(x)) -> x if (is_ex_the_function(x, atanh)) return t; + // tanh(asinh(x)) -> x/sqrt(1+x^2) if (is_ex_the_function(x, asinh)) return t*power(_ex1+power(t,_ex2),_ex_1_2); + // tanh(acosh(x)) -> sqrt(x-1)*sqrt(x+1)/x if (is_ex_the_function(x, acosh)) return sqrt(t-_ex1)*sqrt(t+_ex1)*power(t,_ex_1); @@ -870,21 +1294,44 @@ static ex tanh_series(const ex &x, int order, unsigned options) { - GINAC_ASSERT(is_exactly_a(rel.lhs())); + GINAC_ASSERT(is_a(rel.lhs())); // method: // Taylor series where there is no pole falls back to tanh_deriv. // On a pole simply expand sinh(x)/cosh(x). - const ex x_pt = x.subs(rel); + const ex x_pt = x.subs(rel, subs_options::no_pattern); if (!(2*I*x_pt/Pi).info(info_flags::odd)) throw do_taylor(); // caught by function::series() // if we got here we have to care for a simple pole - return (sinh(x)/cosh(x)).series(rel, order+2, options); + return (sinh(x)/cosh(x)).series(rel, order, options); +} + +static ex tanh_real_part(const ex & x) +{ + ex a = GiNaC::real_part(x); + ex b = GiNaC::imag_part(x); + return tanh(a)/(1+power(tanh(a),2)*power(tan(b),2)); +} + +static ex tanh_imag_part(const ex & x) +{ + ex a = GiNaC::real_part(x); + ex b = GiNaC::imag_part(x); + return tan(b)/(1+power(tanh(a),2)*power(tan(b),2)); +} + +static ex tanh_conjugate(const ex & x) +{ + // conjugate(tanh(x))==tanh(conjugate(x)) + return tanh(x.conjugate()); } REGISTER_FUNCTION(tanh, eval_func(tanh_eval). evalf_func(tanh_evalf). derivative_func(tanh_deriv). series_func(tanh_series). + real_part_func(tanh_real_part). + imag_part_func(tanh_imag_part). + conjugate_func(tanh_conjugate). latex_name("\\tanh")); ////////// @@ -902,12 +1349,18 @@ static ex asinh_evalf(const ex & x) static ex asinh_eval(const ex & x) { if (x.info(info_flags::numeric)) { + // asinh(0) -> 0 if (x.is_zero()) return _ex0; + // asinh(float) -> float if (!x.info(info_flags::crational)) return asinh(ex_to(x)); + + // asinh() is odd + if (x.info(info_flags::negative)) + return -asinh(-x); } return asinh(x).hold(); @@ -921,9 +1374,26 @@ static ex asinh_deriv(const ex & x, unsigned deriv_param) return power(_ex1+power(x,_ex2),_ex_1_2); } +static ex asinh_conjugate(const ex & x) +{ + // conjugate(asinh(x))==asinh(conjugate(x)) unless on the branch cuts which + // run along the imaginary axis outside the interval [-I, +I]. + if (x.info(info_flags::real)) + return asinh(x); + if (is_exactly_a(x)) { + const numeric x_re = ex_to(x.real_part()); + const numeric x_im = ex_to(x.imag_part()); + if (!x_re.is_zero() || + (x_im > *_num_1_p && x_im < *_num1_p)) + return asinh(x.conjugate()); + } + return conjugate_function(asinh(x)).hold(); +} + REGISTER_FUNCTION(asinh, eval_func(asinh_eval). evalf_func(asinh_evalf). - derivative_func(asinh_deriv)); + derivative_func(asinh_deriv). + conjugate_func(asinh_conjugate)); ////////// // inverse hyperbolic cosine (trigonometric function) @@ -940,18 +1410,26 @@ static ex acosh_evalf(const ex & x) static ex acosh_eval(const ex & x) { if (x.info(info_flags::numeric)) { + // acosh(0) -> Pi*I/2 if (x.is_zero()) return Pi*I*numeric(1,2); + // acosh(1) -> 0 if (x.is_equal(_ex1)) return _ex0; + // acosh(-1) -> Pi*I if (x.is_equal(_ex_1)) return Pi*I; + // acosh(float) -> float if (!x.info(info_flags::crational)) return acosh(ex_to(x)); + + // acosh(-x) -> Pi*I-acosh(x) + if (x.info(info_flags::negative)) + return Pi*I-acosh(-x); } return acosh(x).hold(); @@ -965,9 +1443,21 @@ static ex acosh_deriv(const ex & x, unsigned deriv_param) return power(x+_ex_1,_ex_1_2)*power(x+_ex1,_ex_1_2); } +static ex acosh_conjugate(const ex & x) +{ + // conjugate(acosh(x))==acosh(conjugate(x)) unless on the branch cut + // which runs along the real axis from +1 to -inf. + if (is_exactly_a(x) && + (!x.imag_part().is_zero() || x > *_num1_p)) { + return acosh(x.conjugate()); + } + return conjugate_function(acosh(x)).hold(); +} + REGISTER_FUNCTION(acosh, eval_func(acosh_eval). evalf_func(acosh_evalf). - derivative_func(acosh_deriv)); + derivative_func(acosh_deriv). + conjugate_func(acosh_conjugate)); ////////// // inverse hyperbolic tangent (trigonometric function) @@ -984,15 +1474,22 @@ static ex atanh_evalf(const ex & x) static ex atanh_eval(const ex & x) { if (x.info(info_flags::numeric)) { + // atanh(0) -> 0 if (x.is_zero()) return _ex0; + // atanh({+|-}1) -> throw if (x.is_equal(_ex1) || x.is_equal(_ex_1)) throw (pole_error("atanh_eval(): logarithmic pole",0)); + // atanh(float) -> float if (!x.info(info_flags::crational)) return atanh(ex_to(x)); + + // atanh() is odd + if (x.info(info_flags::negative)) + return -atanh(-x); } return atanh(x).hold(); @@ -1011,7 +1508,7 @@ static ex atanh_series(const ex &arg, int order, unsigned options) { - GINAC_ASSERT(is_exactly_a(rel.lhs())); + GINAC_ASSERT(is_a(rel.lhs())); // method: // Taylor series where there is no pole or cut falls back to atanh_deriv. // There are two branch cuts, one runnig from 1 up the real axis and one @@ -1019,7 +1516,7 @@ static ex atanh_series(const ex &arg, // On the branch cuts and the poles series expand // (log(1+x)-log(1-x))/2 // instead. - const ex arg_pt = arg.subs(rel); + const ex arg_pt = arg.subs(rel, subs_options::no_pattern); if (!(arg_pt).info(info_flags::real)) throw do_taylor(); // Im(x) != 0 if ((arg_pt).info(info_flags::real) && abs(arg_pt)<_ex1) @@ -1035,7 +1532,7 @@ static ex atanh_series(const ex &arg, const symbol &s = ex_to(rel.lhs()); const ex &point = rel.rhs(); const symbol foo; - const ex replarg = series(atanh(arg), s==foo, order).subs(foo==point); + const ex replarg = series(atanh(arg), s==foo, order).subs(foo==point, subs_options::no_pattern); ex Order0correction = replarg.op(0)+csgn(I*arg)*Pi*I*_ex1_2; if (arg_pt<_ex0) Order0correction += log((arg_pt+_ex_1)/(arg_pt+_ex1))*_ex1_2; @@ -1049,10 +1546,22 @@ static ex atanh_series(const ex &arg, throw do_taylor(); } +static ex atanh_conjugate(const ex & x) +{ + // conjugate(atanh(x))==atanh(conjugate(x)) unless on the branch cuts which + // run along the real axis outside the interval [-1, +1]. + if (is_exactly_a(x) && + (!x.imag_part().is_zero() || (x > *_num_1_p && x < *_num1_p))) { + return atanh(x.conjugate()); + } + return conjugate_function(atanh(x)).hold(); +} + REGISTER_FUNCTION(atanh, eval_func(atanh_eval). evalf_func(atanh_evalf). derivative_func(atanh_deriv). - series_func(atanh_series)); + series_func(atanh_series). + conjugate_func(atanh_conjugate)); } // namespace GiNaC