X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Finifcns_trans.cpp;h=81f92a93aca908aa6f698e79dd1a4380d5998d61;hp=fae653182f4f7c9076526c5cd1dba36ac2e4abef;hb=af0c47009ca7a15af966430bdf1a72fe05c1c6f9;hpb=66c0f31c678e6c1938d637636b230ea376c157c1 diff --git a/ginac/inifcns_trans.cpp b/ginac/inifcns_trans.cpp index fae65318..81f92a93 100644 --- a/ginac/inifcns_trans.cpp +++ b/ginac/inifcns_trans.cpp @@ -1,9 +1,10 @@ /** @file inifcns_trans.cpp * * Implementation of transcendental (and trigonometric and hyperbolic) - * functions. - * - * GiNaC Copyright (C) 1999 Johannes Gutenberg University Mainz, Germany + * functions. */ + +/* + * GiNaC Copyright (C) 1999-2000 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -28,12 +29,20 @@ #include "constant.h" #include "numeric.h" #include "power.h" +#include "relational.h" +#include "symbol.h" +#include "pseries.h" +#include "utils.h" + +#ifndef NO_NAMESPACE_GINAC +namespace GiNaC { +#endif // ndef NO_NAMESPACE_GINAC ////////// // exponential function ////////// -ex exp_evalf(ex const & x) +static ex exp_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) @@ -42,23 +51,23 @@ ex exp_evalf(ex const & x) return exp(ex_to_numeric(x)); // -> numeric exp(numeric) } -ex exp_eval(ex const & x) +static ex exp_eval(const ex & x) { // exp(0) -> 1 if (x.is_zero()) { - return exONE(); + return _ex1(); } // exp(n*Pi*I/2) -> {+1|+I|-1|-I} - ex TwoExOverPiI=(2*x)/(Pi*I); + ex TwoExOverPiI=(_ex2()*x)/(Pi*I); if (TwoExOverPiI.info(info_flags::integer)) { - numeric z=mod(ex_to_numeric(TwoExOverPiI),numeric(4)); - if (z.is_equal(numZERO())) - return exONE(); - if (z.is_equal(numONE())) + numeric z=mod(ex_to_numeric(TwoExOverPiI),_num4()); + if (z.is_equal(_num0())) + return _ex1(); + if (z.is_equal(_num1())) return ex(I); - if (z.is_equal(numTWO())) - return exMINUSONE(); - if (z.is_equal(numTHREE())) + if (z.is_equal(_num2())) + return _ex_1(); + if (z.is_equal(_num3())) return ex(-I); } // exp(log(x)) -> x @@ -66,26 +75,29 @@ ex exp_eval(ex const & x) return x.op(0); // exp(float) - if (x.info(info_flags::numeric) && !x.info(info_flags::rational)) + if (x.info(info_flags::numeric) && !x.info(info_flags::crational)) return exp_evalf(x); return exp(x).hold(); -} +} -ex exp_diff(ex const & x, unsigned diff_param) +static ex exp_deriv(const ex & x, unsigned deriv_param) { - ASSERT(diff_param==0); + GINAC_ASSERT(deriv_param==0); + // d/dx exp(x) -> exp(x) return exp(x); } -REGISTER_FUNCTION(exp, exp_eval, exp_evalf, exp_diff, NULL); +REGISTER_FUNCTION(exp, eval_func(exp_eval). + evalf_func(exp_evalf). + derivative_func(exp_deriv)); ////////// // natural logarithm ////////// -ex log_evalf(ex const & x) +static ex log_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) @@ -94,46 +106,76 @@ ex log_evalf(ex const & x) return log(ex_to_numeric(x)); // -> numeric log(numeric) } -ex log_eval(ex const & x) +static ex log_eval(const ex & x) { if (x.info(info_flags::numeric)) { - // log(1) -> 0 - if (x.is_equal(exONE())) - return exZERO(); - // log(-1) -> I*Pi - if (x.is_equal(exMINUSONE())) - return (I*Pi); - // log(I) -> Pi*I/2 - if (x.is_equal(I)) - return (I*Pi*numeric(1,2)); - // log(-I) -> -Pi*I/2 - if (x.is_equal(-I)) - return (I*Pi*numeric(-1,2)); - // log(0) -> throw singularity - if (x.is_equal(exZERO())) + if (x.is_equal(_ex0())) // log(0) -> infinity throw(std::domain_error("log_eval(): log(0)")); + if (x.info(info_flags::real) && x.info(info_flags::negative)) + return (log(-x)+I*Pi); + if (x.is_equal(_ex1())) // log(1) -> 0 + return _ex0(); + if (x.is_equal(I)) // log(I) -> Pi*I/2 + return (Pi*I*_num1_2()); + if (x.is_equal(-I)) // log(-I) -> -Pi*I/2 + return (Pi*I*_num_1_2()); // log(float) - if (!x.info(info_flags::rational)) + if (!x.info(info_flags::crational)) return log_evalf(x); } + // log(exp(t)) -> t (if -Pi < t.imag() <= Pi): + if (is_ex_the_function(x, exp)) { + ex t = x.op(0); + if (t.info(info_flags::numeric)) { + numeric nt = ex_to_numeric(t); + if (nt.is_real()) + return t; + } + } return log(x).hold(); -} +} -ex log_diff(ex const & x, unsigned diff_param) +static ex log_deriv(const ex & x, unsigned deriv_param) { - ASSERT(diff_param==0); + GINAC_ASSERT(deriv_param==0); + + // d/dx log(x) -> 1/x + return power(x, _ex_1()); +} - return power(x, -1); +static ex log_series(const ex &x, const relational &rel, int order) +{ + const ex x_pt = x.subs(rel); + if (!x_pt.info(info_flags::negative) && !x_pt.is_zero()) + throw do_taylor(); // caught by function::series() + // now we either have to care for the branch cut or the branch point: + if (x_pt.is_zero()) { // branch point: return a plain log(x). + epvector seq; + seq.push_back(expair(log(x), _ex0())); + return pseries(rel, seq); + } // on the branch cut: + const ex point = rel.rhs(); + const symbol *s = static_cast(rel.lhs().bp); + const symbol foo; + // compute the formal series: + ex replx = series(log(x),*s==foo,order).subs(foo==point); + epvector seq; + seq.push_back(expair(-I*csgn(x*I)*Pi,_ex0())); + seq.push_back(expair(Order(_ex1()),order)); + return series(replx - I*Pi + pseries(rel, seq),rel,order); } -REGISTER_FUNCTION(log, log_eval, log_evalf, log_diff, NULL); +REGISTER_FUNCTION(log, eval_func(log_eval). + evalf_func(log_evalf). + derivative_func(log_deriv). + series_func(log_series)); ////////// // sine (trigonometric function) ////////// -ex sin_evalf(ex const & x) +static ex sin_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) @@ -142,54 +184,79 @@ ex sin_evalf(ex const & x) return sin(ex_to_numeric(x)); // -> numeric sin(numeric) } -ex sin_eval(ex const & x) -{ - // sin(n*Pi) -> 0 - ex xOverPi=x/Pi; - if (xOverPi.info(info_flags::integer)) - return exZERO(); - - // sin((2n+1)*Pi/2) -> {+|-}1 - ex xOverPiMinusHalf=xOverPi-exHALF(); - if (xOverPiMinusHalf.info(info_flags::even)) - return exONE(); - else if (xOverPiMinusHalf.info(info_flags::odd)) - return exMINUSONE(); +static ex sin_eval(const ex & x) +{ + // sin(n/d*Pi) -> { all known non-nested radicals } + ex SixtyExOverPi = _ex60()*x/Pi; + ex sign = _ex1(); + if (SixtyExOverPi.info(info_flags::integer)) { + numeric z = mod(ex_to_numeric(SixtyExOverPi),_num120()); + if (z>=_num60()) { + // wrap to interval [0, Pi) + z -= _num60(); + sign = _ex_1(); + } + if (z>_num30()) { + // wrap to interval [0, Pi/2) + z = _num60()-z; + } + if (z.is_equal(_num0())) // sin(0) -> 0 + return _ex0(); + if (z.is_equal(_num5())) // sin(Pi/12) -> sqrt(6)/4*(1-sqrt(3)/3) + return sign*_ex1_4()*power(_ex6(),_ex1_2())*(_ex1()+_ex_1_3()*power(_ex3(),_ex1_2())); + if (z.is_equal(_num6())) // sin(Pi/10) -> sqrt(5)/4-1/4 + return sign*(_ex1_4()*power(_ex5(),_ex1_2())+_ex_1_4()); + if (z.is_equal(_num10())) // sin(Pi/6) -> 1/2 + return sign*_ex1_2(); + if (z.is_equal(_num15())) // sin(Pi/4) -> sqrt(2)/2 + return sign*_ex1_2()*power(_ex2(),_ex1_2()); + if (z.is_equal(_num18())) // sin(3/10*Pi) -> sqrt(5)/4+1/4 + return sign*(_ex1_4()*power(_ex5(),_ex1_2())+_ex1_4()); + if (z.is_equal(_num20())) // sin(Pi/3) -> sqrt(3)/2 + return sign*_ex1_2()*power(_ex3(),_ex1_2()); + if (z.is_equal(_num25())) // sin(5/12*Pi) -> sqrt(6)/4*(1+sqrt(3)/3) + return sign*_ex1_4()*power(_ex6(),_ex1_2())*(_ex1()+_ex1_3()*power(_ex3(),_ex1_2())); + if (z.is_equal(_num30())) // sin(Pi/2) -> 1 + return sign*_ex1(); + } if (is_ex_exactly_of_type(x, function)) { - ex t=x.op(0); + ex t = x.op(0); // sin(asin(x)) -> x if (is_ex_the_function(x, asin)) return t; - // sin(acos(x)) -> (1-x^2)^(1/2) + // sin(acos(x)) -> sqrt(1-x^2) if (is_ex_the_function(x, acos)) - return power(exONE()-power(t,exTWO()),exHALF()); + return power(_ex1()-power(t,_ex2()),_ex1_2()); // sin(atan(x)) -> x*(1+x^2)^(-1/2) if (is_ex_the_function(x, atan)) - return t*power(exONE()+power(t,exTWO()),exMINUSHALF()); + return t*power(_ex1()+power(t,_ex2()),_ex_1_2()); } // sin(float) -> float - if (x.info(info_flags::numeric) && !x.info(info_flags::rational)) + if (x.info(info_flags::numeric) && !x.info(info_flags::crational)) return sin_evalf(x); return sin(x).hold(); } -ex sin_diff(ex const & x, unsigned diff_param) +static ex sin_deriv(const ex & x, unsigned deriv_param) { - ASSERT(diff_param==0); + GINAC_ASSERT(deriv_param==0); + // d/dx sin(x) -> cos(x) return cos(x); } -REGISTER_FUNCTION(sin, sin_eval, sin_evalf, sin_diff, NULL); +REGISTER_FUNCTION(sin, eval_func(sin_eval). + evalf_func(sin_evalf). + derivative_func(sin_deriv)); ////////// // cosine (trigonometric function) ////////// -ex cos_evalf(ex const & x) +static ex cos_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) @@ -198,54 +265,79 @@ ex cos_evalf(ex const & x) return cos(ex_to_numeric(x)); // -> numeric cos(numeric) } -ex cos_eval(ex const & x) -{ - // cos(n*Pi) -> {+|-}1 - ex xOverPi=x/Pi; - if (xOverPi.info(info_flags::even)) - return exONE(); - else if (xOverPi.info(info_flags::odd)) - return exMINUSONE(); - - // cos((2n+1)*Pi/2) -> 0 - ex xOverPiMinusHalf=xOverPi-exHALF(); - if (xOverPiMinusHalf.info(info_flags::integer)) - return exZERO(); +static ex cos_eval(const ex & x) +{ + // cos(n/d*Pi) -> { all known non-nested radicals } + ex SixtyExOverPi = _ex60()*x/Pi; + ex sign = _ex1(); + if (SixtyExOverPi.info(info_flags::integer)) { + numeric z = mod(ex_to_numeric(SixtyExOverPi),_num120()); + if (z>=_num60()) { + // wrap to interval [0, Pi) + z = _num120()-z; + } + if (z>=_num30()) { + // wrap to interval [0, Pi/2) + z = _num60()-z; + sign = _ex_1(); + } + if (z.is_equal(_num0())) // cos(0) -> 1 + return sign*_ex1(); + if (z.is_equal(_num5())) // cos(Pi/12) -> sqrt(6)/4*(1+sqrt(3)/3) + return sign*_ex1_4()*power(_ex6(),_ex1_2())*(_ex1()+_ex1_3()*power(_ex3(),_ex1_2())); + if (z.is_equal(_num10())) // cos(Pi/6) -> sqrt(3)/2 + return sign*_ex1_2()*power(_ex3(),_ex1_2()); + if (z.is_equal(_num12())) // cos(Pi/5) -> sqrt(5)/4+1/4 + return sign*(_ex1_4()*power(_ex5(),_ex1_2())+_ex1_4()); + if (z.is_equal(_num15())) // cos(Pi/4) -> sqrt(2)/2 + return sign*_ex1_2()*power(_ex2(),_ex1_2()); + if (z.is_equal(_num20())) // cos(Pi/3) -> 1/2 + return sign*_ex1_2(); + if (z.is_equal(_num24())) // cos(2/5*Pi) -> sqrt(5)/4-1/4x + return sign*(_ex1_4()*power(_ex5(),_ex1_2())+_ex_1_4()); + if (z.is_equal(_num25())) // cos(5/12*Pi) -> sqrt(6)/4*(1-sqrt(3)/3) + return sign*_ex1_4()*power(_ex6(),_ex1_2())*(_ex1()+_ex_1_3()*power(_ex3(),_ex1_2())); + if (z.is_equal(_num30())) // cos(Pi/2) -> 0 + return sign*_ex0(); + } if (is_ex_exactly_of_type(x, function)) { - ex t=x.op(0); + ex t = x.op(0); // cos(acos(x)) -> x if (is_ex_the_function(x, acos)) return t; // cos(asin(x)) -> (1-x^2)^(1/2) if (is_ex_the_function(x, asin)) - return power(exONE()-power(t,exTWO()),exHALF()); + return power(_ex1()-power(t,_ex2()),_ex1_2()); // cos(atan(x)) -> (1+x^2)^(-1/2) if (is_ex_the_function(x, atan)) - return power(exONE()+power(t,exTWO()),exMINUSHALF()); + return power(_ex1()+power(t,_ex2()),_ex_1_2()); } // cos(float) -> float - if (x.info(info_flags::numeric) && !x.info(info_flags::rational)) + if (x.info(info_flags::numeric) && !x.info(info_flags::crational)) return cos_evalf(x); return cos(x).hold(); } -ex cos_diff(ex const & x, unsigned diff_param) +static ex cos_deriv(const ex & x, unsigned deriv_param) { - ASSERT(diff_param==0); + GINAC_ASSERT(deriv_param==0); - return numMINUSONE()*sin(x); + // d/dx cos(x) -> -sin(x) + return _ex_1()*sin(x); } -REGISTER_FUNCTION(cos, cos_eval, cos_evalf, cos_diff, NULL); +REGISTER_FUNCTION(cos, eval_func(cos_eval). + evalf_func(cos_evalf). + derivative_func(cos_deriv)); ////////// // tangent (trigonometric function) ////////// -ex tan_evalf(ex const & x) +static ex tan_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) @@ -254,60 +346,89 @@ ex tan_evalf(ex const & x) return tan(ex_to_numeric(x)); } -ex tan_eval(ex const & x) -{ - // tan(n*Pi/3) -> {0|3^(1/2)|-(3^(1/2))} - ex ThreeExOverPi=numTHREE()*x/Pi; - if (ThreeExOverPi.info(info_flags::integer)) { - numeric z=mod(ex_to_numeric(ThreeExOverPi),numeric(3)); - if (z.is_equal(numZERO())) - return exZERO(); - if (z.is_equal(numONE())) - return power(exTHREE(),exHALF()); - if (z.is_equal(numTWO())) - return -power(exTHREE(),exHALF()); +static ex tan_eval(const ex & x) +{ + // tan(n/d*Pi) -> { all known non-nested radicals } + ex SixtyExOverPi = _ex60()*x/Pi; + ex sign = _ex1(); + if (SixtyExOverPi.info(info_flags::integer)) { + numeric z = mod(ex_to_numeric(SixtyExOverPi),_num60()); + if (z>=_num60()) { + // wrap to interval [0, Pi) + z -= _num60(); + } + if (z>=_num30()) { + // wrap to interval [0, Pi/2) + z = _num60()-z; + sign = _ex_1(); + } + if (z.is_equal(_num0())) // tan(0) -> 0 + return _ex0(); + if (z.is_equal(_num5())) // tan(Pi/12) -> 2-sqrt(3) + return sign*(_ex2()-power(_ex3(),_ex1_2())); + if (z.is_equal(_num10())) // tan(Pi/6) -> sqrt(3)/3 + return sign*_ex1_3()*power(_ex3(),_ex1_2()); + if (z.is_equal(_num15())) // tan(Pi/4) -> 1 + return sign*_ex1(); + if (z.is_equal(_num20())) // tan(Pi/3) -> sqrt(3) + return sign*power(_ex3(),_ex1_2()); + if (z.is_equal(_num25())) // tan(5/12*Pi) -> 2+sqrt(3) + return sign*(power(_ex3(),_ex1_2())+_ex2()); + if (z.is_equal(_num30())) // tan(Pi/2) -> infinity + throw (std::domain_error("tan_eval(): simple pole")); } - // tan((2n+1)*Pi/2) -> throw - ex ExOverPiMinusHalf=x/Pi-exHALF(); - if (ExOverPiMinusHalf.info(info_flags::integer)) - throw (std::domain_error("tan_eval(): infinity")); - if (is_ex_exactly_of_type(x, function)) { - ex t=x.op(0); + ex t = x.op(0); // tan(atan(x)) -> x if (is_ex_the_function(x, atan)) return t; // tan(asin(x)) -> x*(1+x^2)^(-1/2) if (is_ex_the_function(x, asin)) - return t*power(exONE()-power(t,exTWO()),exMINUSHALF()); + return t*power(_ex1()-power(t,_ex2()),_ex_1_2()); // tan(acos(x)) -> (1-x^2)^(1/2)/x if (is_ex_the_function(x, acos)) - return power(t,exMINUSONE())*power(exONE()-power(t,exTWO()),exHALF()); + return power(t,_ex_1())*power(_ex1()-power(t,_ex2()),_ex1_2()); } // tan(float) -> float - if (x.info(info_flags::numeric) && !x.info(info_flags::rational)) { + if (x.info(info_flags::numeric) && !x.info(info_flags::crational)) { return tan_evalf(x); } return tan(x).hold(); } -ex tan_diff(ex const & x, unsigned diff_param) +static ex tan_deriv(const ex & x, unsigned deriv_param) { - ASSERT(diff_param==0); + GINAC_ASSERT(deriv_param==0); - return (1+power(tan(x),exTWO())); + // d/dx tan(x) -> 1+tan(x)^2; + return (_ex1()+power(tan(x),_ex2())); } -REGISTER_FUNCTION(tan, tan_eval, tan_evalf, tan_diff, NULL); +static ex tan_series(const ex &x, const relational &rel, int order) +{ + // method: + // Taylor series where there is no pole falls back to tan_deriv. + // On a pole simply expand sin(x)/cos(x). + const ex x_pt = x.subs(rel); + if (!(2*x_pt/Pi).info(info_flags::odd)) + throw do_taylor(); // caught by function::series() + // if we got here we have to care for a simple pole + return (sin(x)/cos(x)).series(rel, order+2); +} + +REGISTER_FUNCTION(tan, eval_func(tan_eval). + evalf_func(tan_evalf). + derivative_func(tan_deriv). + series_func(tan_series)); ////////// // inverse sine (arc sine) ////////// -ex asin_evalf(ex const & x) +static ex asin_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) @@ -316,46 +437,49 @@ ex asin_evalf(ex const & x) return asin(ex_to_numeric(x)); // -> numeric asin(numeric) } -ex asin_eval(ex const & x) +static ex asin_eval(const ex & x) { if (x.info(info_flags::numeric)) { // asin(0) -> 0 if (x.is_zero()) return x; // asin(1/2) -> Pi/6 - if (x.is_equal(exHALF())) + if (x.is_equal(_ex1_2())) return numeric(1,6)*Pi; // asin(1) -> Pi/2 - if (x.is_equal(exONE())) - return numeric(1,2)*Pi; + if (x.is_equal(_ex1())) + return _num1_2()*Pi; // asin(-1/2) -> -Pi/6 - if (x.is_equal(exMINUSHALF())) + if (x.is_equal(_ex_1_2())) return numeric(-1,6)*Pi; // asin(-1) -> -Pi/2 - if (x.is_equal(exMINUSONE())) - return numeric(-1,2)*Pi; + if (x.is_equal(_ex_1())) + return _num_1_2()*Pi; // asin(float) -> float - if (!x.info(info_flags::rational)) + if (!x.info(info_flags::crational)) return asin_evalf(x); } return asin(x).hold(); } -ex asin_diff(ex const & x, unsigned diff_param) +static ex asin_deriv(const ex & x, unsigned deriv_param) { - ASSERT(diff_param==0); + GINAC_ASSERT(deriv_param==0); - return power(1-power(x,exTWO()),exMINUSHALF()); + // d/dx asin(x) -> 1/sqrt(1-x^2) + return power(1-power(x,_ex2()),_ex_1_2()); } -REGISTER_FUNCTION(asin, asin_eval, asin_evalf, asin_diff, NULL); +REGISTER_FUNCTION(asin, eval_func(asin_eval). + evalf_func(asin_evalf). + derivative_func(asin_deriv)); ////////// // inverse cosine (arc cosine) ////////// -ex acos_evalf(ex const & x) +static ex acos_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) @@ -364,46 +488,49 @@ ex acos_evalf(ex const & x) return acos(ex_to_numeric(x)); // -> numeric acos(numeric) } -ex acos_eval(ex const & x) +static ex acos_eval(const ex & x) { if (x.info(info_flags::numeric)) { // acos(1) -> 0 - if (x.is_equal(exONE())) - return exZERO(); + if (x.is_equal(_ex1())) + return _ex0(); // acos(1/2) -> Pi/3 - if (x.is_equal(exHALF())) - return numeric(1,3)*Pi; + if (x.is_equal(_ex1_2())) + return _ex1_3()*Pi; // acos(0) -> Pi/2 if (x.is_zero()) - return numeric(1,2)*Pi; + return _ex1_2()*Pi; // acos(-1/2) -> 2/3*Pi - if (x.is_equal(exMINUSHALF())) + if (x.is_equal(_ex_1_2())) return numeric(2,3)*Pi; // acos(-1) -> Pi - if (x.is_equal(exMINUSONE())) + if (x.is_equal(_ex_1())) return Pi; // acos(float) -> float - if (!x.info(info_flags::rational)) + if (!x.info(info_flags::crational)) return acos_evalf(x); } return acos(x).hold(); } -ex acos_diff(ex const & x, unsigned diff_param) +static ex acos_deriv(const ex & x, unsigned deriv_param) { - ASSERT(diff_param==0); + GINAC_ASSERT(deriv_param==0); - return numMINUSONE()*power(1-power(x,exTWO()),exMINUSHALF()); + // d/dx acos(x) -> -1/sqrt(1-x^2) + return _ex_1()*power(1-power(x,_ex2()),_ex_1_2()); } -REGISTER_FUNCTION(acos, acos_eval, acos_evalf, acos_diff, NULL); +REGISTER_FUNCTION(acos, eval_func(acos_eval). + evalf_func(acos_evalf). + derivative_func(acos_deriv)); ////////// // inverse tangent (arc tangent) ////////// -ex atan_evalf(ex const & x) +static ex atan_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) @@ -412,34 +539,37 @@ ex atan_evalf(ex const & x) return atan(ex_to_numeric(x)); // -> numeric atan(numeric) } -ex atan_eval(ex const & x) +static ex atan_eval(const ex & x) { if (x.info(info_flags::numeric)) { // atan(0) -> 0 - if (x.is_equal(exZERO())) - return exZERO(); + if (x.is_equal(_ex0())) + return _ex0(); // atan(float) -> float - if (!x.info(info_flags::rational)) + if (!x.info(info_flags::crational)) return atan_evalf(x); } return atan(x).hold(); } -ex atan_diff(ex const & x, unsigned diff_param) +static ex atan_deriv(const ex & x, unsigned deriv_param) { - ASSERT(diff_param==0); + GINAC_ASSERT(deriv_param==0); - return power(1+x*x, -1); + // d/dx atan(x) -> 1/(1+x^2) + return power(_ex1()+power(x,_ex2()), _ex_1()); } -REGISTER_FUNCTION(atan, atan_eval, atan_evalf, atan_diff, NULL); +REGISTER_FUNCTION(atan, eval_func(atan_eval). + evalf_func(atan_evalf). + derivative_func(atan_deriv)); ////////// // inverse tangent (atan2(y,x)) ////////// -ex atan2_evalf(ex const & y, ex const & x) +static ex atan2_evalf(const ex & y, const ex & x) { BEGIN_TYPECHECK TYPECHECK(y,numeric) @@ -449,35 +579,37 @@ ex atan2_evalf(ex const & y, ex const & x) return atan(ex_to_numeric(y),ex_to_numeric(x)); // -> numeric atan(numeric) } -ex atan2_eval(ex const & y, ex const & x) +static ex atan2_eval(const ex & y, const ex & x) { - if (y.info(info_flags::numeric) && !y.info(info_flags::rational) && - x.info(info_flags::numeric) && !x.info(info_flags::rational)) { + if (y.info(info_flags::numeric) && !y.info(info_flags::crational) && + x.info(info_flags::numeric) && !x.info(info_flags::crational)) { return atan2_evalf(y,x); } return atan2(y,x).hold(); } -ex atan2_diff(ex const & y, ex const & x, unsigned diff_param) +static ex atan2_deriv(const ex & y, const ex & x, unsigned deriv_param) { - ASSERT(diff_param<2); - - if (diff_param==0) { + GINAC_ASSERT(deriv_param<2); + + if (deriv_param==0) { // d/dy atan(y,x) - return power(x*(1+y*y/(x*x)),-1); + return x*power(power(x,_ex2())+power(y,_ex2()),_ex_1()); } // d/dx atan(y,x) - return -y*power(x*x+y*y,-1); + return -y*power(power(x,_ex2())+power(y,_ex2()),_ex_1()); } -REGISTER_FUNCTION(atan2, atan2_eval, atan2_evalf, atan2_diff, NULL); +REGISTER_FUNCTION(atan2, eval_func(atan2_eval). + evalf_func(atan2_evalf). + derivative_func(atan2_deriv)); ////////// // hyperbolic sine (trigonometric function) ////////// -ex sinh_evalf(ex const & x) +static ex sinh_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) @@ -486,47 +618,52 @@ ex sinh_evalf(ex const & x) return sinh(ex_to_numeric(x)); // -> numeric sinh(numeric) } -ex sinh_eval(ex const & x) +static ex sinh_eval(const ex & x) { if (x.info(info_flags::numeric)) { - // sinh(0) -> 0 - if (x.is_zero()) - return exZERO(); - // sinh(float) -> float - if (!x.info(info_flags::rational)) + if (x.is_zero()) // sinh(0) -> 0 + return _ex0(); + if (!x.info(info_flags::crational)) // sinh(float) -> float return sinh_evalf(x); } + if ((x/Pi).info(info_flags::numeric) && + ex_to_numeric(x/Pi).real().is_zero()) // sinh(I*x) -> I*sin(x) + return I*sin(x/I); + if (is_ex_exactly_of_type(x, function)) { - ex t=x.op(0); + ex t = x.op(0); // sinh(asinh(x)) -> x if (is_ex_the_function(x, asinh)) return t; // sinh(acosh(x)) -> (x-1)^(1/2) * (x+1)^(1/2) if (is_ex_the_function(x, acosh)) - return power(t-exONE(),exHALF())*power(t+exONE(),exHALF()); + return power(t-_ex1(),_ex1_2())*power(t+_ex1(),_ex1_2()); // sinh(atanh(x)) -> x*(1-x^2)^(-1/2) if (is_ex_the_function(x, atanh)) - return t*power(exONE()-power(t,exTWO()),exMINUSHALF()); + return t*power(_ex1()-power(t,_ex2()),_ex_1_2()); } return sinh(x).hold(); } -ex sinh_diff(ex const & x, unsigned diff_param) +static ex sinh_deriv(const ex & x, unsigned deriv_param) { - ASSERT(diff_param==0); + GINAC_ASSERT(deriv_param==0); + // d/dx sinh(x) -> cosh(x) return cosh(x); } -REGISTER_FUNCTION(sinh, sinh_eval, sinh_evalf, sinh_diff, NULL); +REGISTER_FUNCTION(sinh, eval_func(sinh_eval). + evalf_func(sinh_evalf). + derivative_func(sinh_deriv)); ////////// // hyperbolic cosine (trigonometric function) ////////// -ex cosh_evalf(ex const & x) +static ex cosh_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) @@ -535,47 +672,53 @@ ex cosh_evalf(ex const & x) return cosh(ex_to_numeric(x)); // -> numeric cosh(numeric) } -ex cosh_eval(ex const & x) +static ex cosh_eval(const ex & x) { if (x.info(info_flags::numeric)) { - // cosh(0) -> 1 - if (x.is_zero()) - return exONE(); - // cosh(float) -> float - if (!x.info(info_flags::rational)) + if (x.is_zero()) // cosh(0) -> 1 + return _ex1(); + if (!x.info(info_flags::crational)) // cosh(float) -> float return cosh_evalf(x); } + if ((x/Pi).info(info_flags::numeric) && + ex_to_numeric(x/Pi).real().is_zero()) // cosh(I*x) -> cos(x) + return cos(x/I); + if (is_ex_exactly_of_type(x, function)) { - ex t=x.op(0); + ex t = x.op(0); // cosh(acosh(x)) -> x if (is_ex_the_function(x, acosh)) return t; // cosh(asinh(x)) -> (1+x^2)^(1/2) if (is_ex_the_function(x, asinh)) - return power(exONE()+power(t,exTWO()),exHALF()); + return power(_ex1()+power(t,_ex2()),_ex1_2()); // cosh(atanh(x)) -> (1-x^2)^(-1/2) if (is_ex_the_function(x, atanh)) - return power(exONE()-power(t,exTWO()),exMINUSHALF()); + return power(_ex1()-power(t,_ex2()),_ex_1_2()); } return cosh(x).hold(); } -ex cosh_diff(ex const & x, unsigned diff_param) +static ex cosh_deriv(const ex & x, unsigned deriv_param) { - ASSERT(diff_param==0); + GINAC_ASSERT(deriv_param==0); + // d/dx cosh(x) -> sinh(x) return sinh(x); } -REGISTER_FUNCTION(cosh, cosh_eval, cosh_evalf, cosh_diff, NULL); +REGISTER_FUNCTION(cosh, eval_func(cosh_eval). + evalf_func(cosh_evalf). + derivative_func(cosh_deriv)); + ////////// // hyperbolic tangent (trigonometric function) ////////// -ex tanh_evalf(ex const & x) +static ex tanh_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) @@ -584,47 +727,65 @@ ex tanh_evalf(ex const & x) return tanh(ex_to_numeric(x)); // -> numeric tanh(numeric) } -ex tanh_eval(ex const & x) +static ex tanh_eval(const ex & x) { if (x.info(info_flags::numeric)) { - // tanh(0) -> 0 - if (x.is_zero()) - return exZERO(); - // tanh(float) -> float - if (!x.info(info_flags::rational)) + if (x.is_zero()) // tanh(0) -> 0 + return _ex0(); + if (!x.info(info_flags::crational)) // tanh(float) -> float return tanh_evalf(x); } + if ((x/Pi).info(info_flags::numeric) && + ex_to_numeric(x/Pi).real().is_zero()) // tanh(I*x) -> I*tan(x); + return I*tan(x/I); + if (is_ex_exactly_of_type(x, function)) { - ex t=x.op(0); + ex t = x.op(0); // tanh(atanh(x)) -> x if (is_ex_the_function(x, atanh)) return t; // tanh(asinh(x)) -> x*(1+x^2)^(-1/2) if (is_ex_the_function(x, asinh)) - return t*power(exONE()+power(t,exTWO()),exMINUSHALF()); + return t*power(_ex1()+power(t,_ex2()),_ex_1_2()); // tanh(acosh(x)) -> (x-1)^(1/2)*(x+1)^(1/2)/x if (is_ex_the_function(x, acosh)) - return power(t-exONE(),exHALF())*power(t+exONE(),exHALF())*power(t,exMINUSONE()); + return power(t-_ex1(),_ex1_2())*power(t+_ex1(),_ex1_2())*power(t,_ex_1()); } return tanh(x).hold(); } -ex tanh_diff(ex const & x, unsigned diff_param) +static ex tanh_deriv(const ex & x, unsigned deriv_param) { - ASSERT(diff_param==0); + GINAC_ASSERT(deriv_param==0); - return exONE()-power(tanh(x),exTWO()); + // d/dx tanh(x) -> 1-tanh(x)^2 + return _ex1()-power(tanh(x),_ex2()); } -REGISTER_FUNCTION(tanh, tanh_eval, tanh_evalf, tanh_diff, NULL); +static ex tanh_series(const ex &x, const relational &rel, int order) +{ + // method: + // Taylor series where there is no pole falls back to tanh_deriv. + // On a pole simply expand sinh(x)/cosh(x). + const ex x_pt = x.subs(rel); + if (!(2*I*x_pt/Pi).info(info_flags::odd)) + throw do_taylor(); // caught by function::series() + // if we got here we have to care for a simple pole + return (sinh(x)/cosh(x)).series(rel, order+2); +} + +REGISTER_FUNCTION(tanh, eval_func(tanh_eval). + evalf_func(tanh_evalf). + derivative_func(tanh_deriv). + series_func(tanh_series)); ////////// // inverse hyperbolic sine (trigonometric function) ////////// -ex asinh_evalf(ex const & x) +static ex asinh_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) @@ -633,34 +794,37 @@ ex asinh_evalf(ex const & x) return asinh(ex_to_numeric(x)); // -> numeric asinh(numeric) } -ex asinh_eval(ex const & x) +static ex asinh_eval(const ex & x) { if (x.info(info_flags::numeric)) { // asinh(0) -> 0 if (x.is_zero()) - return exZERO(); + return _ex0(); // asinh(float) -> float - if (!x.info(info_flags::rational)) + if (!x.info(info_flags::crational)) return asinh_evalf(x); } return asinh(x).hold(); } -ex asinh_diff(ex const & x, unsigned diff_param) +static ex asinh_deriv(const ex & x, unsigned deriv_param) { - ASSERT(diff_param==0); + GINAC_ASSERT(deriv_param==0); - return power(1+power(x,exTWO()),exMINUSHALF()); + // d/dx asinh(x) -> 1/sqrt(1+x^2) + return power(_ex1()+power(x,_ex2()),_ex_1_2()); } -REGISTER_FUNCTION(asinh, asinh_eval, asinh_evalf, asinh_diff, NULL); +REGISTER_FUNCTION(asinh, eval_func(asinh_eval). + evalf_func(asinh_evalf). + derivative_func(asinh_deriv)); ////////// // inverse hyperbolic cosine (trigonometric function) ////////// -ex acosh_evalf(ex const & x) +static ex acosh_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) @@ -669,40 +833,43 @@ ex acosh_evalf(ex const & x) return acosh(ex_to_numeric(x)); // -> numeric acosh(numeric) } -ex acosh_eval(ex const & x) +static ex acosh_eval(const ex & x) { if (x.info(info_flags::numeric)) { // acosh(0) -> Pi*I/2 if (x.is_zero()) return Pi*I*numeric(1,2); // acosh(1) -> 0 - if (x.is_equal(exONE())) - return exZERO(); + if (x.is_equal(_ex1())) + return _ex0(); // acosh(-1) -> Pi*I - if (x.is_equal(exMINUSONE())) + if (x.is_equal(_ex_1())) return Pi*I; // acosh(float) -> float - if (!x.info(info_flags::rational)) + if (!x.info(info_flags::crational)) return acosh_evalf(x); } return acosh(x).hold(); } -ex acosh_diff(ex const & x, unsigned diff_param) +static ex acosh_deriv(const ex & x, unsigned deriv_param) { - ASSERT(diff_param==0); + GINAC_ASSERT(deriv_param==0); - return power(x-1,exMINUSHALF())*power(x+1,exMINUSHALF()); + // d/dx acosh(x) -> 1/(sqrt(x-1)*sqrt(x+1)) + return power(x+_ex_1(),_ex_1_2())*power(x+_ex1(),_ex_1_2()); } -REGISTER_FUNCTION(acosh, acosh_eval, acosh_evalf, acosh_diff, NULL); +REGISTER_FUNCTION(acosh, eval_func(acosh_eval). + evalf_func(acosh_evalf). + derivative_func(acosh_deriv)); ////////// // inverse hyperbolic tangent (trigonometric function) ////////// -ex atanh_evalf(ex const & x) +static ex atanh_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) @@ -711,28 +878,35 @@ ex atanh_evalf(ex const & x) return atanh(ex_to_numeric(x)); // -> numeric atanh(numeric) } -ex atanh_eval(ex const & x) +static ex atanh_eval(const ex & x) { if (x.info(info_flags::numeric)) { // atanh(0) -> 0 if (x.is_zero()) - return exZERO(); + return _ex0(); // atanh({+|-}1) -> throw - if (x.is_equal(exONE()) || x.is_equal(exONE())) - throw (std::domain_error("atanh_eval(): infinity")); + if (x.is_equal(_ex1()) || x.is_equal(_ex_1())) + throw (std::domain_error("atanh_eval(): logarithmic pole")); // atanh(float) -> float - if (!x.info(info_flags::rational)) + if (!x.info(info_flags::crational)) return atanh_evalf(x); } return atanh(x).hold(); } -ex atanh_diff(ex const & x, unsigned diff_param) +static ex atanh_deriv(const ex & x, unsigned deriv_param) { - ASSERT(diff_param==0); + GINAC_ASSERT(deriv_param==0); - return power(exONE()-power(x,exTWO()),exMINUSONE()); + // d/dx atanh(x) -> 1/(1-x^2) + return power(_ex1()-power(x,_ex2()),_ex_1()); } -REGISTER_FUNCTION(atanh, atanh_eval, atanh_evalf, atanh_diff, NULL); +REGISTER_FUNCTION(atanh, eval_func(atanh_eval). + evalf_func(atanh_evalf). + derivative_func(atanh_deriv)); + +#ifndef NO_NAMESPACE_GINAC +} // namespace GiNaC +#endif // ndef NO_NAMESPACE_GINAC